The Use of Constructed Wetlands to Treat Effluents for Water Reuse
Abstract
:1. Introduction
1.1. Policies for the Regeneration and Reuse of Wastewater
1.2. Constructed Wetlands
2. Materials and Methods
3. Results and Discussion
3.1. Treatment of Gray Water and Runoff Using CWs for Water Reuse
3.1.1. Treatment of Gray Water in CWs
3.1.2. Treatment of Runoff Water in CWs
3.1.3. Main Characteristics of CW Systems Used for the Treatment of Gray Water and Runoff Aiming for Water Reuse
3.2. Treatment of Domestic Wastewater and Industrial Effluents by CWs for Water Reuse
3.2.1. Efficiency of CWs in the Reuse of Domestic Effluents
Landscape Integration of CWs and Aesthetic Gains from the Use of Ornamental Plants
The Challenge of Eliminating Pathogenic Microorganisms
Use of Microalgae in SCW to Improve the Effluent Quality
CWs as Post-Treatment of Domestic Effluents
Hybrid CW Configurations and Combined Technologies Facing Emerging Pollutants Removal
Main Characteristics of CW Systems Used for the Treatment of Domestic Effluents Intended for Water Reuse
3.2.2. Efficiency of CWs in the Reuse of Industrial Effluents
Main Characteristics of CW Systems Treating Industrial Effluents Intended for Water Reuse
4. Final Considerations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nan, X.; Lavrnić, S.; Toscano, A. Potential of constructed wetland treatment systems for agricultural wastewater reuse under the EU framework. J. Environ. Manag. 2020, 275, 111219. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, H.; Zou, X.; Li, R.; Liu, Y. Water reclamation and reuse. Water Environ. Res. 2019, 91, 1080–1090. [Google Scholar] [CrossRef]
- Addo-Bankas, O.; Zhao, Y.; Vymazal, J.; Yuan, Y.; Fu, J.; Wei, T. Green walls: A form of constructed wetland in green buildings. Ecol. Eng. 2021, 169, 106321. [Google Scholar] [CrossRef]
- Biswal, B.K.; Balasubramanian, R. Constructed Wetlands for Reclamation and Reuse of Wastewater and Urban Stormwater: A Review. Front. Environ. Sci. 2022, 10, 836289. [Google Scholar] [CrossRef]
- Masi, F.; Rizzo, A.; Regelsberger, M. The role of constructed wetlands in a new circular economy, resource oriented, and ecosystem services paradigm. J. Environ. Manag. 2018, 216, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Hdidou, M.; Necibi, M.C.; Labille, J.; El Hajjaji, S.; Dhiba, D.; Chehbouni, A.; Roche, N. Potential Use of Constructed Wetland Systems for Rural Sanitation and Wastewater Reuse in Agriculture in the Moroccan Context. Energies 2022, 15, 156. [Google Scholar] [CrossRef]
- Shoushtarian, F.; Negahban-Azar, M. Worldwide Regulations and Guidelines for Agricultural Water Reuse: A Critical Review. Water 2020, 12, 971. [Google Scholar] [CrossRef]
- Santos, A.S.P.; Pachawo, V.; Melo, M.C.; Vieira, J.M.P. Progress on legal and practical aspects on water reuse with emphasis on drinking water—An overview. Water Supply 2022, 22, 3000–3014. [Google Scholar] [CrossRef]
- Vymazal, J. The Historical Development of Constructed Wetlands for Wastewater Treatment. Land 2022, 11, 174. [Google Scholar] [CrossRef]
- Shukla, R.; Gupta, D.; Singh, G.; Mishra, V.K. Performance of horizontal flow constructed wetland for secondary treatment of domestic wastewater in a remote tribal area of Central India. Sustain. Environ. Res. 2021, 31, 1–10. [Google Scholar] [CrossRef]
- Torrijos, V.; Ruiz, I.; Soto, M. Effect of step-feeding on the performance of lab-scale columns simulating vertical flow-horizontal flow constructed wetlands. Environ. Sci. Pollut. Res. 2017, 24, 22649–22662. [Google Scholar] [CrossRef]
- Sánchez, M.; Ruiz, I.; Soto, M. The Potential of Constructed Wetland Systems and Photodegradation Processes for the Removal of Emerging Contaminants—A Review. Environments 2022, 9, 116. [Google Scholar] [CrossRef]
- Sánchez, M.; Fernández, M.I.; Ruiz, I.; Canle, M.; Soto, M. Combining Constructed Wetlands and UV Photolysis for the Advanced Removal of Organic Matter, Nitrogen, and Emerging Pollutants from Wastewater. Environments 2023, 10, 35. [Google Scholar] [CrossRef]
- Spiniello, I.; De Carluccio, M.; Castiglione, S.; Amineva, E.; Kostryukova, N.; Cicatelli, A.; Rizzo, L.; Guarino, F. Landfill leachate treatment by a combination of a multiple plant hybrid constructed wetland system with a solar photoFenton process in a raceway pond reactor. J. Environ. Manag. 2023, 331, 117211. [Google Scholar] [CrossRef]
- Lakho, F.H.; Le, H.Q.; Mattheeuws, F.; Igodt, W.; Depuydt, V.; Desloover, J.; Rousseau, D.P.L.; Van Hulle, S.H. Life cycle assessment of two decentralized water treatment systems combining a constructed wetland and a membrane based drinking water production system. Resour. Conserv. Recycl. 2022, 178, 106104. [Google Scholar] [CrossRef]
- Collivignarelli, M.C.; Miino, M.C.; Gomez, F.H.; Torretta, V.; Rada, E.C.; Sorlini, S. Horizontal Flow Constructed Wetland for Greywater Treatment and Reuse: An Experimental Case. Int. J. Environ. Res. Public Health 2020, 17, 2317. [Google Scholar] [CrossRef]
- Lakho, F.H.; Le, H.Q.; Mattheeuws, F.; Igodt, W.; Depuydt, V.; Desloover, J.; Rousseau, D.P.; Van Hulle, S.W. Decentralized grey and black water reuse by combining a vertical flow constructed wetland and membrane based potable water system: Full scale demonstration. J. Environ. Chem. Eng. 2021, 9, 104688. [Google Scholar] [CrossRef]
- Bolton, C.R.; Randall, D.G. Development of an integrated wetland microbial fuel cell and sand filtration system for greywater treatment. J. Environ. Chem. Eng. 2019, 7, 103249. [Google Scholar] [CrossRef]
- Kotsia, D.; Deligianni, A.; Fyllas, N.M.; Stasinakis, A.S.; Fountoulakis, M.S. Converting treatment wetlands into “treatment gardens”: Use of ornamental plants for greywater treatment. Sci. Total Environ. 2020, 744, 140889. [Google Scholar] [CrossRef] [PubMed]
- Morandi, C.; Schreiner, G.; Moosmann, P.; Steinmetz, H. Elevated Vertical-Flow Constructed Wetlands for Light Greywater Treatment. Water 2021, 13, 2510. [Google Scholar] [CrossRef]
- Ren, X.; Zhang, M.; Wang, H.; Dai, X.; Chen, H. Removal of personal care products in greywater using membrane bioreactor and constructed wetland methods. Sci. Total Environ. 2021, 797, 148773. [Google Scholar] [CrossRef] [PubMed]
- Hajlaoui, H.; Akrimi, R.; Sayehi, S.; Hachicha, S. Usage of treated greywater as an alternative irrigation source for tomatoes cultivation. Water Environ. J. 2022, 36, 484–493. [Google Scholar] [CrossRef]
- Junior, R.M.; Passoni, C.M.; Santos, F.M.; Bernardes, F.S.; Filho, F.J.C.M.; Paulo, P.L. Assessment of Surfactant Removal Capacity and Microbial Community Diversity in a Greywater-Treating Constructed Wetland. Resources 2023, 12, 38. [Google Scholar] [CrossRef]
- Compaoré, C.O.T.; Maiga, Y.; Nikiéma, M.; Mien, O.; Nagalo, I.; Panandtigri, H.T.; Mihelcic, J.R.; Ouattara, A.S. Constructed wetland technology for the treatment and reuse of urban household greywater under conditions of Africa’s Sahel region. Water Supply 2023, 23, 2505–2516. [Google Scholar] [CrossRef]
- Laaffat, J.; Aziz, F.; Ouazzani, N.; Mandi, L. Biotechnological approach of greywater treatment and reuse for landscape irrigation in small communities. Saudi J. Biol. Sci. 2017, 26, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Ventura, D.; Barbagallo, S.; Consoli, S.; Ferrante, M.; Milani, M.; Licciardello, F.; Cirelli, G.L. On the performance of a pilot hybrid constructed wetland for stormwater recovery in Mediterranean climate. Water Sci. Technol. 2019, 79, 1051–1059. [Google Scholar] [CrossRef] [PubMed]
- Tuttolomondo, T.; Virga, G.; Licata, M.; Leto, C.; La Bella, S. Constructed Wetlands as Sustainable Technology for the Treatment and Reuse of the First-Flush Stormwater in Agriculture—A Case Study in Sicily (Italy). Water 2020, 12, 2542. [Google Scholar] [CrossRef]
- Zhang, N.; Gao, F.; Cheng, S.; Xie, H.; Hu, Z.; Zhang, J.; Liang, S. Mn oxides enhanced pyrene removal with both rhizosphere and non-rhizosphere microorganisms in subsurface flow constructed wetlands. Chemosphere 2022, 307, 135821. [Google Scholar] [CrossRef]
- A Mohammed, N.; Ismail, Z.Z. Green sustainable technology for biotreatment of actual dairy wastewater in constructed wetland. J. Chem. Technol. Biotechnol. 2021, 96, 1197–1204. [Google Scholar] [CrossRef]
- Shukla, A.; Parde, D.; Gupta, V.; Vijay, R.; Kumar, R. A review on effective design processes of constructed wetlands. Int. J. Environ. Sci. Technol. 2022, 19, 12749–12774. [Google Scholar] [CrossRef]
- Yan, C.; Huang, J.; Lin, X.; Wang, Y.; Cao, C.; Qian, X. Performance of constructed wetlands with different water level for treating graphene oxide wastewater: Characteristics of plants and microorganisms. J. Environ. Manag. 2023, 334, 117432. [Google Scholar] [CrossRef]
- Wang, J.; Yu, X.; Lin, H.; Wang, J.; Chen, L.; Ding, Y.; Feng, S.; Zhang, J.; Ye, B.; Kan, X.; et al. The efficiency of full-scale subsurface constructed wetlands with high hydraulic loading rates in removing pharmaceutical and personal care products from secondary effluent. J. Hazard. Mater. 2023, 451, 131095. [Google Scholar] [CrossRef]
- Feng, Y.; Wu, Y.; Wei, B.; Zhu, H.; Xu, Y. Characteristics and applications of hybrid constructed wetlands for low-polluted water: Cased in Bagong River of the Yellow River Watershed, China. Ecol. Eng. 2022, 182, 6718. [Google Scholar] [CrossRef]
- Pennellini, S.; Awere, E.; Kakavand, N.; Bonoli, A. Assessment of secondary wastewater treatment technologies for agricultural reuse in Rafah, Gaza Strip: Application of evidential reasoning method. Clean. Eng. Technol. 2023, 13, 100611. [Google Scholar] [CrossRef]
- Agaton, C.B.; Guila, P.M.C. Ecosystem Services Valuation of Constructed Wetland as a Nature-Based Solution to Wastewater Treatment. Earth 2023, 4, 78–92. [Google Scholar] [CrossRef]
- De Anda, J.; López-López, A.; Villegas-García, E.; Valdivia-Aviña, K. High-Strength Domestic Wastewater Treatment and Reuse with Onsite Passive Methods. Water 2018, 10, 99. [Google Scholar] [CrossRef]
- Kaushal, M.; Patil, M.D.; Wani, S.P. Potency of constructed wetlands for deportation of pathogens index from rural, urban and industrial wastewater. Int. J. Environ. Sci. Technol. 2018, 15, 637–648. [Google Scholar] [CrossRef]
- Sandoval-Herazo, L.C.; Alvarado-Lassman, A.A.; Marín-Muñiz, J.L.; Méndez-Contreras, J.M.; Zamora-Castro, S.A. Effects of the Use of Ornamental Plants and Different Substrates in the Removal of Wastewater Pollutants through Microcosms of Constructed Wetlands. Sustainability 2018, 10, 1594. [Google Scholar] [CrossRef]
- Liamlaem, W.; Benjawan, L.; Polprasert, C. Sustainable wastewater management technology for tourism in Thailand: Case and experimental studies. Water Sci. Technol. 2019, 79, 1977–1984. [Google Scholar] [CrossRef] [PubMed]
- Dell’Osbel, N.; Colares, G.S.; Oliveira, G.A.; Rodrigues, L.R.; da Silva, F.P.; Rodriguez, A.L.; López, D.A.; Lutterbeck, C.A.; Silveira, E.O.; Kist, L.T.; et al. Hybrid constructed wetlands for the treatment of urban wastewaters: Increased nutrient removal and landscape potential. Ecol. Eng. 2020, 158, 106072. [Google Scholar] [CrossRef]
- Quartaroli, L.; Cardoso, B.H.; Ribeiro, G.d.P.; da Silva, G.H.R. Wastewater Chlorination for Reuse, an Alternative for Small Communities. Water Environ. Res. 2018, 90, 2100–2105. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Rousseau, D.P.; Ahmed, S. A full-scale comparison of two hybrid constructed wetlands treating domestic wastewater in Pakistan. J. Environ. Manag. 2018, 210, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Russo, N.; Marzo, A.; Randazzo, C.; Caggia, C.; Toscano, A.; Cirelli, G.L. Constructed wetlands combined with disinfection systems for removal of urban wastewater contaminants. Sci. Total Environ. 2019, 656, 558–566. [Google Scholar] [CrossRef] [PubMed]
- Stefanakis, A.; Bardiau, M.; Trajano, D.; Couceiro, F.; Williams, J.; Taylor, H. Presence of bacteria and bacteriophages in full-scale trickling filters and an aerated constructed wetland. Sci. Total Environ. 2019, 659, 1135–1145. [Google Scholar] [CrossRef] [PubMed]
- Gonzales-Gustavson, E.; Rusiñol, M.; Medema, G.; Calvo, M.; Girones, R. Quantitative risk assessment of norovirus and adenovirus for the use of reclaimed water to irrigate lettuce in Catalonia. Water Res. 2019, 153, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Flo, E.; Romero, X.; García, J. Nature based-solutions for water reuse: 20 years of performance evaluation of a full-scale constructed wetland system. Ecol. Eng. 2023, 188, 106876. [Google Scholar] [CrossRef]
- Thalla, A.K.; Devatha, C.P.; Anagh, K.; Sony, E. Performance evaluation of horizontal and vertical flow constructed wetlands as tertiary treatment option for secondary effluents. Appl. Water Sci. 2019, 9, 147. [Google Scholar] [CrossRef]
- Otter, P.; Hertel, S.; Ansari, J.; Lara, E.; Cano, R.; Arias, C.; Gregersen, P.; Grischek, T.; Benz, F.; Goldmaier, A.; et al. Disinfection for decentralized wastewater reuse in rural areas through wetlands and solar driven onsite chlorination. Sci. Total Environ. 2020, 721, 137595. [Google Scholar] [CrossRef]
- Caldeira, D.C.D.; Silva, C.M.; Zanuncio, A.J.V.; Correa Filho, J.R.R. Fertirrigation with nanofiltration retentate from thermomechanical pulp mill effluents. Ind. Crop. Prod. 2023, 199, 116713. [Google Scholar] [CrossRef]
- McGehee, C.; Raudales, R.E. Irrigation Sources with Chlorine Drinking Water Standard Limits Cause Phytotoxicity on ‘Rex’ Lettuce Grown in Hydroponic Systems. HortTechnology 2023, 33, 125–130. [Google Scholar] [CrossRef]
- Yehia, S.; El-Saadi, A.; Galal, M.M. Application of algae to free surface wetlands for effluent reuse. Water Environ. J. 2020, 35, 748–758. [Google Scholar] [CrossRef]
- Souza, S.B.; Celente, G.d.S.; Colares, G.S.; Machado, L.; Lobo, E.A. Algae turf scrubber and vertical constructed wetlands combined system for decentralized secondary wastewater treatment. Environ. Sci. Pollut. Res. 2019, 26, 9931–9937. [Google Scholar] [CrossRef]
- Karam, F.; Haddad, R.; Amacha, N.; Charanek, W.; Harmand, J. Assessment of the Impacts of Phyto-Remediation on Water Quality of the Litani River by Means of Two Wetland Plants (Sparganium erectum and Phragmites australis). Water 2023, 15, 4. [Google Scholar] [CrossRef]
- Ergaieg, T.; Miled, B. Full-scale hybrid constructed wetlands monitoring for decentralized tertiary treatment of municipal wastewater. Arab. J. Geosci. 2021, 14, 1407–1417. [Google Scholar] [CrossRef]
- Omidinia-Anarkoli, T.; Shayannejad, M. Improving the quality of stabilization pond effluents using hybrid constructed wetlands. Sci. Total Environ. 2021, 801, 149615. [Google Scholar] [CrossRef] [PubMed]
- Pinelli, D.; Zanaroli, G.; Rashed, A.A.; Oertlé, E.; Wardenaar, T.; Mancini, M.; Vettore, D.; Fiorentino, C.; Frascari, D. Comparative Preliminary Evaluation of 2 In-stream Water Treatment Technologies for the Agricultural Reuse of Drainage Water in the Nile Delta. Integr. Environ. Assess. Manag. 2020, 16, 920–933. [Google Scholar] [CrossRef] [PubMed]
- Gabr, M.E. Design methodology for sewage water treatment system comprised of Imhoff ‘s tank and a subsurface horizontal flow constructed wetland: A case study Dakhla Oasis, Egypt. J. Environ. Sci. Health Part A 2022, 57, 52–64. [Google Scholar] [CrossRef] [PubMed]
- Darvishmotevalli, M.; Moradnia, M.; Asgari, A.; Noorisepehr, M.; Mohammadi, H. Reduction of pathogenic microorganisms in an Imhoff tank-constructed wetland system. Desalination Water Treat. 2019, 154, 283–288. [Google Scholar] [CrossRef]
- Kumar, S.; Pratap, B.; Dubey, D.; Dutta, V. Integration of Constructed Wetland Microcosms with Available Wastewater Treatment Technologies for the Polishing of Domestic Wastewater and Their Potential Reuses. Int. J. Environ. Res. 2022, 16, 99. [Google Scholar] [CrossRef]
- Bernstein, A.; Siebner, H.; Kaufman, A.G.; Gross, A. Onsite Chlorination of Greywater in a Vertical Flow Constructed Wetland—Significance of Trihalomethane Formation. Water 2021, 13, 903. [Google Scholar] [CrossRef]
- Hong, N.; Li, Y.; Liu, J.; Yang, M.; Liu, A. A snapshot on trihalomethanes formation in urban stormwater: Implications for its adequacy as an alternative water resource. J. Environ. Chem. Eng. 2022, 10, 107180. [Google Scholar] [CrossRef]
- Singh, K.K.; Vaishya, R.C. Municipal Wastewater Treatment uses Vertical Flow Followed by Horizontal Flow in a Two-Stage Hybrid-Constructed Wetland Planted with Calibanus hookeri and Canna indica (Cannaceae). Water Air Soil Pollut. 2022, 12, 510. [Google Scholar] [CrossRef]
- Torrens, A.; de la Varga, D.; Ndiaye, A.K.; Folch, M.; Coly, A. Innovative Multistage Constructed Wetland for Municipal Wastewater Treatment and Reuse for Agriculture in Senegal. Water 2020, 12, 3139. [Google Scholar] [CrossRef]
- Asaad, A.A.; El-Hawary, A.M.; Abbas, M.H.H.; Mohamed, I.; Abdelhafez, A.A.; Bassouny, M.A. Reclamation of wastewater in wetlands using reed plants and biochar. Sci. Rep. 2022, 12, 19516. [Google Scholar] [CrossRef] [PubMed]
- Mladenov, N.; Dodder, N.G.; Steinberg, L.; Richardot, W.; Johnson, J.; Martincigh, B.S.; Buckley, C.; Lawrence, T.; Hoh, E. Persistence and removal of trace organic compounds in centralized and decentralized wastewater treatment systems. Chemosphere 2021, 286, 131621. [Google Scholar] [CrossRef]
- Chen, J.; Liu, C.; Teng, Y.; Zhao, S.; Chen, H. The combined effect of an integrated reclaimed water system on the reduction of antibiotic resistome. Sci. Total Environ. 2022, 838, 156426. [Google Scholar] [CrossRef]
- Cherif, H.; Risse, H.; Abda, M.; Benmansour, I.; Roth, J.; Elfil, H. Nanofiltration as an efficient tertiary wastewater treatment for reuse in the aquaponic system in Tunisia. J. Water Process. Eng. 2023, 52, 103530. [Google Scholar] [CrossRef]
- Riggio, V.A.; Ruffino, B.; Campo, G.; Comino, E.; Comoglio, C.; Zanetti, M. Constructed wetlands for the reuse of industrial wastewater: A case-study. J. Clean. Prod. 2018, 171, 723–732. [Google Scholar] [CrossRef]
- Al-Khafaji, M.S.; Al-Ani, F.H.; Ibrahim, A.F. Removal of Some Heavy Metals from Industrial Wastewater by Lemmna Minor. KSCE J. Civ. Eng. 2017, 22, 1077–1082. [Google Scholar] [CrossRef]
- Javeed, F.; Nazir, A.; Bareen, F.E.; Shafiq, M.; Scholz, M. Industrial water treatment within a wetland planted with Hemarthria compressa and subsequent effluent reuse to grow Abelmoschus esculentus. J. Water Process. Eng. 2022, 45, 102511. [Google Scholar] [CrossRef]
- Gikas, G.D.; Tsakmakis, I.D.; A Tsihrintzis, V. Hybrid natural systems for treatment of olive mill wastewater. J. Chem. Technol. Biotechnol. 2017, 93, 800–809. [Google Scholar] [CrossRef]
- Milani, M.; Consoli, S.; Marzo, A.; Pino, A.; Randazzo, C.; Barbagallo, S.; Cirelli, G.L. Treatment of Winery Wastewater with a Multistage Constructed Wetland System for Irrigation Reuse. Water 2020, 12, 1260. [Google Scholar] [CrossRef]
- Alayu, E.; Leta, S. Evaluation of irrigation suitability potential of brewery effluent post treated in a pilot horizontal subsurface flow constructed wetland system: Implications for sustainable urban agriculture. Heliyon 2021, 7, e07129. [Google Scholar] [CrossRef]
- Wagner, T.V.; de Wilde, V.; Willemsen, B.; Mutaqin, M.; Putri, G.; Opdam, J.; Parsons, J.R.; Rijnaarts, H.H.; de Voogt, P.; Langenhoff, A.A. Pilot-scale hybrid constructed wetlands for the treatment of cooling tower water prior to its desalination and reuse. J. Environ. Manag. 2020, 271, 110972. [Google Scholar] [CrossRef] [PubMed]
- Wagner, T.; Saha, P.; Bruning, H.; Rijnaarts, H. Lowering the fresh water footprint of cooling towers: A treatment-train for the reuse of discharged water consisting of constructed wetlands, nanofiltration, electrochemical oxidation and reverse osmosis. J. Clean. Prod. 2022, 364, 132667. [Google Scholar] [CrossRef]
- Jain, M.; Majumder, A.; Gupta, A.K.; Ghosal, P.S. Application of a new baffled horizontal flow constructed wetland-filter unit (BHFCW-FU) for treatment and reuse of petrochemical industry wastewater. J. Environ. Manag. 2023, 325, 116443. [Google Scholar] [CrossRef] [PubMed]
- Pascual, A.; Pena, R.; Gómez-Cuervo, S.; de la Varga, D.; Alvarez, J.A.; Soto, M.; Arias, C.A. Nature based solutions for winery wastewater valorisation. Ecol. Eng. 2021, 169, 106311. [Google Scholar] [CrossRef]
- Pascual, A.; Álvarez, J.; de la Varga, D.; Arias, C.; Van Oirschot, D.; Kilian, R.; Soto, M. Horizontal flow aerated constructed wetlands for municipal wastewater treatment: The influence of bed depth. Sci. Total Environ. 2023, 169, 106311. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, M.; Ruiz, I.; Soto, M. Sustainable wastewater treatment using a new combined hybrid digester—Constructed wetland system. J. Environ. Chem. Eng. 2023, 11, 110861. [Google Scholar] [CrossRef]
- López, D.; Leiva, A.M.; Arismendi, W.; Vidal, G. Influence of design and operational parameters on the pathogens reduction in constructed wetland under the climate change scenario. Rev. Environ. Sci. Bio/Technol. 2019, 18, 101–125. [Google Scholar] [CrossRef]
- Shingare, R.P.; Thawale, P.R.; Raghunathan, K.; Mishra, A.; Kumar, S. Constructed wetland for wastewater reuse: Role and efficiency in removing enteric pathogens. J. Environ. Manag. 2019, 246, 444–461. [Google Scholar] [CrossRef] [PubMed]
Country | USA 1 | China 2 | EU 3 | Victoria 4 | Spain 5 | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Examples of reuse applications | Food crops for human consumption consumed raw a | Urban reuse: unrestricted b | Impoundments: unrestricted c | Indirect potable reuse: Groundwater d | Recreational use in rivers and ponds a | Urban use—Road cleaning b | Urban use—Municipal landscape c | Industrial use—Boiler water d | Class A—All food crops for direct consumption a contact with reclaimed water, consumed raw | Class B—Crops for indirect consumption b | Class C—Crops for indirect consumption drip irrigation c | Class D- Industrial, energy, and seeded crops d | Agricultural food production, consumed raw a | Domestic garden watering, including b | Industrial: example, wash-down water c | Urban (non-potable) controlled public access d | Urban use—Irrigation of private gardens a | Agricultural uses—crops to be eaten raw b rage | Industrial use—leaning water in the food industry c | Recreational use—Golf course irrigation d |
pH | 6.0–9.0 a,b,c; 6.5–8.5 d | 6.0–9.0 a,b,c, 6.5–8.5 d | - | 6.0–9.0 a,b,c,d | - | |||||||||||||||
BOD (mg/L) | ≤10 a,b,c,d | 6 a; 15 b; 20 c; 10 d | ≤10 a,b,c,d | ≤10 a,b; ≤20 c,d | - | |||||||||||||||
Turbidity (NTU) | ≤2 a,b,c,d | 5 a; 10 b,c; 3 d | ≤5 a,b,c,d | ≤2 a,b | 2 a; 15 c; 10 b,d | |||||||||||||||
TSS | - | - | ≤10 a,b,c,d | 5 a,b, 35 c, 30 d | 10 a; 20 d; 35 c; | |||||||||||||||
Total Coliforms (CFU/100 mL) | - | 30 a,b,c,d | - | - | - | |||||||||||||||
Fecal Coliforms (CFU/100 mL) | Not detectable | 5000 a 20,000 d | ≤10 a, ≤100 b, ≤1000 c, ≤10,000 d | ≤100 c; ≤1000 d | 0 a; 100 b; 1000 c; 200 d | |||||||||||||||
Legionella spp.: CFU/L | - | - | <1000 a,b,c,d | - | 100 a,c,d; 1000 b | |||||||||||||||
Helminth eggs (egg/L) | - | - | ≤1 a,b,c,d | - | 0.1 a,b,c,d | |||||||||||||||
Chlorine Residue (mg/L) | 1 a,b,c,d | 0.05 a,d; 1 b,c | - | - | - | |||||||||||||||
Color | - | 30 a,b,c,d | - | - | - | |||||||||||||||
NH3 -N (mg/L) | - | 5 a; 10 b,d; 20 c | - | - | - | |||||||||||||||
NT (mg/L) | - | 15 c | - | - | - | |||||||||||||||
PT (mg/L) | - | 1 a,b | - | - | - | |||||||||||||||
Country | Egypt 6 | FAO 7 | Portugal 8 | Cyprus 9 | Greece 10 | |||||||||||||||
Examples of reuse applications | Group A—All types of grass and flowers a | Group B—All kinds of vegetables manufactured b | Grupo C—Addition to spray irrigation is not used c | Group D—Crops for the production of biodiesel d | Class A—Irrigation of crops to be eaten uncooked a | Class B—Irrigation of cereal crops and fodder b | Class C—Exposure of workers does not occur c | Class A—Irrigation of vegetables to be eaten raw a | Class B—Public parks, gardens, and sport fields b | Class C—Vegetables to be eaten cooked c | Class D—Crops to be used as raw material d | Crops for human consumption; raw a | Fodder crops b | Industrial crops c | Areas of limited public access d | Public access is not expected; industrial crops a | Industrial use: Ex. Cooling water b | Unrestricted irrigation crops c | Urban uses: cemeteries, golf courses, and public parks d | |
pH | - | 6.5–8.4 a,b,c | - | 6.5–8.5 a,b,c,d | - | |||||||||||||||
BOD (mg/L) | 15 a, 30 b, 80 c, 350 d | ≤10 a; ≤30 b; ≤30 c; | ≤10 a ≤ 25 b,c,d | ≤10 a,b ≤ 70 c,d | ≤10 b,c,d | |||||||||||||||
Turbidity (NTU) | 5 a | ≤2 a | ≤5 a,b,c,d | - | - | |||||||||||||||
TSS | 15 a, 30 b, 50 c, 300 d | ≤30 b,c | ≤10 a, ≤ 35 b,c,d | ≤10 a,b, ≤ 30 c,d | ≤10 b,c ≤ 2 d | |||||||||||||||
Total Coliforms (CFU/100 mL) | - | - | - | ≤5 a, ≤ 50 b, ≤200 c, ≤1000 d | - | |||||||||||||||
Fecal Coliforms (CFU/100 mL) | - | ≤14 a, ≤200 b,c | ≤10 a, ≤100 b, ≤1000 c, ≤10,000 d | - | ≤200 a, ≤5 b,c,d | |||||||||||||||
Legionella spp.: CFU/L | - | - | <1000 a,b,c,d | - | - | |||||||||||||||
Helminth eggs (egg/L) | - | - | ≤1 a,b,c,d | - | - | |||||||||||||||
Chlorine Residue (mg/L) | - | - | - | - | - | |||||||||||||||
Color | - | - | - | - | - | |||||||||||||||
NH3 -N (mg/L) | - | - | - | - | - | |||||||||||||||
NT (mg/L) | - | - | - | 15 a,b,c,d | - | |||||||||||||||
PT (mg/L) | 30 | - | 5 a,b,c,d | 2 a, 10 b,c,d | ≤15 a, ≤2 b,c,d |
System Number, Type, and Size | Plants | Bed Substrate | HRT, d (HLR, mm d−1) | Removal (% or LU (Pathogens)) | Reuse | Country | ||
---|---|---|---|---|---|---|---|---|
COD (BOD), TSS, Others c,d,e,f,g,h,i,j,k | TN, TP, Others L | E. coli, TC, EC | ||||||
1. HFCW, 12.5 m2 a | Typha latifolia | Gravel | 6.25 (96) | 89 (87), na, 88 c, 84 k | 42, 50, 84 L | na, na, na | Irrigation of green spaces | Australia |
2. HFCW, 1.0 m2 a | Equisetum giganteum | Gravel | 3.57 (196) | 38 (na), na, 35 k | na, na | na, na, na | Discharge into soil | Brazil |
3. VFCW, 46.80 m2 b | Phragmites australis; Arundo donax L. | Silica quartz river gravel | 7 (130) | 65–69 (75–83), 65.9 h, 66.7 i | na, na | 0.94, na, na | Agricultural irrigation; discharge into soil | Italy |
4. VFCW, 0.03 m2 a | Cyperus papyrus | Clay aggregate | 0.09 (768) | 99 (na), na | na, na | 4.0, na, na | Potable | South Africa |
5. VFCW, 0.45 m2 a | Pittosporum tobira; Hedera Helix; Polygala myrtifolia | Gravel and sand | na (74–110) | 96 (99), 94 | na, na | na, 2.2, na | Toilet flushing and washing machines | Australia |
6. VFCW, 2.5 m2 a | Phragmites australis | Zeolite; lava sand; Rhine sand | na (18–80) | 96–98 (85), na | na, 83.4 | na, na, na | Irrigation | Germany |
7. VFCW, 60 m2 a | - | Lava rock layer | na (50–80) | 84 (97), 92, | 42, 24 | na, na, na | Potable | Belgium |
8. VFCW, 0.5 m2 a | Phragmites australis and Acorus calamus | Soil Volcanics; Pebble; quartz Sand; Bioceramics | na (80) | 73.5 (80), 90 c, 90 j | na, 87, 90 L | na, na, na | Reuse non-potable, irrigation | China |
9. HCW (HFCW + SCW), 6.75 + 3.5 m2 b | Canna indica; Typhia Latifolia | Volcanic gravel | 4 (na) | 47 (50), na, 60–63 d, 9- 33 e, 6–39 f, 53–90 g, 30–74 h, 61–91 i | 30, 40 | 1.5, na, na | Irrigation and toilet flushing | Italy |
10a. HCW (VFCW + HFCW + HFCW), 0.3 + 0.8 + 2.0 m2 a | A. gayanus | granitic gravel | na (75) | 90.4 (95.5), 96.8 | na, na | 2, 2, 2 | Irrigation | Africa’s Sahel |
10b HCW (VFCW + HFCW + HFCW), 0.3 + 0.8 + 2.0 m2 a | C. zizanioides | granitic gravel | na (75) | 93.9 (97.5), 98.5 | na, na | 3, 2, 2 | Irrigation | Africa’s Sahel |
10c HCW (VFCW + HFCW + HFCW), 0.3 + 0.8 + 2.0 m2 a | unplanted | granitic gravel | na (75) | 88.7 (94.9), 96.0 | na, na | 2, 2, 1 | Irrigation | Africa’s Sahel |
System Number, Type, Size | Plants | Bed Substrate | HRT, d (HLR, mm d−1) | Removal (% or LU (Pathogens)) | Reuse | Country | ||
---|---|---|---|---|---|---|---|---|
COD (BOD), TSS, Others c,d,e,f,g | TN, TP, Others h,i | E. coli, TC, EC | ||||||
1. HFCW, 336 m2 a | Agapanthus africanus | Volcanic porous rock (tezontle) | 11.75 (22.3) | >95 (>95), na | na, na | 0.94, 1.09, na | Garden irrigation | Mexico |
2. SCW, na a | Typha latifolia; Canna indica | Gravel and sand | 2.5–4 (na) | na, na, na | na, na | 0.68, 0.87, 0.90 | Garden irrigation | India |
3. CW microcosms 0.06 m2 a | Lavandula sp., Spathiphyllum wallisii, Zantedeschia ethiopica | Red volcanic gravel (RVG); polyethylene terephthalate (PET) | 3 (na) | na (63–68), na | 35–50, 35–38 | 0.41, na, na | Garden irrigation | México |
4. SCW, 9.4 m2 a | Canna indica L.; Bird of Paradise; Sagittaria lancifolia; Lchinodorus | Sand; Gravel | 5 (na) | 46–65 (51–76), 48–78, 57–82 c | 30–48, 40–58 | na, na, na | Non-body contact Non-sensitive receiving zones | India |
5. HCW (SCW+ VFCW + HFCW), 1.17 + 1.17 + 1.17 m2 b | Canna x generalis, Equisetum sp., Chrysopogon zizanioides, Hymenachne grumosa and Cyperus papyros nanus | Bricks of broken clay; gravel | 24 (na) | 77 (84), na, 99.7 c | 93.8, 94.0, 93.8 i | na, na, na | Car washing and other uses with direct contact | Brazil |
6. HFCW, na b | Chrysopogon zizanioides | Polystyrene, recycled; gravel; thick sand. | na(na) | 85 (na), 70 | 89, na, 81 i | na, na, na | Agriculture irrigation | Brazil |
7. SCW, 20 m2 a | Phragmites australis, Sparganium erectum. | na | 5 (na) | 41 (54), na | na, na, 67 j | na, na, na | Agriculture irrigation | Lebanon |
8. VFCW, 0.48 m2 a | Phragmits australis | Sand, gravel, biochar | na (200) | 71.9 (64.3), na | na, na | 0.46, 0.17, na | Agriculture irrigation | Egypt |
9a. HCW (VFCW + SCW), 166.8 + 167.4 m2 b | Typha latifolia, phragmites australis, Vetiver grass, Eichhornia crassipe Centella asiatica. pistia stratiotes | Gravel; aggregate crush | 2 (11.9) | 73.6 (76.2), 82 | 37, na | 1.31, na, na | Environmental | Pakistan |
9b. HCW.(HFCW + SCW) b, 123.7 + 107.9 m2 b | 1.3 (19.0) | 71.5 (72.5), 91 | 47, na | 1.24, na, na | Environmental | Pakistan | ||
10a. HCW (HFCW + VFCW), 9 + 2.25 m2 a | Phragmites australis | Gravel | 4.1 (10.8) | 68.2 (75.7), 84.4 | na, na, 19.7 i | 1.24, na, na | Agriculture irrigation | Iran |
10b. HCW (HFCW + VFCW), 9 + 2.25 m2 a | Phragmites australis | Pumice | 4.1 (7.8) | 64.1 (71.6), 85.1 | na, na, 4.4 i | 1.18, na, na | Agriculture irrigation | Iran |
11. HCW (HFCW + VFCW + SCW), 360,000–420,000 m2 a | Calamus, reed water onion | Gravel | 2 (54–62) | na (na), na, 37 d | na, na | na, na, na | Agriculture irrigation | China |
12. VFCW, 22 m2 a | Juncus; Phramitis | na | na (69.3) | 44.2 (na), na | na, na, 33.6 j | na, na, na | Agriculture irrigation | Tunisia |
13. HCW (VFCW + HFCW), 0.78 + 0.78 m2 a | Canna Indica; Calibanus hookeri | Gravel; sand; soil | 1 (550) | 89.9 (92.7), 85.5 | na, 88.8, 99.1 i | na, na, na | Garden, irrigation, flushing in toilet | India |
14. HCW (VFCW + VFCW + HFCW), 72 + 48 +72 m2 b | Phragmites australis and Typha latifolia | Silex, granite, or river gravel | na (23.4) | 90.7 (99.6), 98.3 | 80.9, na, 95.6 h, 90.7 i | 4.8, na, na | Agriculture irrigation | Senegal |
15. VFCW, 0.72 m2 b | Pistia Stratiotes and Phragmites karka | Crushed stone Sand, soil | 3- 7 (39.7) | 90 (>98), 92 | 89, 80, 70 i | na, na, na | Agriculture irrigation | India |
16. Aerated saturated VFCW, 1.160 m2 a | Typha latifolia | Gravel | 0.31 (1078) | 22.3 (75.5), 5.6 | na, na 89.1 h, 0.0 i, | 1.29, nd, 1.31 | Environmental | United Kingdom |
17. SCW, 10,000 m2 a | Phragmites australis; Typha latifolia | na | na (300) | na (na), na | na, na | 2.10, 2.89, na | Agriculture irrigation | Spain |
18. SCW 550 m2 a | Phragmites australis | na | 5 (na) | 30–96 e; 85–88 f; 1–93 g | na, na | na, na, na | Garden irrigation; street sewerage cleaning, | Spain |
19a. VFCW 0.7 m2 b | Pennisetum pedicellatum; Cyperus rotundus | Gravel; sand | 1 (357) | 66 (90), na | na, na, 84.5 h, 90 i | na, na, na | Landscape, construction, industrial | India |
19b. HFCW; 1.45 m2 b | Pennisetum pedicellatum; Cyperus rotundus | Gravel; soil | 1 (204) | 63 (80), na | na, na, 67 h, 85 i | na, na, na | Landscape, construction, industrial | India |
20a. SCW, 45 m2 | Reeds | na | 2 (300) | 79 (81), na | 60, 69 | 1.64, 1.82, na | Agriculture irrigation | Egypt |
20b. SCW, 45 m2 | Chlorella | na | 2 (300) | 84 (88), na | 76, 80 | 2.32, 2.36, na | Agriculture irrigation | Egypt |
20c. SCW, 45 m2 | Spirulina | na | 2 (300) | 82 (87), na | 75, 80 | 2.29, 2.32, na | Agriculture irrigation | Egypt |
20d. SCW, 45 m2 | Azolla | na | 2 (300) | 81 (83), na | 80, 70 | 1.86, 2.30, na | Agriculture irrigation | Egypt |
21. HCW (ATS + VFCW + VFCW), 0.51 + 0.51 + 0.51 m2 b | Hymenachne grumosa | Basaltic gravel; basaltic crushed stone | 21 (6.6) | 72 (na), 48, 98 c | 70.1, na, 99.9 i | 1.26, 5.84, na | Garden irrigation, floor, sidewalk washing | Brazil |
22. HFCW, 1321 + 1100 m2 a | Phragmites australis | Medium gravel | 0.53 (362) | 49.4 (54.2), 56.9 | 56.4, 49.2 | 1.07, na, na | Agriculture irrigation | Tunisia |
System Number, Type, Size | Plants | Bed Substrate | HRT, d (HLR, mm d−1) | Removal (% or LU (Pathogens)) | Reuse | Country | ||
---|---|---|---|---|---|---|---|---|
COD (BOD), TSS, Others h,i,j k,l,m,n,o,p,q,r,s, | TN, TP, Others t | E. coli, TC, EC Others u,v | ||||||
1a. VFCW, 1 m2 a | Juncus maritimus Lam | Gravel, sand | na (25) | 20 (na), 83.7, 84.6 n, 96.1 p, 15.9 o | na, na, 95 t | na, na, na | Industrial | Italy |
1b. VFCW, 1 m2 a | Typha latifolia | Gravel, sand | na (25) | 20 (na), 98.9, 73.2 n, 92.8 p, 9.6 o | na, na, 95 t | na, na, na | Industrial | Italy |
1c. HFCW, 1m2 a | Cyperus papyrus | Gravel | 4 (50) | 60 (na), 99.2, 79.1 n, 98.1 p, 29.3 o | na, na, 9599 | na, na, na | Industrial | Italy |
2a. HCW (VFCW + SCW), 0.52 + 2.89 m2 b | Phragmites australis, Typha latifolia | Carbonate material, gravel, sand, clay | >14 (7.6) | 54.1 (na), 52.0, 60.1 q | 44.4, na | na, na, na | Irrigation | Greece |
2b. SCW, 2.89 m2 b | Typha latifolia | Clay | 14 (7.1) | 49.9 (na), 72.0, 51.1 q | 26.9, na | na, na, na | Irrigation | Greece |
3. SCW, 0.3 m2 c | Lemna minor | na | 3 | na, (na), na, 44.9 i, 32.3 j, 74.5 k, 79.1 l, 92.9 n | na, na | na, na, na | Irrigation | Iraq |
4. HCW (VFCW + HFCW + SCW), 140 + 60 + 30 m2 d | Phragmites australis, Cyperus papyrus canna indica, | Gravel, sand, coarse vulcanic | >9 (13) | 81 (78), 69 | 56, 38, 57 t | 1.3, 1.6, 0, 1.8 | Irrigation | Italy |
5. HCW (VFCW + HFCW + SCW), 1.37 + 2.10 + 2.10 m2 e | Phragmites australis. | Gravel, sand | 5–7 (29) | 80–100 (na), na, 60 r, 80 s | 80–100, 80–100 | na, na, na | Industrial | Netherlands |
6. HFCW, 11.4 m2 f | Cyperus alternifolius, Typha latifolia | Clay rock | 20 (na) | 74, (na), 67 | 66, 61 | na, na, na | Irrigation | Ethiopia, |
7. SCW, 0.92 m2 e | Hemarthria compressa | Alluvial stones | (20–60) | 70 (na), 98.3, 35.8–95.6 n, 30.6–95.5 i, 24.3–97.1 m, 20.3–93.2 k | na, na | na, na, na | Irrigation | Pakistan |
8. HCW (VFCW + HFCW + SCW), 1.37 + 2.10 + 2.10 m2 e | Phragmites australis | Gravel, sand | 5 (na) | 67 (na), na, 90.6 r | 67, na, 95 u | na, na, na | Industrial | Netherlands |
9. HFCW, 0.6 m2 g | Chrysopogon zizanioides | Gravel, sand, soil | 4 (16) | 66 (73), 78, 93 h, 86 q | na, na | na, na, na | Irrigation, Industrial | India |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Campos, S.X.; Soto, M. The Use of Constructed Wetlands to Treat Effluents for Water Reuse. Environments 2024, 11, 35. https://doi.org/10.3390/environments11020035
de Campos SX, Soto M. The Use of Constructed Wetlands to Treat Effluents for Water Reuse. Environments. 2024; 11(2):35. https://doi.org/10.3390/environments11020035
Chicago/Turabian Stylede Campos, Sandro Xavier, and Manuel Soto. 2024. "The Use of Constructed Wetlands to Treat Effluents for Water Reuse" Environments 11, no. 2: 35. https://doi.org/10.3390/environments11020035
APA Stylede Campos, S. X., & Soto, M. (2024). The Use of Constructed Wetlands to Treat Effluents for Water Reuse. Environments, 11(2), 35. https://doi.org/10.3390/environments11020035