Fungal Arsenic Tolerance and Bioaccumulation: Local Strains from Polluted Water vs. Allochthonous Strains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Soil Samples
2.2. Isolation and Identification of Indigenous Fungal Strains and Selection of Fungal Strains from Our Collection
2.3. Tolerance and Bioaccumulation Tests
3. Results and Discussion
3.1. Chemical Analysis
3.2. Mycological Analysis of Polluted Water Samples and Selection of Fungal Strains from the ColD Collection
3.3. Tolerance and Bioaccumulation Tests
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bahar, M.M.; Megharaj, M.; Naidu, R. Bioremediation of arsenic-contaminated water: Recent advances and future prospects. Water Air Soil Pollut. 2013, 224, 1722. [Google Scholar] [CrossRef]
- Melamed, D. Monitoring arsenic in the environment: A review of science and technologies with the potential for field measurements. Anal. Chim. Acta 2005, 532, 1–13. [Google Scholar] [CrossRef]
- Iftikhar, S.; Ali, Z.; Khan, D.A.; Zaidi, N.u.S.S.; Gul, A.; Babar, M.M. Arsenic toxicity: A South Asian perspective. In Mechanisms of Arsenic Toxicity and Tolerance in Plants; Springer: Singapore, 2018; pp. 483–502. [Google Scholar] [CrossRef]
- Mandal, B.K.; Suzuki, K.T. Arsenic round the world: A review. Talanta 2002, 58, 201–235. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Singh, S.; Parihar, P.; Singh, V.P.; Prasad, S.M. Arsenic contamination, consequences and remediation techniques: A review. Ecotoxicol. Environ. Saf. 2015, 112, 247–270. [Google Scholar] [CrossRef] [PubMed]
- Smedley, P.L.; Kinniburgh, D.G. A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 2002, 17, 517–568. [Google Scholar] [CrossRef]
- Khosravi-Darani, K.; Rehman, Y.; Katsoyiannis, I.A.; Kokkinos, E.; Zouboulis, A.I. Arsenic Exposure via Contaminated Water and Food Sources. Water 2022, 14, 1884. [Google Scholar] [CrossRef]
- Wang, J.P.; Qi, L.; Moore, M.R.; Ng, J.C. A review of animal models for the study of arsenic carcinogenesis. Toxicol. Lett. 2002, 133, 17–31. [Google Scholar] [CrossRef] [PubMed]
- Palmeggiani, G.; Lebrun, M.; Simiele, M.; Bourgerie, S.; Morabito, D. Effect of Biochar Application Depth on a Former Mine Technosol: Impact on Metal(Loid)s and Alnus Growth. Environments 2021, 8, 120. [Google Scholar] [CrossRef]
- Shi, H.; Shi, X.; Liu, K.J. Oxidative mechanism of arsenic toxicity and carcinogenesis. Mol. Cell Biochem. 2004, 255, 67–78. [Google Scholar] [CrossRef]
- Cohen, S.M.; Arnold, L.L.; Eldan, M.; Lewis, A.S.; Beck, B.D. Methylated arsenicals: The implications of metabolism and carcinogenicity studies in rodents to human risk assessment. Crit. Rev. Toxicol. 2006, 36, 99–133. [Google Scholar] [CrossRef]
- Flora Swaran, J.S. Arsenic-induced oxidative stress and its reversibility. Free Radic. Biol. Med. 2011, 51, 257–281. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Dwivedi, S.K. Mycoremediation of heavy metals: Processes, mechanisms, and affecting factors. Environ. Sci. Pollut. Res. 2021, 28, 10375–10412. [Google Scholar] [CrossRef] [PubMed]
- Irshad, S.; Xie, Z.; Mehmood, S.; Nawaz, A.; Ditta, A.; Mahmood, Q. Insights into conventional and recent technologies for arsenic bioremediation: A systematic review. Environ. Sci. Pollut. Res. 2021, 28, 18870–18892. [Google Scholar] [CrossRef] [PubMed]
- Kamal, N.; Parshad, J.; Saharan, B.S.; Kayasth, M.; Mudgal, V.; Duhan, J.S.; Mandal, B.S.; Sadh, P.K. Ecosystem Protection through Myco-Remediation of Chromium and Arsenic. J. Xenobiotics 2023, 13, 159–171. [Google Scholar] [CrossRef] [PubMed]
- Bharagava, R.N.; Chowdhary, P. Emerging and Eco-Friendly Approaches for Waste Management; Springer: Singapore, 2018. [Google Scholar] [CrossRef]
- Yin, S.; Zhang, X.; Yin, H.; Zhang, X. Current knowledge on molecular mechanisms of microorganism-mediated bioremediation for arsenic contamination: A review. Microbiol. Res. 2022, 258, 126990. [Google Scholar] [CrossRef] [PubMed]
- Iram, S.; Parveen, K.; Usman, J.; Nasir, K.; Akhtar, N.; Arouj, S.; Ahmad, I. Heavy metal tolerance of filamentous fungal strains isolated from soil irrigated with industrial wastewater. Biologija 2012, 58, 107–116. [Google Scholar] [CrossRef]
- Elnabi, M.K.A.; Elkaliny, N.E.; Elyazied, M.M.; Azab, S.H.; Elkhalifa, S.A.; Elmasry, S.; Mouhamed, M.S.; Shalamesh, E.M.; Alhorieny, N.A.; Elaty, A.E.A.; et al. Toxicity of Heavy Metals and Recent Advances in Their Removal: A Review. Toxics 2023, 11, 580. [Google Scholar] [CrossRef]
- Przybysz, A.; Nawrocki, A.; Mirzwa-Mróz, E.; Paduch-Cichal, E.; Kimic, K.; Popek, R. Species-specific influence of powdery mildew mycelium on the efficiency of PM accumulation by urban greenery. Environ. Sci. Pollut. Res. 2023, 1, 3. [Google Scholar] [CrossRef]
- Ghosh, S.; Rusyn, I.; Dmytruk, O.V.; Dmytruk, K.V.; Onyeaka, H.; Gryzenhout, M.; Gafforov, Y. Filamentous fungi for sustainable remediation of pharmaceutical compounds, heavy metal and oil hydrocarbons. Front. Bioeng. Biotechnol. 2023, 11, 1106973. [Google Scholar] [CrossRef]
- Leitão, A.L. Potential of penicillium species in the bioremediation field. Int. J. Environ. Res. Public Health 2009, 6, 1393–1417. [Google Scholar] [CrossRef]
- Glass, N.L.; Donaldson, G.C. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl. Environ. Microbiol. 1995, 61, 1323–1330. [Google Scholar] [CrossRef] [PubMed]
- Gardes, M.; Bruns, T.D. ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol. Ecol. 1993, 2, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Mohammadian, E.; Ahari, A.B.; Arzanlou, M.; Oustan, S.; Khazaei, S.H. Tolerance to heavy metals in filamentous fungi isolated from contaminated mining soils in the Zanjan Province, Iran. Chemosphere 2017, 185, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Bhatnagar, A.; Tamboli, E.; Mishra, A. Wastewater treatment and Mycoremediation by P. ostreatus mycelium. IOP Conf. Ser. Earth Environ. Sci. 2021, 775, 012003. [Google Scholar] [CrossRef]
- Visoottiviseth, P.; Panviroj, N. Selection of Fungi Capable of Removing Toxic Arsenic Compounds from Liquid Medium. ScienceAsia 2001, 27, 83–92. [Google Scholar] [CrossRef]
- Mukherjee, K.K. Isolation and characterization of Arsenic tolerant fungal strains from contaminated sites around urban environment of Kolkata. IOSR J. Environ. Sci. Toxicol. Food Technol. 2013, 7, 33–37. [Google Scholar] [CrossRef]
- Anahid, S.; Yaghmaei, S.; Ghobadinejad, Z. Heavy metal tolerance of fungi. Sci. Iran. 2011, 18, 502–508. [Google Scholar] [CrossRef]
- Srivastava, P.K.; Vaish, A.; Dwivedi, S.; Chakrabarty, D.; Singh, N.; Tripathi, R.D. Biological removal of arsenic pollution by soil fungi. Sci. Total Environ. 2011, 409, 2430–2442. [Google Scholar] [CrossRef]
- Ceci, A.; Spinelli, V.; Massimi, L.; Canepari, S.; Persiani, A.M. Fungi and arsenic: Tolerance and bioaccumulation by soil saprotrophic species. Appl. Sci. 2020, 10, 3218. [Google Scholar] [CrossRef]
- Melgar, M.J.; Alonso, J.; García, M.A. Mercury in edible mushrooms and underlying soil: Bioconcentration factors and toxicological risk. Sci. Total Environ. 2009, 407, 5328–5334. [Google Scholar] [CrossRef]
- Rosa, E.; Di Piazza, S.; Cecchi, G.; Mazzoccoli, M.; Zerbini, M.; Cardinale, A.M.; Zotti, M. Applied Tests to Select the Most Suitable Fungal Strain for the Recovery of Critical Raw Materials from Electronic Waste Powder. Recycling 2022, 7, 72. [Google Scholar] [CrossRef]
- García, M.Á.; Alonso, J.; Melgar, M.J. Lead in edible mushrooms. Levels and bioaccumulation factors. J. Hazard. Mater. 2009, 167, 777–783. [Google Scholar] [CrossRef]
- Mitra, A.; Chatterjee, S.; Gupta, D.K. Environmental Arsenic Exposure and Human Health Risk. In Arsenic Water Resources Contamination; Springer: Cham, Switzerland, 2020; pp. 103–129. [Google Scholar] [CrossRef]
- Jomova, K.; Jenisova, Z.; Feszterova, M.; Baros, S.; Liska, J.; Hudecova, D.; Rhodes, C.J.; Valko, M. Arsenic: Toxicity, oxidative stress and human disease. J. Appl. Toxicol. 2011, 31, 95–107. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, R.; Chatterjee, D.; Nath, B.; Jana, J.; Jacks, G.; Vahter, M. High arsenic groundwater: Mobilization, metabolism and mitigation—An overview in the Bengal Delta Plain. Mol. Cell. Biochem. 2003, 253, 347–355. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, H.M.B.; Santos, C.; Paterson, R.R.M.; Gusmão, N.B.; Lima, N. Fungi from a groundwater-fed drinkingwater supply system in Brazil. Int. J. Environ. Res. Public Health 2016, 13, 304. [Google Scholar] [CrossRef] [PubMed]
- Lategan, M.J.; Torpy, F.R.; Newby, S.; Stephenson, S.; Hose, G.C. Fungal Diversity of Shallow Aquifers in Southeastern Australia. Geomicrobiol. J. 2012, 29, 352–361. [Google Scholar] [CrossRef]
- Garza-González, M.T.; Ramírez-Vázquez, J.E.; García-Hernández, M.D.L.Á.; Cantú-Cárdenas, M.E.; Liñan-Montes, A.; Villarreal-Chiu, J.F. Reduction of chromium (VI) from aqueous solution by biomass of Cladosporium cladosporioides. Water Sci. Technol. 2017, 76, 2494–2502. [Google Scholar] [CrossRef]
- Carmo, J.R.D.; Pimenta, C.J.; da Silva, J.F.; de Souza, S.M.C. Recovery of copper (II) absorbed in biomass of Cladosporium cladosporioides. Sci. Agric. 2013, 70, 147–151. [Google Scholar] [CrossRef]
- Pethkar, A.V.; Kulkarni, S.K.; Paknikar, K.M. Comparative studies on metal biosorption by two strains of Cladosporium cladosporioides. Bioresour. Technol. 2001, 80, 211–215. [Google Scholar] [CrossRef]
- Cárdenas-González, J.F.; Acosta-Rodríguez, I.; Téran-Figueroa, Y.; Rodríguez-Pérez, A.S. Bioremoval of arsenic (V) from aqueous solutions by chemically modified fungal biomass. 3 Biotech. 2017, 7, 226. [Google Scholar] [CrossRef]
- Zehra, A.; Dubey, M.K.; Meena, M.; Aamir, M.; Patel, C.B.; Upadhyay, R.S. Role of Penicillium Species in Bioremediation Processes. In New and Future Developments in Microbial Biotechnology and Bioengineering: Penicillium System Properties and Applications; Elsevier: Amsterdam, The Netherlands, 2018; pp. 247–260. [Google Scholar] [CrossRef]
- Martins, L.R.; Lyra, F.H.; Rugani, M.M.H.; Takahashi, J.A. Bioremediation of Metallic Ions by Eight Penicillium Species. J. Environ. Eng. 2016, 142, C4015007. [Google Scholar] [CrossRef]
- El-Ramady, H.; Abdalla, N.; Fawzy, Z.; Badgar, K.; Llanaj, X.; Törős, G.; Hajdú, P.; Eid, Y.; Prokisch, J. Green Biotechnology of Oyster Mushroom (Pleurotus ostreatus L.): A Sustainable Strategy for Myco-Remediation and Bio-Fermentation. Sustainability 2022, 14, 3667. [Google Scholar] [CrossRef]
- Satyanarayana, T.; Deshmukh, S.K.; Deshpande, M.V. Advancing Frontiers in Mycology & Mycotechnology: Basic and Applied Aspects of Fungi; Springer: Singapore, 2019. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y.; Pan, Y.; Yu, H.; Zhang, X.; Shen, Y.; Jiao, S.; Wu, K.; La, G.; Yuan, Y.; et al. Mechanisms of Cd and Cr removal and tolerance by macrofungus Pleurotus ostreatus HAU-2. J. Hazard. Mater. 2017, 330, 1–8. [Google Scholar] [CrossRef]
- Valix, M.; Loon, L.O. Adaptive tolerance behaviour of fungi in heavy metals. Miner. Eng. 2003, 16, 193–198. [Google Scholar] [CrossRef]
- Tsekova, K.; Todorova, D.; Ganeva, S. Removal of heavy metals from industrial wastewater by free and immobilized cells of Aspergillus niger. Int. Biodeterior. Biodegrad. 2010, 64, 447–451. [Google Scholar] [CrossRef]
- Čerňanský, S.; Urík, M.; Ševc, J.; Khun, M. Biosorption and biovolatilization of arsenic by heat-resistant fungi. Environ. Sci. Pollut. Res. 2007, 14, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, A.; Viraraghavan, T.; Cullimore, D.R. Removal of heavy metals using the fungus Aspergillus niger. Bioresour. Technol. 1999, 70, 95–104. [Google Scholar] [CrossRef]
- Ren, W.X.; Li, P.J.; Geng, Y.; Li, X.J. Biological leaching of heavy metals from a contaminated soil by Aspergillus niger. J. Hazard. Mater. 2009, 167, 164–169. [Google Scholar] [CrossRef] [PubMed]
- Shrivastava, K.; Pramanik, B.; Singh, S.S.; Khan, M.L. Enhanced arsenic removal from aqueous medium by arsenic tolerant groundwater fungi. J. Environ. Biol. 2020, 41, 186–194. [Google Scholar] [CrossRef]
- Chen, S.H.; Cheow, Y.L.; Ng, S.L.; Ting, A.S.Y. Mechanisms for metal removal established via electron microscopy and spectroscopy: A case study on metal tolerant fungi Penicillium simplicissimum. J. Hazard. Mater. 2019, 362, 394–402. [Google Scholar] [CrossRef] [PubMed]
- D’Annibale, A.; Rosetto, F.; Leonardi, V.; Federici, F.; Petruccioli, M. Role of autochthonous filamentous fungi in bioremediation of a soil historically contaminated with aromatic hydrocarbons. Appl. Environ. Microbiol. 2006, 72, 28–36. [Google Scholar] [CrossRef]
- Khan, I.; Ali, M.; Aftab, M.; Shakir, S.; Qayyum, S.; Haleem, K.S.; Tauseef, I. Mycoremediation: A treatment for heavy metal-polluted soil using indigenous metallotolerant fungi. Environ. Monit. Assess. 2019, 191, 622. [Google Scholar] [CrossRef]
Heavy Metal | M.U. | Result | Confidence Interval | Legal Limit Value | Analytic Method |
---|---|---|---|---|---|
arsenic (total As) | μg L−1 | 1607 | ±161 | 10 | EPA 6020B 2014 |
cadmium (Cd) | μg L−1 | 1 | ±0.1 | 5 | EPA 6020B 2014 |
chromium (VI) | μg L−1 | 26.4 | ±3.6 | 5 | EPA 7199 1996 |
copper (Cu) | μg L−1 | 5 | ±0.5 | 1000 | EPA 6020B 2014 |
lead (Pb) | μg L−1 | 1 | ±0.04 | 10 | EPA 6020B 2014 |
mercury (Hg) | μg L−1 | <0.10 | 1 | EPA 6020B 2014 | |
nickel (Ni) | μg L−1 | 5 | ±0.3 | 20 | EPA 6020B 2014 |
total chromium | μg L−1 | 31 | ±2 | 50 | EPA 6020B 2014 |
zinc (Zn) | μg L−1 | 169 | ±9 | 3000 | EPA 6020B 2014 |
Fungal Strains | Treatments (As μg L−1) | ||||
---|---|---|---|---|---|
0 | 200 | 400 | 800 | 1600 | |
Autochthonous fungi (i) | |||||
Aspergillus niger (i) | +++ | +++ | +++ | +++ | +++ |
Penicillium expansum (i) | +++ | +++ | +++ | +++ | +++ |
Allochthonous fungi (a) | |||||
Cladosporium cladosporioides (a) | + | + | + | + | + |
Penicillium expansum (a) | +++ | +++ | +++ | +++ | +++ |
Pleurotus ostreatus (a) | ++ | ++ | ++ | ++ | ++ |
Aspergillus niger (a) | +++ | +++ | +++ | +++ | +++ |
Fungal Strains | Control (g.) | Test (g.) | TIw |
---|---|---|---|
Aspergillus niger (i) | 2.485 ± 1.167 | 1.641 ± 0.080 | 0.66 |
Penicillium expansum (i) | 1.753 ± 0.401 | 1.105 ± 0.098 | 0.63 |
Penicillium expansum (a) | 1.661 ± 0.046 | 2.387 ± 0.182 | 1.44 |
Aspergillus niger (a) | 3.391 ± 0.139 | 5.014 ± 0.298 | 1.48 |
BCF | ||
---|---|---|
Fungal Strains | Control | Test |
Penicillium expansum (a) | 0 | <0.001 |
Aspergillus niger (a) | 0 | <0.001 |
Penicillium expansum (i) | 0 | 1.16 |
Aspergillus niger (i) | 0 | 2.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Canonica, L.; Cecchi, G.; Capra, V.; Di Piazza, S.; Girelli, A.; Zappatore, S.; Zotti, M. Fungal Arsenic Tolerance and Bioaccumulation: Local Strains from Polluted Water vs. Allochthonous Strains. Environments 2024, 11, 23. https://doi.org/10.3390/environments11010023
Canonica L, Cecchi G, Capra V, Di Piazza S, Girelli A, Zappatore S, Zotti M. Fungal Arsenic Tolerance and Bioaccumulation: Local Strains from Polluted Water vs. Allochthonous Strains. Environments. 2024; 11(1):23. https://doi.org/10.3390/environments11010023
Chicago/Turabian StyleCanonica, Laura, Grazia Cecchi, Vittorio Capra, Simone Di Piazza, Alessandro Girelli, Sandro Zappatore, and Mirca Zotti. 2024. "Fungal Arsenic Tolerance and Bioaccumulation: Local Strains from Polluted Water vs. Allochthonous Strains" Environments 11, no. 1: 23. https://doi.org/10.3390/environments11010023
APA StyleCanonica, L., Cecchi, G., Capra, V., Di Piazza, S., Girelli, A., Zappatore, S., & Zotti, M. (2024). Fungal Arsenic Tolerance and Bioaccumulation: Local Strains from Polluted Water vs. Allochthonous Strains. Environments, 11(1), 23. https://doi.org/10.3390/environments11010023