Iron Oxide-Activated Carbon Composites for Enhanced Microwave-Assisted Pyrolysis of Hardwood
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of the Microwave Absorbers for the Microwave-Assisted Pyrolysis Experiments
2.2. Characterisation of the Microwave Absorbers
2.3. Microwave-Assisted Pyrolysis Experiments
2.4. Conventional Slow Pyrolysis Experiment
2.5. Biochar Characterisation
3. Results and Discussions
3.1. The Microwave-Assisted Pyrolysis Experiments
3.2. The Characterisation of the Microwave Absorbers
3.3. The Characterisation of the Resulting Biochars
3.4. The Thermal Behaviour of the HW and Its Biochar Samples
3.5. The Biochar PAHs Content
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agamuthu, P. Challenges and Opportunities in Agro-Waste Management: An Asian Perspective What Is AgroWaste? 2009. Available online: https://uncrd.un.org/sites/uncrd.un.org//files/inaugural-3r-forum_s2-2-e.pdf (accessed on 5 January 2023).
- Lee, S.Y.; Sankaran, R.; Chew, K.W.; Tan, C.H.; Krishnamoorthy, R.; Chu, D.-T.; Show, P.-L. Waste to bioenergy: A review on the recent conversion technologies. BMC Energy 2019, 1, 4. [Google Scholar] [CrossRef]
- Oliveira, F.R.; Patel, A.K.; Jaisi, D.P.; Adhikari, S.; Lu, H.; Khanal, S.K. Environmental application of biochar: Current status and perspectives. Bioresour. Technol. 2017, 246, 110–122. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Dai, J.; Liu, G.; Zhang, H.; Gao, Z.; Fu, J.; He, Y.; Huang, Y. Biochar from microwave pyrolysis of biomass: A review. Biomass Bioenergy 2016, 94, 228–244. [Google Scholar] [CrossRef]
- Mašek, O.; Budarin, V.; Gronnow, M.; Crombie, K.; Brownsort, P.; Fitzpatrick, E.; Hurst, P. Microwave and slow pyrolysis biochar—Comparison of physical and functional properties. J. Anal. Appl. Pyrolysis 2013, 100, 41–48. [Google Scholar] [CrossRef]
- Motasemi, F.; Afzal, M.T.; Salema, A.A.; Mouris, J.; Hutcheon, R.M. Microwave dielectric characterization of switchgrass for bioenergy and biofuel. Fuel 2014, 124, 151–157. [Google Scholar] [CrossRef]
- Haeldermans, T.; Campion, L.; Kuppens, T.; Vanreppelen, K.; Cuypers, A.; Schreurs, S. A comparative techno-economic assessment of biochar production from different residue streams using conventional and microwave pyrolysis. Bioresour. Technol. 2020, 318, 124083. [Google Scholar] [CrossRef] [PubMed]
- Morgan, H.M.; Bu, Q.; Liang, J.; Liu, Y.; Mao, H.; Shi, A.; Lei, H.; Ruan, R. A review of catalytic microwave pyrolysis of lignocellulosic biomass for value-added fuel and chemicals. Bioresour. Technol. 2017, 230, 112–121. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Wang, W.; Yue, Q. Review on Microwave-Matter Interaction Fundamentals and Efficient Microwave-Associated Heating Strategies. Materials 2016, 9, 231. [Google Scholar] [CrossRef] [PubMed]
- Muley, P.D.; Boldor, D. Investigation of microwave dielectric properties of biodiesel components. Bioresour. Technol. 2013, 127, 165–174. [Google Scholar] [CrossRef]
- Antunes, E.; Jacob, M.V.; Brodie, G.; Schneider, P.A. Microwave pyrolysis of sewage biosolids: Dielectric properties, microwave susceptor role and its impact on biochar properties. J. Anal. Appl. Pyrolysis 2017, 129, 93–100. [Google Scholar] [CrossRef]
- Haeldermans, T.; Claesen, J.; Maggen, J.; Carleer, R.; Yperman, J.; Adriaensens, P.; Samyn, P.; Vandamme, D.; Cuypers, A.; Vanreppelen, K.; et al. Microwave assisted and conventional pyrolysis of MDF—Characterization of the produced biochars. J. Anal. Appl. Pyrolysis 2019, 138, 218–230. [Google Scholar] [CrossRef]
- Mohamed, B.A.; Liu, Z.; Bi, X.; Li, L.Y. Co-production of phenolic-rich bio-oil and magnetic biochar for phosphate removal via bauxite-residue-catalysed microwave pyrolysis of switchgrass. J. Clean. Prod. 2022, 333, 130090. [Google Scholar] [CrossRef]
- Undri, A.; Abou-Zaid, M.; Briens, C.; Berruti, F.; Rosi, L.; Bartoli, M.; Frediani, M.; Frediani, P. Bio-oil from pyrolysis of wood pellets using a microwave multimode oven and different microwave absorbers. Fuel 2015, 153, 464–482. [Google Scholar] [CrossRef]
- An, Y.J.; Nishida, K.; Yamamoto, T.; Ueda, S.; Deguchi, T. Microwave absorber properties of magnetic and dielectric composite materials. Electron. Commun. Jpn. 2010, 93, 18–26. [Google Scholar] [CrossRef]
- Ishizaki, K.; Stir, M.; Gozzo, F.; Catala-Civera, J.M.; Vaucher, S.; Nicula, R. Magnetic microwave heating of magnetite–carbon black mixtures. Mater. Chem. Phys. 2012, 134, 1007–1012. [Google Scholar] [CrossRef]
- Wang, L.; Su, S.; Wang, Y. Fe3O4–Graphite Composites as a Microwave Absorber with Bimodal Microwave Absorption. ACS Appl. Nano Mater. 2022, 5, 17565–17575. [Google Scholar] [CrossRef]
- Yazdani, F.; Seddigh, M. Magnetite nanoparticles synthesized by co-precipitation method: The effects of various iron anions on specifications. Mater. Chem. Phys. 2016, 184, 318–323. [Google Scholar] [CrossRef]
- Lataf, A.; Jozefczak, M.; Vandecasteele, B.; Viaene, J.; Schreurs, S.; Carleer, R.; Yperman, J.; Marchal, W.; Cuypers, A.; Vandamme, D. The effect of pyrolysis temperature and feedstock on biochar agronomic properties. J. Anal. Appl. Pyrolysis 2022, 168, 105728. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Haeldermans, T.; Lataf, M.A.; Vanroelen, G.; Samyn, P.; Vandamme, D.; Cuypers, A.; Vanreppelen, K.; Schreurs, S. Numerical prediction of the mean residence time of solid materials in a pilot-scale rotary kiln. Powder Technol. 2019, 354, 392–401. [Google Scholar] [CrossRef]
- Vercruysse, W.; Smeets, J.; Haeldermans, T.; Joos, B.; Hardy, A.; Samyn, P.; Yperman, J.; Vanreppelen, K.; Carleer, R.; Adriaensens, P.; et al. Biochar from raw and spent common ivy: Impact of preprocessing and pyrolysis temperature on biochar properties. J. Anal. Appl. Pyrolysis 2021, 159, 105294. [Google Scholar] [CrossRef]
- U.S. EPA. EPA 8270e: Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry; U.S. EPA: Washington, DC, USA, 2018. [Google Scholar]
- Sitthikhankaew, R.; Chadwick, D.; Assabumrungrat, S.; Laosiripojana, N. Performance of sodium-impregnated activated carbons towards low and high temperature H2S adsorption. Chem. Eng. Commun. 2014, 201, 257–271. [Google Scholar] [CrossRef]
- Le-Minh, N.; Sivret, E.C.; Shammay, A.; Stuetz, R.M. Factors affecting the adsorption of gaseous environmental odors by activated carbon: A critical review. Crit. Rev. Environ. Sci. Technol. 2018, 48, 341–375. [Google Scholar] [CrossRef]
- Menéndez, J.A.; Arenillas, A.; Fidalgo, B.; Fernández, Y.; Zubizarreta, L.; Calvo, E.; Bermúdez, J. Microwave heating processes involving carbon materials. Fuel Process. Technol. 2010, 91, 1–8. [Google Scholar] [CrossRef]
- Wang, X.; Morrison, W.; Du, Z.; Wan, Y.; Lin, X.; Chen, P.; Ruan, R. Biomass temperature profile development and its implications under the microwave-assisted pyrolysis condition. Appl. Energy 2012, 99, 386–392. [Google Scholar] [CrossRef]
- Chiang, H.-L.; Huang, C.P.; Chiang, P.C. The surface characteristics of activated carbon as affected by ozone and alkaline treatment. Chemosphere 2002, 47, 257–265. [Google Scholar] [CrossRef]
- Hafizuddin, M.S.; Lee, C.L.; Chin, K.L.; H’ng, P.S.; Khoo, P.S.; Rashid, U. Fabrication of Highly Microporous Structure Activated Carbon via Surface Modification with Sodium Hydroxide. Polymers 2021, 13, 3954. [Google Scholar] [CrossRef]
- Singh, M.; Ulbrich, P.; Prokopec, V.; Svoboda, P.; Šantavá, E.; Štěpánek, F. Vapour phase approach for iron oxide nanoparticle synthesis from solid precursors. J. Solid State Chem. 2013, 200, 150–156. [Google Scholar] [CrossRef]
- Li, Z.; Chanéac, C.; Berger, G.; Delaunay, S.; Graff, A.; Lefèvre, G. Mechanism and kinetics of magnetite oxidation under hydrothermal conditions. RSC Adv. 2019, 9, 33633–33642. [Google Scholar] [CrossRef]
- Borges, R.; Ferreira, L.M.; Rettori, C.; Lourenço, I.M.; Seabra, A.B.; Müller, F.A.; Ferraz, E.P.; Marques, M.M.; Miola, M.; Baino, F.; et al. Superparamagnetic and highly bioactive SPIONS/bioactive glass nanocomposite and its potential application in magnetic hyperthermia. Biomater. Adv. 2022, 135, 112655. [Google Scholar] [CrossRef]
- Amini, A.; Ohno, K.; Maeda, T.; Kunitomo, K. Effect of the Ratio of Magnetite Particle Size to Microwave Penetration Depth on Reduction Reaction Behaviour by H2. Sci. Rep. 2018, 8, 15023. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, M.; Yokoyama, Y.; Nagata, K. Effect of Particle Size and Relative Density on Powdery Fe 3 O 4 Microwave Heating. J. Microw. Power Electromagn. Energy 2010, 44, 198–206. [Google Scholar] [CrossRef] [PubMed]
- Munoz, M.; de Pedro, Z.M.; Casas, J.A.; Rodriguez, J.J. Preparation of magnetite-based catalysts and their application in heterogeneous Fenton oxidation—A review. Appl. Catal. B Environ. 2015, 176–177, 249–265. [Google Scholar] [CrossRef]
- Díez, D.; Urueña, A.; Piñero, R.; Barrio, A.; Tamminen, T. Determination of Hemicellulose, Cellulose, and Lignin Content in Different Types of Biomasses by Thermogravimetric Analysis and Pseudocomponent Kinetic Model (TGA-PKM Method). Processes 2020, 8, 1048. [Google Scholar] [CrossRef]
- European Biochar Foundation. Guidelines for a Sustainable Production of Biochar; European Biochar Foundation: Arbaz, Switzerland, 2020; pp. 1–22. [Google Scholar]
- Ethaib, S.; Omar, R.; Kamal, S.M.M.; Biak, D.R.A.; Zubaidi, S.L. Microwave-Assisted Pyrolysis of Biomass Waste: A Mini Review. Processes 2020, 8, 1190. [Google Scholar] [CrossRef]
- Dai, Q.; Jiang, X.; Jiang, Y.; Jin, Y.; Wang, F.; Chi, Y.; Yan, J.; Xu, A. Temperature Influence and Distribution in Three Phases of PAHs in Wet Sewage Sludge Pyrolysis Using Conventional and Microwave Heating. Energy Fuels 2014, 28, 3317–3325. [Google Scholar] [CrossRef]
- Dong, C.-D.; Chen, C.-W.; Kao, C.-M.; Chien, C.-C.; Hung, C.-M. Wood-Biochar-Supported Magnetite Nanoparticles for Remediation of PAH-Contaminated Estuary Sediment. Catalysts 2018, 8, 73. [Google Scholar] [CrossRef]
- Usman, M.; Faure, P.; Ruby, C.; Hanna, K. Remediation of PAH-contaminated soils by magnetite catalyzed Fenton-like oxidation. Appl. Catal. B Environ. 2012, 117–118, 10–17. [Google Scholar] [CrossRef]
Microwave Absorber | Modification Method | Washing Step | Expected Fe3O4 Content (wt%) |
---|---|---|---|
A0-5 | A | Milli-Q + EtOH | 0 |
A0-20 | A | Milli-Q + EtOH | 0 |
A5 | A | Milli-Q + EtOH | 5 |
A20 | A | Milli-Q + EtOH | 20 |
B0-5 | B | Milli-Q | 0 |
B0-20 | B | Milli-Q | 0 |
B5 | B | Milli-Q | 5 |
B20 | B | Milli-Q | 20 |
C0 | C | Not applicable | 0 |
C5 | C | Not applicable | 5 |
C20 | C | Not applicable | 20 |
Microwave Absorber | Residence Time (min) | Tmax (°C) |
---|---|---|
A0-5 | 37 | 216 |
A0-20 | 37 | 226 |
A5 | 37 | 257 |
A20 | 37 | 249 |
B0-5 | 37 | 313 |
B0-20 | 34 ± 6 | 325 |
B5 | 37 | 292 |
B20 | 37 | 301 |
C0 | 27 ± 8 | 280 |
C5 | 27 ± 9 | 340 |
C20 | 31 ± 6 | 384 |
Pilot-scale rotary kiln reactor | 14 | 450 |
Microwave Absorber | TC (wt%) | H (wt%) | N (wt%) | O (wt% by diff) | SBET (m²/g) |
---|---|---|---|---|---|
C0 | 85 ± 2 | 0.47 ± 0.03 | 0.54 ± 0.08 | 1 ± 2 | 1020 |
A0-5 | 81 ± 1 | 0.66 ± 0.05 | 0.66 ± 0.04 | 5 ± 1 | 1040 |
A0-20 | 82 ± 1 | 0.69 ± 0.09 | 0.42 ± 0.04 | 4 ± 2 | 1180 |
B0-5 | 81.6 ± 0.4 | 0.61 ± 0.06 | 0.51 ± 0.06 | 6.1 ± 0.8 | 1190 |
B0-20 | 82.0 ± 0.9 | 0.53 ± 0.04 | 0.55 ± 0.07 | 6 ± 1 | 1190 |
A5 | 72.3 ± 0.6 | 0.50 ± 0.02 | 0.22 ± 0.02 | 9.3 ± 0.9 | 960 |
A20 | 62.2 ± 0.6 | 0.47 ± 0.02 | 0.21 ± 0.01 | 8.2 ± 0.8 | 940 |
B5 | 78 ± 1 | 0.7 ± 0.1 | 0.59 ± 0.05 | 4 ± 1 | 1130 |
B20 | 65.6 ± 0.3 | 0.71 ± 0.07 | 0.48 ± 0.04 | 5.0 ± 0.5 | 980 |
C5 | 78.8 ± 0.9 | 0.45 ± 0.01 | 0.51 ± 0.05 | 3 ± 1 | 1080 |
C20 | 69 ± 1 | 0.47 ± 0.01 | 0.57 ± 0.08 | 0 ± 2 | 920 |
Microwave Absorber | Fe as Fe3O4 (wt%) | Fe as γ-Fe2O3 (wt%) | Na Content (wt%) | Ash (wt%) |
---|---|---|---|---|
C0 | 1.1 * ± 0.4 | 1.1 ± 0.4 | 0.06 ± 0.04 | 13.00 ± 0.09 e ** |
A0-5 | 1.23 ± 0.08 | 1.27 ± 0.08 | 0.05 ± 0.02 | 12.33 ± 0.1 e |
A0-20 | 1.20 ± 0.04 | 1.27 ± 0.08 | 0.12 ± 0.02 | 12.95 ± 0.2 e |
B0-5 | 0.81 ± 0.01 | 0.84 ± 0.01 | 0.032 ± 0.003 | 11.2 ± 0.3 f |
B0-20 | 0.82 ± 0.01 | 0.85 ± 0.01 | 0.038 ± 0.002 | 10.8 ± 0.3 f |
A5 | 6.14 ± 0.06 | 6.4 ± 0.1 | 0.10 ± 0.01 | 17.7 ± 0.3 c |
A20 | 18.3 ± 0.4 | 18.9 ± 0.4 | 0.11 ± 0.03 | 28.9 ± 0.2 b |
B5 | 4.25 ± 0.01 | 4.40 ± 0.01 | 0.080 ± 0.001 | 16.5 ± 0.1 d |
B20 | 17.7 ± 0.3 | 18.3 ± 0.3 | 0.22 ± 0.01 | 28.2 ± 0.1 b |
C5 | 7.2 ± 0.2 | 7.4 ± 0.2 | 0.045 ± 0.001 | 17.6 ± 0.3 c |
C20 | 21.5 ± 0.9 | 22.2 ± 0.9 | 0.098 ± 0.001 | 29.8 ± 0.3 a |
Biochar | TC (wt%) | H (wt%) | N (wt%) | O (wt% by diff) | Ash (wt%) |
---|---|---|---|---|---|
HW | 46.7 ± 0.5 | 5.8 ± 0.1 | 0.50 ± 0.05 | 45 ± 1 | 1.7 ± 0.2 |
HW-C0 | 61 ± 1 | 5.3 ± 0.2 | 0.7 ± 0.1 | 30 ± 1 | 3.21 ± 0.04 |
HW-C5 | 73 ± 2 | 3.9 ± 0.2 | 0.6 ± 0.5 | 18 ± 3 | 4.7 ± 0.2 |
HW-C20 | 68.5 ± 0.7 | 3.4 ± 0.1 | 0.54 ± 0.03 | 24.1 ± 0.9 | 3.5 ± 0.1 |
HW-450 | 73 ± 2 | 3.11 ± 0.08 | 0.57 ± 0.03 | 18 ± 3 | 5.0 ± 0.6 |
Biochar | ∑16 EPA PAHs (mg/kg) |
---|---|
HW-450 | 9.0 ± 0.5 |
HW-C0 | 8.4 ± 0.5 |
HW-C5 | 6.6 ± 0.9 |
HW-C20 | 3.9 ± 0.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lataf, A.; Khalil Awad, A.E.; Joos, B.; Carleer, R.; Yperman, J.; Schreurs, S.; D’Haen, J.; Cuypers, A.; Vandamme, D. Iron Oxide-Activated Carbon Composites for Enhanced Microwave-Assisted Pyrolysis of Hardwood. Environments 2024, 11, 102. https://doi.org/10.3390/environments11050102
Lataf A, Khalil Awad AE, Joos B, Carleer R, Yperman J, Schreurs S, D’Haen J, Cuypers A, Vandamme D. Iron Oxide-Activated Carbon Composites for Enhanced Microwave-Assisted Pyrolysis of Hardwood. Environments. 2024; 11(5):102. https://doi.org/10.3390/environments11050102
Chicago/Turabian StyleLataf, Amine, Andrew E. Khalil Awad, Bjorn Joos, Robert Carleer, Jan Yperman, Sonja Schreurs, Jan D’Haen, Ann Cuypers, and Dries Vandamme. 2024. "Iron Oxide-Activated Carbon Composites for Enhanced Microwave-Assisted Pyrolysis of Hardwood" Environments 11, no. 5: 102. https://doi.org/10.3390/environments11050102
APA StyleLataf, A., Khalil Awad, A. E., Joos, B., Carleer, R., Yperman, J., Schreurs, S., D’Haen, J., Cuypers, A., & Vandamme, D. (2024). Iron Oxide-Activated Carbon Composites for Enhanced Microwave-Assisted Pyrolysis of Hardwood. Environments, 11(5), 102. https://doi.org/10.3390/environments11050102