Digital Opportunity or a Threat? Adoption of Internet of Things (IoT) Monitoring Systems for Natural Resources in Germany
Abstract
:1. Introduction
2. Conceptual and Methodological Considerations
2.1. Motivations and Abilities (MOTA) Framework
2.1.1. Motivation
2.1.2. Abilities
2.1.3. Triggers
2.1.4. Research Questions
- (1)
- How do environmental risks serve as triggers for adopting IoT monitoring systems?
- (2)
- How do perceived opportunities and threats influence the adoption of IoT environmental monitoring systems?
- (3)
- How do actors’ perceived abilities (financial, technical, and institutional) influence the adoption process?
2.2. Data Collection
2.3. Data Analysis
3. Results
3.1. Environmental Risks as Triggers for Adopting IoT Monitoring Systems
3.2. Perceived Opportunities and Threats, and Their Influence on Adoption of IoT Environmental Monitoring
3.3. Perceived Abilities (Financial, Technical, and Institutional), and Their Influence on Adoption of IoT Environmental Monitoring
4. Discussion
4.1. Adopting IoT Forest and Water Monitoring Systems in Germany—A Digital Opportunity or a Threat?
4.2. Methodological Reflection and Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nuss, P.; Günther, J.; Kosmol, J.; Golde, M.; Müller, F.; Frerk, M. Monitoring Framework for the Use of Natural Resources in Germany. Resour. Conserv. Recycl. 2021, 175, 105858. [Google Scholar] [CrossRef]
- BMU. 2020 Digital Policy Agenda for the Environment; Federal Ministry for Environment, Nature Conservation and Nuclear Safety: Berlin, Germany, 2020; p. 44. [Google Scholar]
- Balogun, A.-L.; Marks, D.; Sharma, R.; Shekhar, H.; Balmes, C.; Maheng, D.; Arshad, A.; Salehi, P. Assessing the Potentials of Digitalization as a Tool for Climate Change Adaptation and Sustainable Development in Urban Centres. Sustain. Cities Soc. 2020, 53, 101888. [Google Scholar] [CrossRef]
- Gabrys, J. Smart Forests and Data Practices: From the Internet of Trees to Planetary Governance. Big Data Soc. 2020, 7, 205395172090487. [Google Scholar] [CrossRef]
- Salam, A. Internet of Things for Environmental Sustainability and Climate Change. In Internet of Things for Sustainable Community Development; Internet of Things; Springer International Publishing: Cham, Switzerland, 2020; pp. 33–69. ISBN 978-3-030-35290-5. [Google Scholar]
- Ullo, S.L.; Sinha, G.R. Advances in Smart Environment Monitoring Systems Using IoT and Sensors. Sensors 2020, 20, 3113. [Google Scholar] [CrossRef] [PubMed]
- Ahmetoglu, S.; Che Cob, Z.; Ali, N. A Systematic Review of Internet of Things Adoption in Organizations: Taxonomy, Benefits, Challenges and Critical Factors. Appl. Sci. 2022, 12, 4117. [Google Scholar] [CrossRef]
- Lin, Y.-F.; Chang, T.-Y.; Su, W.-R.; Shang, R.-K. IoT for Environmental Management and Security Governance: An Integrated Project in Taiwan. Sustainability 2021, 14, 217. [Google Scholar] [CrossRef]
- Kuhlmann, S.; Heuberger, M. Digital Transformation Going Local: Implementation, Impacts and Constraints from a German Perspective. Public Money Manag. 2021, 43, 147–155. [Google Scholar] [CrossRef]
- Mergel, I. Digital Transformation of the German State. In Public Administration in Germany; Kuhlmann, S., Proeller, I., Schimanke, D., Ziekow, J., Eds.; Governance and Public Management; Springer International Publishing: Cham, Switzerland, 2021; pp. 331–355. ISBN 978-3-030-53696-1. [Google Scholar]
- Ohlert, C.; Giering, O.; Kirchner, S. Who Is Leading the Digital Transformation? Understanding the Adoption of Digital Technologies in Germany. New Technol. Work Employ. 2022, 37, 445–468. [Google Scholar] [CrossRef]
- Hinings, B.; Gegenhuber, T.; Greenwood, R. Digital Innovation and Transformation: An Institutional Perspective. Inf. Organ. 2018, 28, 52–61. [Google Scholar] [CrossRef]
- Hollaender, R.; Stumpf, L.; Lautenschläger, S.; Interwies, E.; Görlitz, S.; Pielow, C. Chancen und Herausforderungen der Verknüpfungen der Systeme in der Wasserwirtschaft (Wasser 4.0); UBA: Dessau-Rosslau, Germany, 2020. [Google Scholar]
- Zimmermann, M.; Schramm, E.; Ebert, B. Siedlungswasserwirtschaft im Zeitalter der Digitalisierung: Cybersicherheit als Achillesferse. TATuP 2020, 29, 37–43. [Google Scholar] [CrossRef]
- Müller-Czygan, G.; Tarasyuk, V.; Wagner, C.; Wimmer, M. Die deutschsprachige Wasserwirtschaft im Jahr 2020/21—Metastudie „WaterExe4.0“ zeigt Erfolgsfaktoren und Erwartungen für die digitale Zukunft auf. Österr Wasser-Und Abfallw 2022, 74, 241–250. [Google Scholar] [CrossRef]
- Hartsch, F.; Kemmerer, J.; Labelle, E.R.; Jaeger, D.; Wagner, T. Integration of Harvester Production Data in German Wood Supply Chains: Legal, Social and Economic Requirements. Forests 2021, 12, 460. [Google Scholar] [CrossRef]
- Müller-Czygan, G.; Tarasyuk, V.; Wagner, C.; Wimmer, M. How Does Digitization Succeed in the Municipal Water Sector? The WaterExe4.0 Meta-Study Identifies Barriers as Well as Success Factors, and Reveals Expectations for the Future. Energies 2021, 14, 7709. [Google Scholar] [CrossRef]
- Müller, F.; Jaeger, D.; Hanewinkel, M. Digitization in Wood Supply—A Review on How Industry 4.0 Will Change the Forest Value Chain. Comput. Electron. Agric. 2019, 162, 206–218. [Google Scholar] [CrossRef]
- Liesch, T.; Bruns, J.; Abecker, A.; Hilbring, D.; Karimanzira, D.; Martin, T.; Wagner, M.; Wunsch, A.; Fischer, T. Nitrat-Monitoring 4.0—Intelligente Systeme zur Nachhaltigen Reduzierung von Nitrat im Grundwasser. 11; Künstliche Intelligenz in der Umweltinformatik: Karlsruhe, Germany, 2020. [Google Scholar]
- Knebel, P.; Appold, C.; Guldner, A.; Horbach, M.; Juncker, Y.; Machhamer, R.; Müller, S.; Matheis, A. An Artificial Intelligence of Things Based Method for Early Detection of Bark Beetle Infested Trees; Gesellschaft für Informatik e.V.: Bonn, Germany, 2022. [Google Scholar]
- Bolte, A.; Knapp, N.T.; Oehmichen, K.; Riedel, T.; Sanders, T.; Schnell, S.; Wellbrock, N. Digitalisierung im nationalen Waldmonitoring. AFZ 2021, 77, 44–46. [Google Scholar]
- Heller, H.; Teschemacher, S. Internet of Things: Moderne Technik für die Umweltdatenerfassung. In Proceedings of the Umweltinformationssysteme 2018—Umweltdaten—In allen Dimensionen und zu jeder Zeit, Nürnberg, Germany, 7–8 June 2018. [Google Scholar]
- Phi, H.L.; Hermans, L.M.; Douven, W.J.A.M.; Van Halsema, G.E.; Khan, M.F. A Framework to Assess Plan Implementation Maturity with an Application to Flood Management in Vietnam. Water Int. 2015, 40, 984–1003. [Google Scholar] [CrossRef]
- Taherdoost, H. A Review of Technology Acceptance and Adoption Models and Theories. Procedia Manuf. 2018, 22, 960–967. [Google Scholar] [CrossRef]
- Conallin, J.; Ning, N.; Bond, J.; Pawsey, N.; Baumgartner, L.; Atminarso, D.; McPherson, H.; Robinson, W.; Thorncraft, G. A Review of the Applicability of the Motivations and Abilities (MOTA) Framework for Assessing the Implementation Success of Water Resources Management Plans and Policies. Hydrol. Earth Syst. Sci. 2022, 26, 1357–1370. [Google Scholar] [CrossRef]
- Sadik, M.S.; Hermans, L.M.; Evers, J.; Nguyen, H.Q.; Khan, M.F.A.; Ahmed, S. Assessing the Societal Adoptability of Participatory Water Management: An Application of the Motivation and Ability (MOTA) Framework. Water Policy 2021, 24, 729–746. [Google Scholar] [CrossRef]
- Amankwaa, G.; Heeks, R.; Browne, A.L. Digitalising the Water Sector: Implications for Water Service Management and Governance. arXiv 2021, arXiv:2108.09746. [Google Scholar]
- Jan, F.; Min-Allah, N.; Düştegör, D. IoT Based Smart Water Quality Monitoring: Recent Techniques, Trends and Challenges for Domestic Applications. Water 2021, 13, 1729. [Google Scholar] [CrossRef]
- Gandorfer, D.M.; Schleicher, S.; Heuser, S.; Pfeiffer, J.; Demmel, D.M. Landwirtschaft 4.0—Digitalisierung und ihre Herausforderungen. Ackerbau-Technische Lösungen für die Zukunft 2017, 6, 9–21. [Google Scholar]
- Feroz, A.K.; Zo, H.; Chiravuri, A. Digital Transformation and Environmental Sustainability: A Review and Research Agenda. Sustainability 2021, 13, 1530. [Google Scholar] [CrossRef]
- Leroux, E.; Pupion, P.-C. Smart Territories and IoT Adoption by Local Authorities: A Question of Trust, Efficiency, and Relationship with the Citizen-User-Taxpayer. Technol. Forecast. Soc. Chang. 2022, 174, 121195. [Google Scholar] [CrossRef]
- Brous, P.; Janssen, M.; Herder, P. The Dual Effects of the Internet of Things (IoT): A Systematic Review of the Benefits and Risks of IoT Adoption by Organizations. Int. J. Inf. Manag. 2020, 51, 101952. [Google Scholar] [CrossRef]
- Schneider, C.; Mrogenda, K.; Davis, M. Digitalisierung im Naturschutz; Bundesamt für Naturschutz: Bonn, Germany, 2023; ISBN 978-3-89624-417-8. [Google Scholar]
- Narwane, V.S.; Gunasekaran, A.; Gardas, B.B. Unlocking Adoption Challenges of IoT in Indian Agricultural and Food Supply Chain. Smart Agric. Technol. 2022, 2, 100035. [Google Scholar] [CrossRef]
- Baycheva-Merger, T. Forest Policy Information Networks and the Role of Trust: Cooperative and Competitive Orientations and Underlying Causes. Forests 2019, 10, 359. [Google Scholar] [CrossRef]
- Zipper, S.C.; Stack Whitney, K.; Deines, J.M.; Befus, K.M.; Bhatia, U.; Albers, S.J.; Beecher, J.; Brelsford, C.; Garcia, M.; Gleeson, T.; et al. Balancing Open Science and Data Privacy in the Water Sciences. Water Resour. Res. 2019, 55, 5202–5211. [Google Scholar] [CrossRef]
- Ziemba, E. Exploring Levels of ICT Adoption and Sustainability—The Case of Local Governments from Poland. Procedia Comput. Sci. 2020, 176, 3067–3082. [Google Scholar] [CrossRef]
- Rijswijk, K.; Bulten, W.; Klerkx, L.W.A.; den Dulk, L.S.; Dessein, J.; Debruyne, L. Digital Transformation: Ongoing Digitisation and Digitalisation Processes. September 2020. Available online: https://edepot.wur.nl/544951 (accessed on 16 February 2024).
- AlHogail, A. Improving IoT Technology Adoption through Improving Consumer Trust. Technologies 2018, 6, 64. [Google Scholar] [CrossRef]
- Nguyen, H.Q.; Korbee, D.; Ho, H.L.; Weger, J.; Thi Thanh Hoa, P.; Thi Thanh Duyen, N.; Dang Manh Hong Luan, P.; Luu, T.T.; Ho Phuong Thao, D.; Thi Thu Trang, N.; et al. Farmer Adoptability for Livelihood Transformations in the Mekong Delta: A Case in Ben Tre Province. J. Environ. Plan. Manag. 2019, 62, 1603–1618. [Google Scholar] [CrossRef]
- Stockemer, D. Quantitative Methods for the Social Sciences: A Practical Introduction with Examples in SPSS and Stata; Springer International Publishing: Cham, Switzerland, 2019; ISBN 978-3-319-99117-7. [Google Scholar]
- Nguyen, H.-Q.; Korbee, D.; Luan, P.D.M.H.; Tran, D.D.; Loc, H.H.; Hermans, L.M. MOTA Manual for Application in Theory and Practice; Center of Water Management and Climate Change (WACC): Ho Chi Minh, Vietnam, 2019. [Google Scholar]
- Holzwarth, S.; Thonfeld, F.; Abdullahi, S.; Asam, S.; Da Ponte Canova, E.; Gessner, U.; Huth, J.; Kraus, T.; Leutner, B.; Kuenzer, C. Earth Observation Based Monitoring of Forests in Germany: A Review. Remote Sens. 2020, 12, 3570. [Google Scholar] [CrossRef]
- Zainal, Z. Case Study As a Research Method. Available online: https://jurnalkemanusiaan.utm.my/index.php/kemanusiaan/article/view/165 (accessed on 16 February 2024).
- Nihan, S.T. Karl Pearsons Chi-Square Tests. Educ. Res. Rev. 2020, 15, 575–580. [Google Scholar] [CrossRef]
- Seeger, M.; Rodrigo-Comino, J.; Iserloh, T.; Brings, C.; Ries, J.B. Dynamics of Runoff and Soil Erosion on Abandoned Steep Vineyards in the Mosel Area, Germany. Water 2019, 11, 2596. [Google Scholar] [CrossRef]
- Fekete, A.; Sandholz, S. Here Comes the Flood, but Not Failure? Lessons to Learn after the Heavy Rain and Pluvial Floods in Germany 2021. Water 2021, 13, 3016. [Google Scholar] [CrossRef]
- Cavalcanti, D.R.; Oliveira, T.; De Oliveira Santini, F. Drivers of Digital Transformation Adoption: A Weight and Meta-Analysis. Heliyon 2022, 8, e08911. [Google Scholar] [CrossRef]
- Meena, G.P.; Meena, R.L. Relationship between Gender Age and Extent Awareness, Knowledge about ICT Tools and Problems Faced in Access and Using ICT Tools. Int. J. Curr. Microbiol. App. Sci. 2019, 8, 389–395. [Google Scholar] [CrossRef]
- Karthe, D.; Chifflard, P.; Cyffka, B.; Menzel, L.; Nacken, H.; Raeder, U.; Sommerhäuser, M.; Weiler, M. Water Research in Germany: From the Reconstruction of the Roman Rhine to a Risk Assessment for Aquatic Neophytes. Environ. Earth Sci. 2017, 76, 549. [Google Scholar] [CrossRef]
- Woroniecki, S.; Wendo, H.; Brink, E.; Islar, M.; Krause, T.; Vargas, A.-M.; Mahmoud, Y. Nature Unsettled: How Knowledge and Power Shape ‘Nature-Based’ Approaches to Societal Challenges. Glob. Environ. Chang. 2020, 65, 102132. [Google Scholar] [CrossRef]
- Sun, R.; Zhang, S.; Wang, T.; Hu, J.; Ruan, J.; Ruan, J. Willingness and Influencing Factors of Pig Farmers to Adopt Internet of Things Technology in Food Traceability. Sustainability 2021, 13, 8861. [Google Scholar] [CrossRef]
- Uiterkamp, L.S.; Aslam, S.; Amptmeijer, R. The Impact of the Perceived Risk of Various IoT Devices on Their Adoption Probabilities. 2018. Available online: https://www.researchgate.net/publication/335158531_The_Impact_of_the_Perceived_Risk_of_Various_IoT_devices_on_Their_Adoption_Probabilities (accessed on 16 February 2024).
- Kruk, S.R.L.; Kloppenburg, S.; Toonen, H.M.; Bush, S.R. Digitalizing Environmental Governance for Smallholder Participation in Food Systems. Earth Syst. Gov. 2021, 10, 100125. [Google Scholar] [CrossRef]
- Kloppenburg, S.; Gupta, A.; Kruk, S.R.L.; Makris, S.; Bergsvik, R.; Korenhof, P.; Solman, H.; Toonen, H.M. Scrutinizing Environmental Governance in a Digital Age: New Ways of Seeing, Participating, and Intervening. One Earth 2022, 5, 232–241. [Google Scholar] [CrossRef]
- Korbee, D.; Hong Quan, N.; Hermans, L.; Ho Long, P. Navigating the Bureaucracy: An Analysis of Implementation Feasibility for the Mekong Delta Plan, Vietnam. J. Environ. Plan. Manag. 2019, 62, 1545–1561. [Google Scholar] [CrossRef]
- Scharpf, F.W. Institutions in Comparative Policy Research. Comp. Political Stud. 2000, 33, 762–790. [Google Scholar] [CrossRef]
Actor Group | State Administration (Forest, Water, Nature Conservation) | Forest Owners and Service Providers | Water Management Authorities | Research Organizations | Others |
---|---|---|---|---|---|
Number of responses | 100 | 28 | 34 | 2 | 19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baycheva-Merger, T.; Selter, A.; Seijger, C.; Häublein, S. Digital Opportunity or a Threat? Adoption of Internet of Things (IoT) Monitoring Systems for Natural Resources in Germany. Environments 2024, 11, 39. https://doi.org/10.3390/environments11030039
Baycheva-Merger T, Selter A, Seijger C, Häublein S. Digital Opportunity or a Threat? Adoption of Internet of Things (IoT) Monitoring Systems for Natural Resources in Germany. Environments. 2024; 11(3):39. https://doi.org/10.3390/environments11030039
Chicago/Turabian StyleBaycheva-Merger, Tanya, Andy Selter, Chris Seijger, and Sabeth Häublein. 2024. "Digital Opportunity or a Threat? Adoption of Internet of Things (IoT) Monitoring Systems for Natural Resources in Germany" Environments 11, no. 3: 39. https://doi.org/10.3390/environments11030039
APA StyleBaycheva-Merger, T., Selter, A., Seijger, C., & Häublein, S. (2024). Digital Opportunity or a Threat? Adoption of Internet of Things (IoT) Monitoring Systems for Natural Resources in Germany. Environments, 11(3), 39. https://doi.org/10.3390/environments11030039