Lithium Toxicity in Lepidium sativum L. Seedlings: Exploring Li Accumulation’s Impact on Germination, Root Growth, and DNA Integrity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Germination Toxicity Assay and Root Elongation Measurement
2.2. Genotoxicological Assessment (Alkaline Comet Assay)
2.3. Lithium Chemical Analysis
2.4. Statistics
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Stratiotou Efstratiadis, V.; Michailidis, N. Sustainable Recovery, Recycle of Critical Metals and Rare Earth Elements from Waste Electric and Electronic Equipment (Circuits, Solar, Wind) and Their Reusability in Additive Manufacturing Applications: A Review. Metals 2022, 12, 794. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, C.; Jiang, J.; Zhang, W.; Zhang, L.; Wang, Y. Review on State-of-Health of Lithium-Ion Batteries: Characterizations, Estimations and Applications. J. Clean. Prod. 2021, 314, 128015. [Google Scholar] [CrossRef]
- Bolan, N.; Hoang, S.A.; Tanveer, M.; Wang, L.; Bolan, S.; Sooriyakumar, P.; Robinson, B.; Wijesekara, H.; Wijesooriya, M.; Keerthanan, S.; et al. From Mine to Mind and Mobiles—Lithium Contamination and Its Risk Management. Environ. Pollut. 2021, 290, 118067. [Google Scholar] [CrossRef] [PubMed]
- Kaunda, R.B. Potential Environmental Impacts of Lithium Mining. J. Energy Nat. Resour. Law 2020, 38, 237–244. [Google Scholar] [CrossRef]
- Aral, H.; Vecchio-Sadus, A. Toxicity of Lithium to Humans and the Environment—A Literature Review. Ecotoxicol. Environ. Saf. 2008, 70, 349–356. [Google Scholar] [CrossRef]
- Bernard, A. Chapter 44—Lithium. In Handbook on the Toxicology of Metals, 4th ed.; Nordberg, G.F., Fowler, B.A., Nordberg, M., Eds.; Elsevier/Academic Press: San Diego, CA, USA, 2015; pp. 969–974. [Google Scholar]
- Barbosa, H.; Soares, A.M.V.M.; Pereira, E.; Freitas, R. Lithium: A Review on Concentrations and Impacts in Marine and Coastal Systems. Sci. Total Environ. 2023, 857, 159374. [Google Scholar] [CrossRef] [PubMed]
- Robinson, B.H.; Yalamanchali, R.; Reiser, R.; Dickinson, N.M. Lithium as an Emerging Environmental Contaminant: Mobility in the Soil-Plant System. Chemosphere 2018, 197, 1–6. [Google Scholar] [CrossRef]
- Kastori, R.; Maksimović, I.; Putnikdelić, M. Lithium in the Environment and Its Effects on Higher Plants. Contemp. Agric. 2022, 71, 226–239. [Google Scholar] [CrossRef]
- Shahzad, B.; Tanveer, M.; Hassan, W.; Shah, A.N.; Anjum, S.A.; Cheema, S.A.; Ali, I. Lithium Toxicity in Plants: Reasons, Mechanisms and Remediation Possibilities—A Review. Plant Physiol. Biochem. 2016, 107, 104–115. [Google Scholar] [CrossRef]
- Qiao, L.; Tanveer, M.; Wang, L.; Tian, C. Subcellular Distribution and Chemical Forms of Lithium in Li-Accumulator Apocynum Venetum. Plant Physiol. Biochem. 2018, 132, 341–344. [Google Scholar] [CrossRef]
- Kavanagh, L.; Keohane, J.; Cabellos, G.; Lloyd, A.; Cleary, J. Induced Plant Accumulation of Lithium. Geosciences 2018, 8, 56. [Google Scholar] [CrossRef]
- Kalinowska, M.; Hawrylak-Nowak, B.; Szymańska, M. The Influence of Two Lithium Forms on the Growth, L-Ascorbic Acid Content and Lithium Accumulation in Lettuce Plants. Biol. Trace Elem. Res. 2013, 152, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Zacchini, M.; Gullotta, G.; D’Onofrio, G.; Bertolotto, P.; Massimi, L.; Pietrini, F. Effects of Lithium on Morpho-Physiological and Ionomic Traits in Cannabis Sativa L. Microshoots under in Vitro Conditions. Plant Cell Tissue Organ Cult. 2023, 155, 873–882. [Google Scholar] [CrossRef]
- Jiang, L.; Wang, L.; Mu, S.Y.; Tian, C.Y. Apocynum Venetum: A Newly Found Lithium Accumulator. Flora Morphol. Distrib. Funct. Ecol. Plants 2014, 209, 285–289. [Google Scholar] [CrossRef]
- Tanveer, M.; Hasanuzzaman, M.; Wang, L. Lithium in Environment and Potential Targets to Reduce Lithium Toxicity in Plants. J. Plant Growth Regul. 2019, 38, 1574–1586. [Google Scholar] [CrossRef]
- Sneva, F.A. Lithium toxicity in seedlings of three cool season grasses. Plant Soil 1979, 53, 219–224. [Google Scholar] [CrossRef]
- Shakoor, N.; Adeel, M.; Azeem, I.; Ahmad, M.A.; Zain, M.; Abbas, A.; Hussain, M.; Jiang, Y.; Zhou, P.; Li, Y.; et al. Interplay of Higher Plants with Lithium Pollution: Global Trends, Meta-Analysis, and Perspectives. Chemosphere 2023, 310, 136663. [Google Scholar] [CrossRef]
- Oktem, F.; Ozguner, F.; Sulak, O.; Olgar, Ş.; Akturk, O.; Yilmaz, H.R.; Altuntas, I. Lithium-Induced Renal Toxicity in Rats: Protection by a Novel Antioxidant Caffeic Acid Phenethyl Ester. Mol. Cell. Biochem. 2005, 277, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Dawood, M.F.A.; Tahjib-Ul-Arif, M.; Sohag, A.A.M.; Abdel Latef, A.A.H. Role of Acetic Acid and Nitric Oxide against Salinity and Lithium Stress in Canola (Brassica napus L.). Plants 2023, 13, 51. [Google Scholar] [CrossRef]
- Hawrylak-Nowak, B.; Kalinowska, M.; Szymańska, M. A Study on Selected Physiological Parameters of Plants Grown under Lithium Supplementation. Biol. Trace Elem. Res. 2012, 149, 425–430. [Google Scholar] [CrossRef]
- Bakhat, H.F.; Rasul, K.; Farooq, A.B.U.; Zia, Z.; Natasha; Fahad, S.; Abbas, S.; Shah, G.M.; Rabbani, F.; Hammad, H.M. Growth and Physiological Response of Spinach to Various Lithium Concentrations in Soil. Environ. Sci. Pollut. Res. 2020, 27, 39717–39725. [Google Scholar] [CrossRef] [PubMed]
- Kuloğlu, S.S.; Yalçin, E.; Çavuşoğlu, K.; Acar, A. Dose-Dependent Toxicity Profile and Genotoxicity Mechanism of Lithium Carbonate. Sci. Rep. 2022, 12, 13504. [Google Scholar] [CrossRef] [PubMed]
- OECD. Test No. 208: Terrestrial Plant Test: Seedling Emergence and Seedling Growth Test. In Guidelines for the Testing of Chemicals, Section 2; OECD Publishing: Paris, France, 2006; p. 21. [Google Scholar]
- Adiloglu, S.; Cifci, D.I.; Meric, S. Phytoremediation of Metal: Lithium. In Phytoremediation Technology for the Removal of Heavy Metals and Other Contaminants from Soil and Water; Elsevier: Amsterdam, The Netherlands, 2022; pp. 277–291. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. EPA Ecological Effects Test Guidelines: Seed Germination/Root Elongation Toxicity Test; United States Environmental Protection Agency: Washington, DC, USA, 1996; pp. 1–8. [Google Scholar]
- Angelini, P.; Maria, A.D.; Fantone, D.; Giansanti, P.; Nappi, P.; Profeta, A.; Jacomini, C.; Sbalchiero, A.; Sbrilli, G.; Zullini, A. Guida Tecnica su Metodi di Analisi per il Suolo e i Siti Contaminati Utilizzo di Indicatori Ecotossicologici e Biologici Apat Agenzia per La Protezione Dell’Ambiente e per i Servizi Tecnici. Available online: https://www.isprambiente.gov.it/files/biodiversita/APAT_2002_Guida_metodi.pdf (accessed on 26 March 2024).
- Gayathri, N.; Sailesh, A.R.; Srinivas, N. Effect of Lithium on Seed Germination and Plant Growth of Amaranthus Viridis. J. Appl. Nat. Sci. 2022, 14, 133–139. [Google Scholar] [CrossRef]
- Grenni, P.; Caracciolo, A.B.; Patrolecco, L.; Ademollo, N.; Rauseo, J.; Saccà, M.L.; Mingazzini, M.; Palumbo, M.T.; Galli, E.; Muzzini, V.G.; et al. A Bioassay Battery for the Ecotoxicity Assessment of Soils Conditioned with Two Different Commercial Foaming Products. Ecotoxicol. Environ. Saf. 2018, 148, 1067–1077. [Google Scholar] [CrossRef]
- Pietrini, F.; Iannilli, V.; Passatore, L.; Carloni, S.; Sciacca, G.; Cerasa, M.; Zacchini, M. Ecotoxicological and Genotoxic Effects of Dimethyl Phthalate (DMP) on Lemna minor L. and Spirodela polyrhiza (L.) Schleid. Plants under a Short-Term Laboratory Assay. Sci. Total Environ. 2022, 806, 150972. [Google Scholar] [CrossRef] [PubMed]
- Cosentino, S.; Aureli, F.; Iannilli, V. Bisphenols A and Its Analogues Induce Genotoxic Damage in Marine and Freshwater Amphipods. Environ. Adv. 2022, 7, 100183. [Google Scholar] [CrossRef]
- Astolfi, M.L.; Marconi, E.; Protano, C.; Canepari, S. Comparative Elemental Analysis of Dairy Milk and Plant-Based Milk Alternatives. Food Control 2020, 116, 107327. [Google Scholar] [CrossRef]
- Passatore, L.; Pietrini, F.; Carloni, S.; Massimi, L.; Giusto, C.; Zacchini, M.; Iannilli, V. Morpho-Physiological and Molecular Responses of Lepidium Sativum L. Seeds Induced by Bismuth Exposure. Sci. Total Environ. 2022, 831, 154896. [Google Scholar] [CrossRef]
- Ivanov, V.B.; Zhukovskaya, N.V. Effect of Heavy Metals on Root Growth and the Use of Roots as Test Objects. Russ. J. Plant Physiol. 2021, 68, S1–S25. [Google Scholar] [CrossRef]
- Naranjo, M.A.; Romero, C.; Bellés, J.M.; Montesinos, C.; Vicente, O.; Serrano, R. Lithium Treatment Induces a Hypersensitive-like Response in Tobacco. Planta 2003, 217, 417–424. [Google Scholar] [CrossRef]
- Li, X.; Gao, P.; Gjetvaj, B.; Westcott, N.; Gruber, M.Y. Analysis of the Metabolome and Transcriptome of Brassica Carinata Seedlings after Lithium Chloride Exposure. Plant Sci. 2009, 177, 68–80. [Google Scholar] [CrossRef]
- Hadrup, N.; Sørli, J.B.; Sharma, A.K. Pulmonary Toxicity, Genotoxicity, and Carcinogenicity Evaluation of Molybdenum, Lithium, and Tungsten: A Review. Toxicology 2022, 467, 153098. [Google Scholar] [CrossRef] [PubMed]
- Peltzer, P.M.; Boccioni, A.P.C.; Attademo, M.; Simoniello, F. Ecotoxicological Characterization of Lithium as a “Timebomb” in Aquatic Systems: Tadpoles of the South American Toad Rhinella Arenarum (Hensel, 1867) as Model Organisms. Toxics 2024, 12, 176. [Google Scholar] [CrossRef] [PubMed]
- Liman, R. Chemosphere Genotoxic Effects of Bismuth ( III ) Oxide Nanoparticles by Allium and Comet Assay. Chemosphere 2013, 93, 269–273. [Google Scholar] [CrossRef]
- Zacchini, M.; Pietrini, F.; Scarascia Mugnozza, G.; Iori, V.; Pietrosanti, L.; Massacci, A. Metal Tolerance, Accumulation and Translocation in Poplar and Willow Clones Treated with Cadmium in Hydroponics. Water Air Soil Pollut. 2009, 197, 23–34. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iannilli, V.; D’Onofrio, G.; Marzi, D.; Passatore, L.; Pietrini, F.; Massimi, L.; Zacchini, M. Lithium Toxicity in Lepidium sativum L. Seedlings: Exploring Li Accumulation’s Impact on Germination, Root Growth, and DNA Integrity. Environments 2024, 11, 93. https://doi.org/10.3390/environments11050093
Iannilli V, D’Onofrio G, Marzi D, Passatore L, Pietrini F, Massimi L, Zacchini M. Lithium Toxicity in Lepidium sativum L. Seedlings: Exploring Li Accumulation’s Impact on Germination, Root Growth, and DNA Integrity. Environments. 2024; 11(5):93. https://doi.org/10.3390/environments11050093
Chicago/Turabian StyleIannilli, Valentina, Gianluca D’Onofrio, Davide Marzi, Laura Passatore, Fabrizio Pietrini, Lorenzo Massimi, and Massimo Zacchini. 2024. "Lithium Toxicity in Lepidium sativum L. Seedlings: Exploring Li Accumulation’s Impact on Germination, Root Growth, and DNA Integrity" Environments 11, no. 5: 93. https://doi.org/10.3390/environments11050093
APA StyleIannilli, V., D’Onofrio, G., Marzi, D., Passatore, L., Pietrini, F., Massimi, L., & Zacchini, M. (2024). Lithium Toxicity in Lepidium sativum L. Seedlings: Exploring Li Accumulation’s Impact on Germination, Root Growth, and DNA Integrity. Environments, 11(5), 93. https://doi.org/10.3390/environments11050093