Heterogeneous Activation of Persulfate by Nickel Oxide/Strontium Carbonate Composite for Sulfamethoxazole Degradation in Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Aqueous Media
2.2. NiO/SrCO3 Synthesis
2.3. NiO/SrCO3 Physicochemical Characterization Techniques
2.4. Analytical Methods and Experimental Procedures
2.5. Electrochemical Characterization
2.5.1. Electrochemical Measurements
2.5.2. Synthesis of NiO/SrCO3/FTO Working Electrode
3. Results and Discussion
3.1. Physicochemical Characterization
3.2. Effect of Experimental Conditions on SMX Removal in the NiO/SrCO3/SPS System
3.2.1. Impact of SPS Concentration on the Degradation Reaction
3.2.2. Effect of NiO/SrCO3 Dosage
3.2.3. Effect of Antibiotic Concentration
3.2.4. Effect of pH
3.2.5. Impact of Water Matrix and Additives on Process Efficiency
3.3. Degradation Mechanism
3.3.1. Electrochemical Measurements
3.3.2. Scavengers of Reactive Species
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Domingues, E.; Silva, M.J.; Vaz, T.; Gomes, J.; Martins, R.C. Persulfate Process Activated by Homogeneous and Heterogeneous Catalysts for Synthetic Olive Mill Wastewater Treatment. Water 2021, 13, 3010. [Google Scholar] [CrossRef]
- Giannakis, S.; Lin, K.Y.A.; Ghanbari, F. A Review of the Recent Advances on the Treatment of Industrial Wastewaters by Sulfate Radical-Based Advanced Oxidation Processes (SR-AOPs). Chem. Eng. J. 2021, 406, 127083. [Google Scholar] [CrossRef]
- Lin, D.; Fu, Y.; Li, X.; Wang, L.; Hou, M.; Hu, D.; Li, Q.; Zhang, Z.; Xu, C.; Qiu, S.; et al. Application of Persulfate-Based Oxidation Processes to Address Diverse Sustainability Challenges: A Critical Review. J. Hazard. Mater. 2022, 440, 129722. [Google Scholar] [CrossRef] [PubMed]
- Honarmandrad, Z.; Sun, X.; Wang, Z.; Naushad, M.; Boczkaj, G. Activated Persulfate and Peroxymonosulfate Based Advanced Oxidation Processes (AOPs) for Antibiotics Degradation—A Review. Water Resour. Ind. 2023, 29, 100194. [Google Scholar] [CrossRef]
- Qi, C.; Liu, X.; Ma, J.; Lin, C.; Li, X.; Zhang, H. Activation of Peroxymonosulfate by Base: Implications for the Degradation of Organic Pollutants. Chemosphere 2016, 151, 280–288. [Google Scholar] [CrossRef]
- Li, J.; Liang, Y.; Jin, P.; Zhao, B.; Zhang, Z.; He, X.; Tan, Z.; Wang, L.; Cheng, X. Heterogeneous Metal-Activated Persulfate and Electrochemically Activated Persulfate: A Review. Catalysts 2022, 12, 1024. [Google Scholar] [CrossRef]
- Wang, L.; Luo, D.; Hamdaoui, O.; Vasseghian, Y.; Momotko, M.; Boczkaj, G.; Kyzas, G.Z.; Wang, C. Bibliometric Analysis and Literature Review of Ultrasound-Assisted Degradation of Organic Pollutants. Sci. Total Environ. 2023, 876, 162551. [Google Scholar] [CrossRef]
- Yang, L.; Xue, J.; He, L.; Wu, L.; Ma, Y.; Chen, H.; Li, H.; Peng, P.; Zhang, Z. Review on Ultrasound Assisted Persulfate Degradation of Organic Contaminants in Wastewater: Influences, Mechanisms and Prospective. Chem. Eng. J. 2019, 378, 122146. [Google Scholar] [CrossRef]
- Fedorov, K.; Dinesh, K.; Sun, X.; Darvishi Cheshmeh Soltani, R.; Wang, Z.; Sonawane, S.; Boczkaj, G. Synergistic Effects of Hybrid Advanced Oxidation Processes (AOPs) Based on Hydrodynamic Cavitation Phenomenon—A Review. Chem. Eng. J. 2022, 432, 134191. [Google Scholar] [CrossRef]
- Manos, D.; Papadopoulou, F.; Margellou, A.; Petrakis, D.; Konstantinou, I. Heterogeneous Activation of Persulfate by LaMO3 (M = Co, Fe, Cu, Mn, Ni) Perovskite Catalysts for the Degradation of Organic Compounds. Catalysts 2022, 12, 187. [Google Scholar] [CrossRef]
- Manz, K.E.; Kulaots, I.; Greenley, C.A.; Landry, P.J.; Lakshmi, K.V.; Woodcock, M.J.; Hellerich, L.; Bryant, J.D.; Apfelbaum, M.; Pennell, K.D. Low-Temperature Persulfate Activation by Powdered Activated Carbon for Simultaneous Destruction of Perfluorinated Carboxylic Acids and 1,4-Dioxane. J. Hazard. Mater. 2023, 442, 129966. [Google Scholar] [CrossRef] [PubMed]
- Kemmou, L.; Frontistis, Z.; Vakros, J.; Manariotis, I.D.; Mantzavinos, D. Degradation of Antibiotic Sulfamethoxazole by Biochar-Activated Persulfate: Factors Affecting the Activation and Degradation Processes. Catal. Today 2018, 313, 128–133. [Google Scholar] [CrossRef]
- Bekris, L.; Frontistis, Z.; Trakakis, G.; Sygellou, L.; Galiotis, C.; Mantzavinos, D. Graphene: A New Activator of Sodium Persulfate for the Advanced Oxidation of Parabens in Water. Water Res. 2017, 126, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Xiao, S.; Zhong, H.; Yan, M.; Yang, X. Activation of Persulfates by Carbonaceous Materials: A Review. Chem. Eng. J. 2021, 418, 129297. [Google Scholar] [CrossRef]
- Wu, Y.; Shi, Y.; Chen, H.; Zhao, J.; Dong, W. Activation of Persulfate by Magnetite: Implications for the Degradation of Low Concentration Sulfamethoxazole. Process Saf. Environ. Prot. 2018, 116, 468–476. [Google Scholar] [CrossRef]
- Alexopoulou, C.; Petala, A.; Frontistis, Z.; Drivas, C.; Kennou, S.; Kondarides, D.I.; Mantzavinos, D. Copper Phosphide and Persulfate Salt: A Novel Catalytic System for the Degradation of Aqueous Phase Micro-Contaminants. Appl. Catal. B Environ. 2019, 244, 178–187. [Google Scholar] [CrossRef]
- Xiong, Z.; Jiang, Y.; Wu, Z.; Yao, G.; Lai, B. Synthesis Strategies and Emerging Mechanisms of Metal-Organic Frameworks for Sulfate Radical-Based Advanced Oxidation Process: A Review. Chem. Eng. J. 2021, 421, 127863. [Google Scholar] [CrossRef]
- Yuan, R.; Jiang, Z.; Wang, Z.; Gao, S.; Liu, Z.; Li, M.; Boczkaj, G. Hierarchical MnO2 Nanoflowers Blooming on 3D Nickel Foam: A Novel Micro-Macro Catalyst for Peroxymonosulfate Activation. J. Colloid Interface Sci. 2020, 571, 142–154. [Google Scholar] [CrossRef]
- Yuan, R.; Jiang, M.; Gao, S.; Wang, Z.; Wang, H.; Boczkaj, G.; Liu, Z.; Ma, J.; Li, Z. 3D Mesoporous α-Co(OH)2 Nanosheets Electrodeposited on Nickel Foam: A New Generation of Macroscopic Cobalt-Based Hybrid for Peroxymonosulfate Activation. Chem. Eng. J. 2020, 380, 122447. [Google Scholar] [CrossRef]
- Cao, J.; Lai, L.; Lai, B.; Yao, G.; Chen, X.; Song, L. Degradation of Tetracycline by Peroxymonosulfate Activated with Zero-Valent Iron: Performance, Intermediates, Toxicity and Mechanism. Chem. Eng. J. 2019, 364, 45–56. [Google Scholar] [CrossRef]
- Yang, S.; Che, D. Degradation of Aquatic Sulfadiazine by Fe0/Persulfate: Kinetics, Mechanisms, and Degradation Pathway. RSC Adv. 2017, 7, 42233–42241. [Google Scholar] [CrossRef]
- Wu, J.; Wang, B.; Blaney, L.; Peng, G.; Chen, P.; Cui, Y.; Deng, S.; Wang, Y.; Huang, J.; Yu, G. Degradation of Sulfamethazine by Persulfate Activated with Organo-Montmorillonite Supported Nano-Zero Valent Iron. Chem. Eng. J. 2019, 361, 99–108. [Google Scholar] [CrossRef]
- Lei, Y.; Chen, C.-S.; Tu, Y.-J.; Huang, Y.-H.; Zhang, H. Heterogeneous Degradation of Organic Pollutants by Persulfate Activated by CuO-Fe3O4: Mechanism, Stability, and Effects of PH and Bicarbonate Ions. Environ. Sci. Technol. 2015, 49, 6838–6845. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Shen, Q.; Nan, T.; Zhou, M.; Xia, Y.; Hu, G.; Zheng, Q.; Wu, Y.; Bian, T.; Wei, T.; et al. Cobalt-Based Catalysts for Heterogeneous Peroxymonosulfate (PMS) Activation in Degradation of Organic Contaminants: Recent Advances and Perspectives. J. Alloys Compd. 2023, 958, 170370. [Google Scholar] [CrossRef]
- Li, B.; Wang, Y.-F.; Zhang, L.; Xu, H.-Y. Enhancement Strategies for Efficient Activation of Persulfate by Heterogeneous Cobalt-Containing Catalysts: A Review. Chemosphere 2022, 291, 132954. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Chen, Y.; Wang, Y.; Le Roux, J.; Yang, Y.; Croué, J.-P. Efficient Peroxydisulfate Activation Process Not Relying on Sulfate Radical Generation for Water Pollutant Degradation. Environ. Sci. Technol. 2014, 48, 5868–5875. [Google Scholar] [CrossRef]
- Du, X.; Zhang, Y.; Hussain, I.; Huang, S.; Huang, W. Insight into Reactive Oxygen Species in Persulfate Activation with Copper Oxide: Activated Persulfate and Trace Radicals. Chem. Eng. J. 2017, 313, 1023–1032. [Google Scholar] [CrossRef]
- Jiang, L.; Xu, X.; Yuan, J.; Zuo, Y.; Tao, Y.; Yao, D.; He, G.; Chen, H. Heterogeneous Activation of Persulfate for the Degradation of Bisphenol A with Ni2SnO4–RGO. New J. Chem. 2020, 44, 6355–6361. [Google Scholar] [CrossRef]
- Wu, Z.; Liang, Y.; Zou, D.; Yuan, X.; Xiao, Z.; Deng, Y.; Zhou, Y.; Jiang, L.; Qin, P. Enhanced Heterogeneous Activation of Persulfate by NixCo3–XO4 for Oxidative Degradation of Tetracycline and Bisphenol A. J. Environ. Chem. Eng. 2020, 8, 104451. [Google Scholar] [CrossRef]
- Kim, H.H.; Lee, D.; Choi, J.; Lee, H.; Seo, J.; Kim, T.; Lee, K.M.; Pham, A.L.T.; Lee, C. Nickel–Nickel Oxide Nanocomposite as a Magnetically Separable Persulfate Activator for the Nonradical Oxidation of Organic Contaminants. J. Hazard. Mater. 2020, 388, 121767. [Google Scholar] [CrossRef]
- Liu, L.; Liu, Q.; Wang, Y.; Huang, J.; Wang, W.; Duan, L.; Yang, X.; Yu, X.; Han, X.; Liu, N. Nonradical Activation of Peroxydisulfate Promoted by Oxygen Vacancy-Laden NiO for Catalytic Phenol Oxidative Polymerization. Appl. Catal. B Environ. 2019, 254, 166–173. [Google Scholar] [CrossRef]
- Xie, L.; Hao, J.; Xing, S. Enhanced Non-Radical Activation of Persulfate with Pompon-like NiO Microspheres for Removing Sulfamethoxazole in Water. Environ. Sci. Pollut. Res. Int. 2023, 30, 14455–14463. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Zhou, X.; Han, S.; Zhou, J.; Qian, G.; Gao, N. Cycle of Ni(II)-Ni(III)-Ni(II) in Ni-Doped Layered Double Hydroxides for Activation of Intercalated Peroxydisulfate. Chem. Eng. J. 2020, 386, 123937. [Google Scholar] [CrossRef]
- Jian, S.; Sun, S.; Zeng, Y.; Liu, Z.; Liu, Y.; Yang, Q.; Ma, G. Highly Efficient Persulfate Oxidation Process Activated with NiO Nanosheets with Dominantly Exposed {1 1 0} Reactive Facets for Degradation of RhB. Appl. Surf. Sci. 2020, 505, 144318. [Google Scholar] [CrossRef]
- Yue, D.; Guo, C.; Yan, X.; Wang, R.; Fang, M.; Wu, Y.; Qian, X.; Zhao, Y. Secondary Battery Inspired NiO Nanosheets with Rich Ni(III) Defects for Enhancing Persulfates Activation in Phenolic Waste Water Degradation. Chem. Eng. J. 2019, 360, 97–103. [Google Scholar] [CrossRef]
- Gkika, C.; Petala, A.; Frontistis, Z.; Bampos, G.; Hela, D.; Konstantinou, I.; Mantzavinos, D. Heterogeneous Activation of Persulfate by Lanthanum Strontium Cobaltite for Sulfamethoxazole Degradation. Catal. Today 2021, 361, 130–138. [Google Scholar] [CrossRef]
- Miao, J.; Sunarso, J.; Su, C.; Zhou, W.; Wang, S.; Shao, Z. SrCo1−xTixO3−δ Perovskites as Excellent Catalysts for Fast Degradation of Water Contaminants in Neutral and Alkaline Solutions. Sci. Rep. 2017, 7, 44215. [Google Scholar] [CrossRef]
- Wang, C.; Gao, S.; Zhu, J.; Xia, X.; Wang, M.; Xiong, Y. Enhanced Activation of Peroxydisulfate by Strontium Modified BiFeO3Perovskite for Ciprofloxacin Degradation. J. Environ. Sci. 2021, 99, 249–259. [Google Scholar] [CrossRef]
- Cheng, C.; Gao, S.; Zhu, J.; Wang, G.; Wang, L.; Xia, X. Enhanced Performance of LaFeO3 Perovskite for Peroxymonosulfate Activation through Strontium Doping towards 2,4-D Degradation. Chem. Eng. J. 2020, 384, 123377. [Google Scholar] [CrossRef]
- Rodriguez-Mozaz, S.; Chamorro, S.; Marti, E.; Huerta, B.; Gros, M.; Sànchez-Melsió, A.; Borrego, C.M.; Barceló, D.; Balcázar, J.L. Occurrence of Antibiotics and Antibiotic Resistance Genes in Hospital and Urban Wastewaters and Their Impact on the Receiving River. Water Res. 2015, 69, 234–242. [Google Scholar] [CrossRef]
- Song, Z.; Zhang, X.; Ngo, H.H.; Guo, W.; Wen, H.; Li, C. Occurrence, Fate and Health Risk Assessment of 10 Common Antibiotics in Two Drinking Water Plants with Different Treatment Processes. Sci. Total Environ. 2019, 674, 316–326. [Google Scholar] [CrossRef] [PubMed]
- Cycoń, M.; Mrozik, A.; Piotrowska-Seget, Z. Antibiotics in the Soil Environment-Degradation and Their Impact on Microbial Activity and Diversity. Front. Microbiol. 2019, 10, 338. [Google Scholar] [CrossRef] [PubMed]
- da Conceição, L.; Silva, A.M.; Ribeiro, N.F.P.; Souza, M.M.V.M. Combustion Synthesis of La0.7Sr0.3Co0.5Fe0.5O3 (LSCF) Porous Materials for Application as Cathode in IT-SOFC. Mater. Res. Bull. 2011, 46, 308–314. [Google Scholar] [CrossRef]
- Safakas, A.; Bampos, G.; Bebelis, S. Oxygen Reduction Reaction on La0.8Sr0.2CoxFe1−XO3−δ Perovskite/Carbon Black Electrocatalysts in Alkaline Medium. Appl. Catal. B Environ. 2019, 244, 225–232. [Google Scholar] [CrossRef]
- Petala, A.; Tsikritzis, D.; Kollia, M.; Ladas, S.; Kennou, S.; Kondarides, D.I. Synthesis and Characterization of N-Doped TiO2 Photocatalysts with Tunable Response to Solar Radiation. Appl. Surf. Sci. 2014, 305, 281–291. [Google Scholar] [CrossRef]
- Giannakopoulos, S.; Vakros, J.; Frontistis, Z.; Manariotis, I.D.; Venieri, D.; Poulopoulos, S.G.; Mantzavinos, D. Biochar from Lemon Stalks: A Highly Active and Selective Carbocatalyst for the Oxidation of Sulfamethoxazole with Persulfate. Catalysts 2023, 13, 233. [Google Scholar] [CrossRef]
- Li, M.; Bi, Y.-G.; Xiang, L.; Chen, X.-T.; Qin, Y.-J.; Mo, C.-H.; Zhou, S.-Q. Improved Cathodic Oxygen Reduction and Bioelectricity Generation of Electrochemical Reactor Based on Reduced Graphene Oxide Decorated with Titanium-Based Composites. Bioresour. Technol. 2020, 296, 122319. [Google Scholar] [CrossRef]
- Wang, J.; Wei, Y.; Yang, B.; Wang, B.; Chen, J.; Jing, H. In Situ Grown Heterojunction of Bi2WO6/BiOCl for Efficient Photoelectrocatalytic CO2 Reduction. J. Catal. 2019, 377, 209–217. [Google Scholar] [CrossRef]
- Guo, P.-C.; Qiu, H.-B.; Yang, C.-W.; Zhang, X.; Shao, X.-Y.; Lai, Y.-L.; Sheng, G.-P. Highly Efficient Removal and Detoxification of Phenolic Compounds Using Persulfate Activated by MnO(x)@OMC: Synergistic Mechanism and Kinetic Analysis. J. Hazard. Mater. 2021, 402, 123846. [Google Scholar] [CrossRef]
- Ding, S.; Wan, J.; Wang, Y.; Yan, Z.; Ma, Y. Activation of Persulfate by Molecularly Imprinted Fe-MOF-74 @ SiO2 for the Targeted Degradation of Dimethyl Phthalate: Effects of Operating Parameters and Chlorine. Chem. Eng. J. 2021, 422, 130406. [Google Scholar] [CrossRef]
- Qi, Y.; Zou, M.; Ajarem, J.S.; Allam, A.A.; Wang, Z.; Qu, R.; Zhu, F.; Huo, Z. Catalytic Degradation of Pharmaceutical and Personal Care Products in Aqueous Solution by Persulfate Activated with Nanoscale FeCoNi-Ternary Mixed Metal Oxides. Sep. Purif. Technol. 2023, 314, 123585. [Google Scholar] [CrossRef]
- Sabri, M.; Habibi-Yangjeh, A.; Vadivel, S. Novel ZnO/Ag6Si2O7 Nanocomposites for Activation of Persulfate Ions in Photocatalytic Removal of Organic Contaminants under Visible Light. Mater. Chem. Phys. 2020, 239, 121988. [Google Scholar] [CrossRef]
- Liang, C.; Wang, Z.S.; Bruell, C.J. Influence of PH on Persulfate Oxidation of TCE at Ambient Temperatures. Chemosphere 2007, 66, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Matzek, L.W.; Carter, K.E. Activated Persulfate for Organic Chemical Degradation: A Review. Chemosphere 2016, 151, 178–188. [Google Scholar] [CrossRef] [PubMed]
- Petala, A.; Arvaniti, O.S.; Christofili, M.; Safakas, A.; Frontistis, Z.; Mantzavinos, D. Lanthanum Nickel Oxide: An Effective Heterogeneous Activator of Sodium Persulfate for Antibiotics Elimination. Catalysts 2020, 10, 1373. [Google Scholar] [CrossRef]
- Hong, Y.; Peng, J.; Zhao, X.; Yan, Y.; Lai, B.; Yao, G. Efficient Degradation of Atrazine by CoMgAl Layered Double Oxides Catalyzed Peroxymonosulfate: Optimization, Degradation Pathways and Mechanism. Chem. Eng. J. 2019, 370, 354–363. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. Activation of Persulfate (PS) and Peroxymonosulfate (PMS) and Application for the Degradation of Emerging Contaminants. Chem. Eng. J. 2018, 334, 1502–1517. [Google Scholar] [CrossRef]
- Ji, Y.; Fan, Y.; Liu, K.; Kong, D.; Lu, J. Thermo Activated Persulfate Oxidation of Antibiotic Sulfamethoxazole and Structurally Related Compounds. Water Res. 2015, 87, 1–9. [Google Scholar] [CrossRef]
- Rønn, L.; Gydesen, E.; Bennedsen, L.R.; Muff, J.; Søgaard, E.G. Aalborg Universitet Influence of Chloride and Carbonates on the Reactivity of Activated Persulfate Chemosphere Influence of Chloride and Carbonates on the Reactivity of Activated Persulfate. Chemosphere 2012, 86, 1092–1097. [Google Scholar] [CrossRef]
- Metheniti, M.; Frontistis, Z.; Ribeiro, R.; Silva, A.; Faria, J.; Gomes, H.; Mantzavinos, D. Degradation of Propyl Paraben by Activated Persulfate Using Iron-Containing Magnetic Carbon Xerogels: Investigation of Water Matrix and Process Synergy Effects. Environ. Sci. Pollut. Res. 2018, 25, 34801–34810. [Google Scholar] [CrossRef]
- Oyekunle, D.T.; Cai, J.; Gendy, E.A.; Chen, Z. Chemosphere Impact of Chloride Ions on Activated Persulfates Based Advanced Oxidation Process (AOPs): A Mini Review. Chemosphere 2021, 280, 130949. [Google Scholar] [CrossRef] [PubMed]
- Arvaniti, O.S.; Bairamis, F.; Konstantinou, I.; Mantzavinos, D.; Frontistis, Z. Degradation of Antihypertensive Drug Valsartan in Water Matrices by Heat and Heat/Ultrasound Activated Persulfate: Kinetics, Synergy Effect and Transformation Products. Chem. Eng. J. Adv. 2020, 4, 100062. [Google Scholar] [CrossRef]
- Rayaroth, M.P.; Boczkaj, G.; Aubry, O.; Aravind, U.K.; Aravindakumar, C.T. Advanced Oxidation Processes for Degradation of Water Pollutants—Ambivalent Impact of Carbonate Species: A Review. Water 2023, 15, 1615. [Google Scholar] [CrossRef]
- Feng, Y.; Song, Q.; Lv, W.; Liu, G. Degradation of Ketoprofen by Sulfate Radical-Based Advanced Oxidation Processes: Kinetics, Mechanisms, and Effects of Natural Water Matrices. Chemosphere 2017, 189, 643–651. [Google Scholar] [CrossRef]
- Lee, H.; Kim, H.; Weon, S.; Choi, W.; Hwang, Y.S.; Seo, J.; Lee, C.; Kim, J.-H. Activation of Persulfates by Graphitized Nanodiamonds for Removal of Organic Compounds. Environ. Sci. Technol. 2016, 50, 10134–10142. [Google Scholar] [CrossRef]
- Guo, R.; Xi, B.; Guo, C.; Liu, W.; Lv, N.; Xu, J. Comprehensive Insight into Heterogeneous Persulfate Activation for Environmental Pollutants Degradation: Approaches and Mechanism. Environ. Funct. Mater. 2022, 1, 239–252. [Google Scholar] [CrossRef]
Name | Formula | CAS Number |
---|---|---|
Sulfamethoxazole, SMX | C10H11N3O3S | 723-46-6 |
Sodium persulfate, SPS | Na2S2O8 | 7775-27-1 |
Methanol | CH3OH | 67-56-1 |
Sulfuric acid | H2SO4 | 7664-93-9 |
Sodium hydroxide | NaOH | 1310-73-2 |
Sodium bicarbonate | NaHCO₃ | 144-55-8 |
Sodium chloride | NaCl | 7647-14-5 |
Humic acid | - | 1415-93-6 |
Tert-butanol | (CH3)3COH | 75-65-0 |
Strontium nitrate, 99.995% trace metals basis | Sr(NO3)2 | 10042-76-9 |
Nickel (II) nitrate hexahydrate, 99.999% trace metals basis | Ni(NO3)2·6H2O | 13478-00-7 |
Citric acid | C6H8O7 | 77-92-9 |
Ammonium nitrate | NH4NO3 | 6484-52-2 |
Ammonia | NH3 | 7664-41-7 |
Parameter | WW | BB | UPW |
---|---|---|---|
pH | 8 | 7.5 | 6 |
Conductivity [μS/cm] | 0.33 | 0.39 | 0.012 |
Alkalinity [mg/L] | 190 | 152 | - |
Sulfates [mg/L] | 33 | 15 | - |
Chlorides [mg/L] | 69 | 9.8 | - |
Bicarbonates [mg/L] | 190 | 209 | - |
TOC [mg/L] | 7 | - | - |
COD [mg/L] | 21 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skempi, D.J.; Kouvelis, K.; Petala, A.; Bampos, G.; Frontistis, Z. Heterogeneous Activation of Persulfate by Nickel Oxide/Strontium Carbonate Composite for Sulfamethoxazole Degradation in Water. Environments 2023, 10, 147. https://doi.org/10.3390/environments10080147
Skempi DJ, Kouvelis K, Petala A, Bampos G, Frontistis Z. Heterogeneous Activation of Persulfate by Nickel Oxide/Strontium Carbonate Composite for Sulfamethoxazole Degradation in Water. Environments. 2023; 10(8):147. https://doi.org/10.3390/environments10080147
Chicago/Turabian StyleSkempi, Despoina Jessica, Konstantinos Kouvelis, Athanasia Petala, Georgios Bampos, and Zacharias Frontistis. 2023. "Heterogeneous Activation of Persulfate by Nickel Oxide/Strontium Carbonate Composite for Sulfamethoxazole Degradation in Water" Environments 10, no. 8: 147. https://doi.org/10.3390/environments10080147
APA StyleSkempi, D. J., Kouvelis, K., Petala, A., Bampos, G., & Frontistis, Z. (2023). Heterogeneous Activation of Persulfate by Nickel Oxide/Strontium Carbonate Composite for Sulfamethoxazole Degradation in Water. Environments, 10(8), 147. https://doi.org/10.3390/environments10080147