Assessing the Impact of Urbanization and Climate Change on Hydrological Processes in a Suburban Catchment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil and Water Assessment Tool (SWAT)
2.3. Input Data and Model Set-Up
2.4. SWAT Calibration, Validation, and Model Evaluation
2.5. Model Output and Statistical Methods
3. Results and Discussion
3.1. SWAT Model Performance, Uncertainty, and Simulation Accuracy
3.2. Land Use and Climate Change Effect on Catchment Hydrology
3.2.1. Changes in Hydrological Components at the Catchment Scale
3.2.2. Changes in Hydrological Components per Land Use
3.3. Groundwater Recharge and Evapotranspiration under Land Use and Climate Change
3.3.1. Groundwater Recharge Rates in Major Land Use Types
3.3.2. Spatial Variations in Groundwater Recharge at the HRU Scale
3.3.3. Spatial Variations in ET at the HRU Scale (Relative Urbanization Effect)
3.4. Sustainable Management of Groundwater Resources Amidst Environmental Changes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ritchie, H.; Roser, M. Urbanization. Our World in Data. 2018. Available online: https://ourworldindata.org/urbanization (accessed on 10 May 2022).
- Wang, K.; Onodera, S.; Saito, M.; Shimizu, Y. Long-term variations in water balance by increase in percent imperviousness of urban regions. J. Hydrol. 2021, 602, 126767. [Google Scholar] [CrossRef]
- Nasiri, S.; Ansari, H.; Ziaei, A.N. Simulation of water balance equation components using SWAT model in Samalqan Watershed (Iran). Arab. J. Geosci. 2020, 13, 421. [Google Scholar] [CrossRef]
- Paul, C.; Weber, M.; Knoke, T. Agroforestry versus farm mosaic systems—Comparing land use efficiency, economic returns, and risks under climate change effects. Sci. Total Environ. 2017, 587, 22–35. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, A.M.; Bonsor, H.C.; Dochartaigh, B.É.Ó.; Taylor, R.G. Quantitative maps of groundwater resources in Africa. Environ. Res. Lett. 2012, 7, 024009. [Google Scholar] [CrossRef]
- Terskii, P.; Kuleshov, A.; Chalov, S.; Terskaia, A.; Belyakova, P.; Karthe, D.; Pluntke, T. Assessment of water balance for Russian subcatchment of western Dvina River using SWAT model. Front. Earth Sci. 2019, 7, 241. [Google Scholar] [CrossRef]
- Martínez-Retureta, R.; Aguayo, M.; Stehr, A.; Sauvage, S.; Echeverría, C.; Sánchez-Pérez, J.M. Effect of land use/cover change on the hydrological response of a southern center basin of Chile. Water 2020, 12, 302. [Google Scholar] [CrossRef]
- Hall, B.; Currell, M.; Webb, J. Using multiple lines of evidence to map groundwater recharge in a rapidly urbanising catchment: Implications for future land and water management. J. Hydrol. 2020, 580, 124265. [Google Scholar] [CrossRef]
- Sajjad, M.M.; Wang, J.; Abbas, H.; Ullah, I.; Khan, R.; Ali, F. Impact of climate and land use change on groundwater resources: Study of Faisalabad district, Pakistan. Atmosphere 2022, 13, 1097. [Google Scholar] [CrossRef]
- Wang, K.; Onodera, S.; Saito, M.; Shimizu, Y.; Iwata, T. Effects of forest growth in different vegetation communities on forest-catchment water balance. Sci. Total Environ. 2022, 809, 151159. [Google Scholar] [CrossRef]
- Getu, E.; Tewodros, T.; Nigussie, A.B.; Aneseyee, J.; Barnabas, B. Land use/land cover change impact on hydrological process in the Upper Baro Basin, Ethiopia. Appl. Environ. Soil Sci. 2021, 2021, 6617541. [Google Scholar]
- Oudin, L.; Salavati, B.; Furusho-Percot, C.; Ribstein, P.; Saadi, M. Hydrological impacts of urbanization at the catchment scale. J. Hydrol. 2018, 559, 774–786. [Google Scholar] [CrossRef]
- Heerspink, B.P.; Kendall, A.D.; Coe, M.T.; Hyndman, D.W. Trends in streamflow, evapotranspiration, and groundwater storage across the Amazon Basin linked to changing precipitation and land cover. J. Hydrol. Reg. Stud. 2020, 32, 100755. [Google Scholar] [CrossRef]
- Zhang, L.; Nan, Z.; Yu, W.; Zhao, Y.; Xu, Y. Comparison of baseline period choices for separating climate and land use/land cover change impacts on watershed hydrology using distributed hydrological models. Sci. Total Environ. 2018, 622, 1016–1028. [Google Scholar] [CrossRef]
- Givati, A.; Thirel, G.; Rosenfeld, D.; Paz, D. Climate change impacts on streamflow at the upper Jordan River based on an ensemble of regional climate models. J. Hydrol. Reg. Stud. 2019, 21, 92–109. [Google Scholar] [CrossRef]
- Flörke, M.; Schneider, C.; McDonald, R.I. Water competition between cities and agriculture is driven by climate change and urban growth. Nat. Sustain. 2018, 1, 51–58. [Google Scholar] [CrossRef]
- Xiao, F.; Wang, X.; Fu, C. Impacts of land use/land cover and climate change on hydrological cycle in the Xiaoxingkai Lake Basin. J. Hydrol. Reg. Stud. 2023, 47, 101422. [Google Scholar] [CrossRef]
- Shivhare, N.; Dikshit, P.K.S.; Dwivedi, S.B. A comparison of SWAT model calibration techniques for hydrological modeling in the Ganga River watershed. Engineering 2018, 4, 643–652. [Google Scholar] [CrossRef]
- Mekonnen, D.F.; Duan, Z.; Rientjes, T.; Disse, M. Analysis of combined and isolated effects of land use and land-cover changes and climate changes on the Upper Blue Nile River basin’s streamflow. Hydrol. Earth Syst. Sci. 2018, 22, 6187–6207. [Google Scholar] [CrossRef]
- Aboelnour, M.; Gitau, M.W.; Engel, B.A. A comparison of streamflow and baseflow responses to land use change and the variation in climate parameters using SWAT. Water 2020, 12, 191. [Google Scholar] [CrossRef]
- Sharma, A.; Khare, R.; Choudhary, M.K. Assessment of spatio-temporal variation of water balance components by simulating the hydrological processes of a large complex watershed. Environ. Earth Sci. 2023, 82, 127. [Google Scholar] [CrossRef]
- Astuti, I.S.; Sahoo, K.; Milewski, A.; Mishra, D.R. Impact of land use/land cover (LULC) change on surface runoff in an increasingly urbanized tropical watershed. Water Resour. Manag. 2019, 33, 4087–4103. [Google Scholar] [CrossRef]
- Chilagane, N.A.; Kashaigili, J.J.; Mutayoba, E.; Lyimo, P.; Munishi, P.; Tam, C.; Burgess, N. Impact of land use and land cover changes on surface runoff and sediment yield in the Little Ruaha River Catchment. Open J. Mod. Hydrol. 2021, 11, 54–74. [Google Scholar] [CrossRef]
- Martínez-Retureta, R.; Aguayo, M.; Abreu, N.J.; Urrutia, R.; Echeverría, C.; Lagos, O.; Rodríguez-López, L.; Duran-Llacer, I.; Barra, R.O. Influence of Climate and Land Cover/Use Change on Water Balance: An Approach to Individual and Combined Effects. Water 2022, 14, 2304. [Google Scholar] [CrossRef]
- Yin, J.; He, F.; Xiong, Y.J.; Qiu, G.Y. Effects of land use/land cover and climate changes on surface runoff in a semi-humid and semi-arid transition zone in northwest China. Hydrol. Earth Syst. Sci. 2017, 21, 183–196. [Google Scholar] [CrossRef]
- Abanyie, S.K.; Apea, O.B.; Abagale, S.A.; Amuah, E.E.Y.; Sunkari, E.D. Sources and factors influencing groundwater quality and associated health implications: A review. Emerg. Contam. 2023, 9, 100207. [Google Scholar] [CrossRef]
- Duan, W.; He, B.; Takara, K.; Luo, P.; Hu, M.; Alias, N.E.; Nover, D. Changes of precipitation amounts and extremes over Japan between 1901 and 2012 and their connection to climate indices. Clim. Dyn. 2015, 45, 2273–2292. [Google Scholar] [CrossRef]
- Higashi-Hiroshima City Report. 2021. Available online: https://www.city.higashihiroshima.lg.jp (accessed on 20 May 2022).
- Jin, G.; Shimizu, Y.; Onodera, S.; Saito, M.; Matsumori, K. Evaluation of drought impact on groundwater recharge rate using SWAT and Hydrus models on an agricultural island in western Japan. IAHS-AISH Proc. Rep. 2015, 371, 143–148. [Google Scholar] [CrossRef]
- Yoshida, K.; Nagata, K.; Maeno, S.; Mano, K.; Nigo, S.; Nishiyama, S.; Islam, M.T. Flood risk assessment in vegetated lower Asahi River of Okayama Prefecture in Japan using airborne topo-bathymetric LiDAR and depth-averaged flow model. J. Hydro-Environ. Res. 2021, 39, 39–59. [Google Scholar] [CrossRef]
- Shi, M.; Shiraiwa, T. Estimating future streamflow under climate and land use change conditions in northeastern Hokkaido, Japan. J. Hydrol. Reg. Stud. 2023, 50, 101555. [Google Scholar] [CrossRef]
- Guyo, R.H.; Wang, K.; Saito, M.; Onodera, S.I.; Shimizu, Y.; Moroizumi, T. Spatiotemporal shallow and deep groundwater dynamics in a forested mountain catchment with diverse slope gradients, western Japan. Groundw. Sustain. Dev. 2024, 25, 101150. [Google Scholar] [CrossRef]
- Nang, Y.W.; Onodera, S.I.; Wang, K.; Shimizu, Y.; Saito, M. Slope gradient effects on sediment yield of different land cover and soil types. Water 2024, 16, 1419. [Google Scholar] [CrossRef]
- Japan Meteorological Agency. 2022. Available online: https://www.jma.go.jp/jma/indexe.html (accessed on 20 September 2022).
- National Research Institute for Brewing. How to Make Shochu. 2021. Available online: https://www.mof.go.jp/public_relations/kengaku/nrib.html (accessed on 20 September 2022).
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; Van Griensven, A.; Van Liew, M.W.; et al. SWAT: Model use, calibration, and validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation Version 2009; Texas A&M Technical Report No. 406; Texas Water Resources Institute: College Station, TX, USA, 2011. [Google Scholar]
- Ware, H.H.; Mengistu, T.D.; Yifru, B.A.; Chang, S.W.; Chung, I.M. Assessment of spatiotemporal groundwater recharge distribution using SWAT-MODFLOW model and transient water table fluctuation method. Water 2023, 15, 2112. [Google Scholar] [CrossRef]
- Wang, K.; Onodera, S.; Saito, M.; Okuda, N.; Okubo, T. Estimation of phosphorus transport influenced by climate change in a rice paddy catchment using SWAT. Int. J. Environ. Res. 2021, 15, 759–772. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Rouholahnejad, E.; Srinivasan, R.; Vaghefi, S.R.; Yang, H.; Kløve, B. A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. J. Hydrol. 2015, 524, 733–752. [Google Scholar] [CrossRef]
- Santhi, C.; Arnold, J.G.; Williams, J.R.; Dugas, W.A.; Srinivasan, R.; Hauck, L.M. Validation of the SWAT model on a large river basin with point and nonpoint sources. J. Am. Water Resour. Assoc. 2001, 37, 1169–1188. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and water quality models: Performance measures and evaluation criteria. Trans. ASABE 2015, 58, 1763–1785. [Google Scholar]
- Baier, K.; Schmitz, K.C.; Azzam, R.; Strohschön, R. Management tools for sustainable ground water protection in mega urban areas–small scale land use and ground water vulnerability analyses in Guangzhou, China. Int. J. Environ. Res. 2014, 8, 249–262. [Google Scholar]
- Ridwansyah, I.; Yulianti, M.; Onodera, S.I.; Shimizu, Y.; Wibowo, H.; Fakhrudin, M. The impact of land use and climate change on surface runoff and groundwater in Cimanuk watershed, Indonesia. Limnology 2020, 21, 487–498. [Google Scholar] [CrossRef]
- Chen, Y.; Nakatsugawa, M. Analysis of changes in land use/land cover and hydrological processes caused by earthquakes in the Atsuma River Basin in Japan. Sustainability 2021, 13, 13041. [Google Scholar] [CrossRef]
- Kundu, S.; Khare, D.; Mondal, A. Individual and combined impacts of future climate and land use changes on the water balance. Ecol. Eng. 2017, 105, 42–57. [Google Scholar] [CrossRef]
- Awotwi, A.; Anornu, G.K.; Quaye-Ballard, J.A.; Annor, T.; Forkuo, E.K.; Harris, E.; Agyekum, J.; Terlabie, J.L. Water balance responses to land-use/land-cover changes in the Pra River Basin of Ghana, 1986–2025. Catena 2019, 182, 104129. [Google Scholar] [CrossRef]
- Wang, Q.; Xu, Y.; Xu, Y.; Wu, L.; Wang, Y.; Han, L. Spatial hydrological responses to land use and land cover changes in a typical catchment of the Yangtze River Delta region. Catena 2018, 170, 305–315. [Google Scholar] [CrossRef]
- Lopes, T.R.; Zolin, C.A.; Mingoti, R.; Vendrusculo, L.G.; de Almeida, F.T.; de Souza, A.P.; de Oliveira, R.F.; Paulino, J.; Uliana, E.M. Hydrological regime, water availability, and land use/land cover change impact on the water balance in a large agriculture basin in the Southern Brazilian Amazon. J. S. Am. Earth Sci. 2021, 108, 103224. [Google Scholar] [CrossRef]
- Marhaento, H.; Booij, M.J.; Rientjes, T.H.M.; Hoekstra, A.Y. Attribution of changes in the water balance of a tropical catchment to land use change using the SWAT model. Hydrol. Process. 2017, 31, 2029–2040. [Google Scholar] [CrossRef]
- Li, C.; Liu, M.; Hu, Y.; Shi, T.; Zong, M.; Walter, M.T. Assessing the impact of urbanization on direct runoff using improved composite CN method in a large urban area. Int. J. Environ. Res. Public Health 2018, 15, 775. [Google Scholar] [CrossRef]
- Tashie, A.M.; Mirus, B.B.; Pavelsky, T.M. Identifying long-term empirical relationships between storm characteristics and episodic groundwater recharge. Water Resour. Res. 2016, 52, 21–35. [Google Scholar] [CrossRef]
- Owuor, S.O.; Butterbach-Bahl, K.; Guzha, A.C.; Rufino, M.C.; Pelster, D.E.; Díaz-Pinés, E.; Breuer, L. Groundwater recharge rates and surface runoff response to land use and land cover changes in semi-arid environments. Ecol. Process. 2016, 5, 16. [Google Scholar] [CrossRef]
- Hama, T.; Fujimi, T.; Shima, T.; Ishida, K.; Kawagoshi, Y.; Ito, H. Evaluation of groundwater recharge by rice and crop rotation fields in Kumamoto, Japan. J. Water Clim. Change 2020, 11, 1042–1049. [Google Scholar] [CrossRef]
- Angrill, S.; Petit-Boix, A.; Morales-Pinzón, T.; Josa, A.; Rieradevall, J.; Gabarrell, X. Urban rainwater runoff quantity and quality—A potential endogenous resource in cities? J. Environ. Manag. 2017, 189, 14–21. [Google Scholar] [CrossRef]
- Woldesenbet, T.A.; Elagib, N.A.; Ribbe, L.; Heinrich, J. Hydrological responses to land use/cover changes in the source region of the Upper Blue Nile Basin, Ethiopia. Sci. Total Environ. 2017, 575, 724–741. [Google Scholar] [CrossRef] [PubMed]
- Kimbi, S.B.; Onodera, S.I.; Ishida, T.; Saito, M.; Tamura, M.; Tomozawa, Y.; Nagasaka, I. Nitrate contamination in groundwater: Evaluating the effects of demographic aging and depopulation in an island with intensive citrus cultivation. Water 2022, 14, 2277. [Google Scholar] [CrossRef]
- Lipczynska-Kochany, E. Effect of climate change on humic substances and associated impacts on the quality of surface water and groundwater: A review. Sci. Total Environ. 2018, 640, 1548–1565. [Google Scholar] [CrossRef] [PubMed]
- Bekele, D.; Alamirew, T.; Kebede, A.; Zeleke, G.M.; Melesse, A. Modeling climate change impact on the hydrology of Keleta watershed in the Awash River basin, Ethiopia. Environ. Model. Assess. 2019, 24, 95–107. [Google Scholar] [CrossRef]
- Kibii, J.K.; Kipkorir, E.C.; Kosgei, J.R. Application of soil and water assessment tool (SWAT) to evaluate the impact of land use and climate variability on the Kaptagat catchment river discharge. Sustainability 2021, 13, 1802. [Google Scholar] [CrossRef]
- Bucton, B.G.B.; Shrestha, S.; Saurav, K.C.; Mohanasundaram, S.; Virdis, S.G.; Chaowiwat, W. Impacts of climate and land use change on groundwater recharge under shared socioeconomic pathways: A case of Siem Reap, Cambodia. Environ. Res. 2022, 211, 113070. [Google Scholar] [CrossRef]
- Minnig, M.; Moeck, C.; Radny, D.; Schirmer, M. Impact of urbanization on groundwater recharge rates in Dübendorf, Switzerland. J. Hydrol. 2018, 563, 1135–1146. [Google Scholar] [CrossRef]
- Lv, X.; Zuo, Z.; Sun, J.; Ni, Y.; Wang, Z. Climatic and human-related indicators and their implications for evapotranspiration management in a watershed of Loess Plateau, China. Ecol. Indic. 2019, 101, 143–149. [Google Scholar] [CrossRef]
- Winbourne, J.B.; Jones, T.S.; Garvey, S.M.; Harrison, J.L.; Wang, L.; Li, D.; Templer, P.H.; Hutyra, L.R. Tree transpiration and urban temperatures: Current understanding, implications, and future research directions. BioScience 2020, 70, 576–588. [Google Scholar] [CrossRef]
- Liu, Z.; Rong, L.; Wei, W. Impacts of land use/cover change on water balance by using the SWAT model in a typical loess hilly watershed of China. Geogr. Sustain. 2023, 4, 19–28. [Google Scholar] [CrossRef]
- National Institutes for the Humanities (NERPS); Hiroshima University. Satoyama Activities to Cultivate Groundwater in the Sake Capital of Saijo. FY 2023 Model Project for the Promotion of Good Water Circulation and Water Environment by the Ministry of Environment. 2023. Available online: https://nerps.hiroshima-u.ac.jp/efforts-list/efforts-list-3026/ (accessed on 18 September 2024).
Period | Period Range | R2 | NSE |
---|---|---|---|
1980s (calibration) | 1983–1989 | 0.79 | 0.71 |
1980s (validation) | 1990–1993 | 0.83 | 0.78 |
2000s (calibration) | 2000–2004 | 0.74 | 0.65 |
2000s (validation) | 2005–2007 | 0.85 | 0.74 |
Mean Annual (mm) | % Based on Rainfall | Mean Annual (mm) | % Based on Rainfall | Mean Annual (mm) | % Based on Rainfall | |
---|---|---|---|---|---|---|
Land use | Residential | Forest | Paddy field | |||
1980s | 639 | 45.7 | 615 | 44.0 | 656 | 46.9 |
2000s | 228 | 16.4 | 536 | 38.3 | 621 | 44.4 |
Reference | Study Area | Area (km2) | Study Period | Spatial Distribution | Change Rate (%) in Water Balance Components | Key Results | ||
---|---|---|---|---|---|---|---|---|
SurfQ | ET | RCHG | ||||||
This study | Kurose River catchment | 39.9 | 1980–2009 (30 years) | HRUs | 131.7 | −5.1 | −34.9 | Land use change (rice paddies to urban) + climate change |
[21] | Middle Tapi basin, India | 32,927 | 1994–2013 (20 years) | Subbasin | 3.1 | 0.8 | −0.7 | Climate variability |
[24] | Muco watershed, Chile | 651 | 1982–2016 (35 years) | Subbasin | 14.1 | 2.4 | −11 | Land use change and climate change |
[23] | Little Ruaha River catchment, Tanzania | 6370 | 1990–2015 (25 years) | Subbasin | 6.1 | −0.1 | −0.8 | Land use change (forest conversion to agriculture) |
[49] | Upper Teles Pires basin, Brazil | 37,500 | 1986–2014 (29 years) | None | 30.8 | −2.5 | 5.3 | Land use change (increase cultivated land) |
[60] | Kaptagat catchment, Kenya | 269 | 1989–2019 (30 years) | None | −1.4 | N/A | −32.7 | Land use change (increase settlement and decrease forest cover) and climate variability (decrease and intense rainfall events) |
[11] | Upper Baro basin, Ethopia | 23,362 | 1987–2017 (31 years) | Subbasin | 5.6 | −1.3 | −9.1 | Land use change (drastic decrease in grassland and shrubland with an increase in agricultural land and settlement) |
[2] | Yamato River catchment, Japan | 1077 | 1970–2010 (50 years) | None | 144.8 | 5 | −5.7 | Land use change (increase urban percent imperviousness due to urbanization) |
[7] | Andalien basin, Chile | 742 | 1984–2013 (30 years) | None | 3.43 | 4.2 | −15.6 | Land use change (Increase Forest planation coverage) |
[48] | Xitiaoxi River watershed, China | 66,128 | 1980–2015 (35 years) | Subbasin | 11.9 | −0.7 | −16.5 | Land use/cover change (conversion of forest-grass land and agricultural land to urban land) |
[62] | Dübendorf, Switzerland | 13.6 | 1980–2009 (30 years) | None | 19.7 | −8 | 5.6 | Land use change (urban expansion) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kimbi, S.B.; Onodera, S.-i.; Wang, K.; Kaihotsu, I.; Shimizu, Y. Assessing the Impact of Urbanization and Climate Change on Hydrological Processes in a Suburban Catchment. Environments 2024, 11, 225. https://doi.org/10.3390/environments11100225
Kimbi SB, Onodera S-i, Wang K, Kaihotsu I, Shimizu Y. Assessing the Impact of Urbanization and Climate Change on Hydrological Processes in a Suburban Catchment. Environments. 2024; 11(10):225. https://doi.org/10.3390/environments11100225
Chicago/Turabian StyleKimbi, Sharon Bih, Shin-ichi Onodera, Kunyang Wang, Ichirow Kaihotsu, and Yuta Shimizu. 2024. "Assessing the Impact of Urbanization and Climate Change on Hydrological Processes in a Suburban Catchment" Environments 11, no. 10: 225. https://doi.org/10.3390/environments11100225
APA StyleKimbi, S. B., Onodera, S. -i., Wang, K., Kaihotsu, I., & Shimizu, Y. (2024). Assessing the Impact of Urbanization and Climate Change on Hydrological Processes in a Suburban Catchment. Environments, 11(10), 225. https://doi.org/10.3390/environments11100225