A Resource-Bound Critical Analysis of the Decarbonisation Roadmaps for the UK Foundation Industries by 2050
Abstract
:1. Introduction
1.1. Background
1.2. Sectoral Baseline Analysis
1.2.1. Iron and Steel
1.2.2. Chemicals
1.2.3. Cement
1.2.4. Glass
1.2.5. Paper and Pulp
1.2.6. Ceramics
1.3. Decarbonisation Strategies by 2050
1.3.1. Energy Efficiency
1.3.2. Fuel Switching
1.3.3. Process Electrification
1.3.4. Carbon Capture and Storage (CCS)
1.3.5. Production and Demand Reduction
1.4. Critical Analysis of Decarbonisation Roadmaps
1.4.1. Technological Barriers
1.4.2. Economic Barriers
1.4.3. Resource Limitations
1.4.4. Contradicting Decarbonisation Vectors
1.5. Aims and Objectives
- How much should the production of each of the six FI products be reduced to accommodate for the aforementioned barriers?
- What are the interventions (e.g., reducing demand) that enable such production reduction in each FI and what could be the barriers facing each?
Technological Barriers | Economic Barriers | Natural Resources Limitations | |
---|---|---|---|
Energy efficiency | x | ||
Electrification | x | x | |
Fuel switching | x | x | x |
CCUS | x | x |
2. Methodology
3. Results and Discussions
3.1. Baseline Projection by 2050
3.2. Decarbonisation of the FIs in the UK by 2050
3.2.1. Realistic Cap for High-Tech Strategies
3.2.2. High-Tech Scenario for 2050
3.2.3. Production and Demand Reduction Levels
3.2.4. Production and Demand Reduction Applications
Iron and Steel
Chemicals
Cement
Glass
Paper and Pulp
Ceramics
3.3. Discussion Points
3.3.1. Consumer Behaviour
3.3.2. Green Development vs. Degrowth
3.3.3. Business Model Shift
3.3.4. Opposing Sustainability Vectors
3.4. Further Research
4. Conclusions
- The use of hydrogen fuel is not proving to have the technological market readiness to be utilised directly in full scale production of FIs by 2050.
- The sixth carbon budget for the UK industries define a cap for using biomass as fuel equal to approximately 60% of the planned share while only 40% of the planned CCS carbon abatement capacity is expected to be implemented by 2050.
- The resource-adjusted decarbonisation potential through high-tech strategies (biofuel, electrification, and CCS) falls 20–30% short of the 2050 carbon targets for the UK’s FIs.
- An average of 30% demand reduction for all FIs through reuse, recycling, and production material efficiency is imminent to achieve the 2050 carbon targets.
- Existing interventions to improve the energy efficiency of production could reduce the need for demand reduction by 10–20%.
- There are established interventions for demand reduction, especially the reduction of concrete demand through optimised structural designs, the topology optimisation of steel production, and reuse and recycle of glass and paper packaging.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IEA. ETP Clean Energy Technology Guide [Online]. Paris. 2021. Available online: https://www.iea.org/articles/etp-clean-energy-technology-guide (accessed on 18 March 2024).
- Nelles, J.; Walsh, K.; Vorley, T. Transforming Foundation Industries: UKRI. 2022. Available online: https://innovationcaucus.co.uk/app/uploads/2022/08/Transforming-Foundation-Industries-Engaging-SMEs-in-Innovation.pdf (accessed on 7 April 2024).
- Griffin, P.W.; Hammond, G.P.; McKenna, R.C. Industrial energy use and decarbonisation in the glass sector: A UK perspective. Adv. Appl. Energy 2021, 3, 100037. [Google Scholar] [CrossRef]
- Somerville, P. The continuing failure of UK climate change mitigation policy. Crit. Soc. Policy 2021, 41, 628–650. [Google Scholar] [CrossRef]
- DECC. Industrial Decarbonisation and Energy Efficiency Roadmaps to 2050: Iron and Steel; Department of Energy and Climate Change: London, UK, 2015. [Google Scholar]
- UK GOV. The 2022 UK Greenhouse Gas Emissions: Provisional Figures. Department of Energy Security and Net Zero. 2023. Available online: https://assets.publishing.service.gov.uk/media/6424b8b83d885d000fdade9b/2022_Provisional_emissions_statistics_report.pdf (accessed on 8 April 2024).
- Geels, F.W.; Gregory, J. Low-carbon reorientation in a declining industry? A longitudinal analysis of coevolving contexts and company strategies in the UK steel industry (1988–2022). Energy Res. Soc. Sci. 2023, 96, 102953. [Google Scholar] [CrossRef]
- Griffin, P.W.; Hammond, G.P. Analysis of the potential for energy demand and carbon emissions reduction in the iron and steel sector. Energy Procedia 2019, 158, 3915–3922. [Google Scholar] [CrossRef]
- Garvey, A.; Norman, J.B.; Owen, A.; Barrett, J. Towards net zero nutrition: The contribution of demand-side change to mitigating UK food emissions. J. Clean. Prod. 2021, 290, 125672. [Google Scholar] [CrossRef]
- Richardson-Barlow, C.; Pimm, A.J.; Taylor, P.G.; Gale, W.F. Policy and pricing barriers to steel industry decarbonisation: A UK case study. Energy Policy 2022, 168, 113100. [Google Scholar] [CrossRef]
- Fan, Z.; Friedmann, S.J. Low-carbon production of iron and steel: Technology options, economic assessment, and policy. Joule 2021, 5, 829–862. [Google Scholar] [CrossRef]
- Ward, M.; Allwood, J.M.; Azevedo, J.; Cleaver, C.; Cullen, J.; Dunant, C.; Fellin, T.; Hawkins, W.; Horrocks, I.; Horton, P.; et al. Absolute Zero: Delivering the UK’s Climate Change Commitment with Incremental Changes to Today’s Technologies; University of Cambridge: Cambridge, UK, 2019. [Google Scholar]
- Griffin, P.W.; Hammond, G.P.; Norman, J.B. Industrial energy use and carbon emissions reduction in the chemicals sector: A UK perspective. Appl. Energy 2018, 227, 587–602. [Google Scholar] [CrossRef]
- Meng, F.; Wagner, A.; Kremer, A.B.; Kanazawa, D.; Leung, J.J.; Goult, P.; Guan, M.; Herrmann, S.; Speelman, E.; Sauter, P.; et al. Planet-compatible pathways for transitioning the chemical industry. Proc. Natl. Acad. Sci. USA 2023, 120, e2218294120. [Google Scholar] [CrossRef]
- Griffin, P.W.; Hammond, G.P.; Norman, J.B. Prospects for emissions reduction in the UK cement sector. Proc. Inst. Civ. Eng.-Energy 2014, 167, 152–161. [Google Scholar] [CrossRef]
- Shanks, W.; Dunant, C.F.; Drewniok, M.P.; Lupton, R.C.; Serrenho, A.; Allwood, J.M. How much cement can we do without? Lessons from cement material flows in the UK. Resour. Conserv. Recycl. 2019, 141, 441–454. [Google Scholar] [CrossRef]
- Hafez, H.; Kurda, R.; Al-Ayish, N.; Garcia-Segura, T.; Cheung, W.M.; Nagaratnam, B. A whole life cycle performance-based ECOnomic and ECOlogical assessment framework (ECO2) for concrete sustainability. J. Clean. Prod. 2021, 292, 126060. [Google Scholar] [CrossRef]
- McGarry, H.; Martin, B.; Winslow, P. Delivering low carbon concrete for network rail on the routemap to net zero. Case Stud. Constr. Mater. 2022, 17, e01343. [Google Scholar] [CrossRef]
- Drewniok, M.P.; Azevedo, J.M.C.; Dunant, C.F.; Allwood, J.M.; Cullen, J.M.; Ibell, T.; Hawkins, W. Mapping material use and embodied carbon in UK construction. Resour. Conserv. Recycl. 2023, 197, 107056. [Google Scholar] [CrossRef]
- Lui, S.; Black, R.; Lavandero-Mason, J.; Shafat, M. Business dynamism in the UK: New findings using a novel dataset. In Economic Statistics Centre of Excellence (ESCoE) Discussion Paper; ESCoE: London, UK, 2020; Volume 14. [Google Scholar]
- Muhumuza, R.; Eames, P. Decarbonisation of heat: Analysis of the potential of low temperature waste heat in UK industries. J. Clean. Prod. 2022, 372, 133759. [Google Scholar] [CrossRef]
- CPI, Confederation of Paper Industries. Paper: The Sustainable, Renewable and Recyclable Choice; Position Paper Edition; CPI, Confederation of Paper Industries: Swindon, UK, 2017; p. 2. [Google Scholar]
- Griffin, P.W.; Hammond, G.P.; Norman, J.B. Industrial decarbonisation of the pulp and paper sector: A UK perspective. Appl. Therm. Eng. 2018, 134, 152–162. [Google Scholar] [CrossRef]
- Khalil, A.M.; Velenturf, A.P.; Ahmadinia, M.; Zhang, S. Context analysis for transformative change in the ceramic industry. Sustainability 2023, 15, 12230. [Google Scholar] [CrossRef]
- Pamenter, S.; Myers, R.J. Decarbonizing the cementitious materials cycle: A whole-systems review of measures to decarbonize the cement supply chain in the UK and European contexts. J. Ind. Ecol. 2021, 25, 359–376. [Google Scholar] [CrossRef]
- Cooper, S.J.; Hammond, G.P. ‘Decarbonising’ UK industry: Towards a cleaner economy. Proc. Inst. Civ. Eng.-Energy 2018, 171, 147–157. [Google Scholar] [CrossRef]
- Worrell, E.; Price, L.; Neelis, M.; Galitsky, C.; Zhou, N. World Best Practice Energy Intensity Values for Selected Industrial Sectors; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 2007. [Google Scholar]
- Yüksek, İ.; Öztaş, S.K.; Tahtalı, G. The evaluation of fired clay brick production in terms of energy efficiency: A case study in Turkey. Energy Effic. 2020, 13, 1473–1483. [Google Scholar] [CrossRef]
- IEA. Emissions Factors 2023-Data Product. Available online: https://www.iea.org/data-and-statistics/data-product/emissions-factors-2023 (accessed on 7 April 2024).
- Forest Research. Carbon Emissions of Different Fuels. 2024. Available online: https://www.forestresearch.gov.uk/tools-and-resources/fthr/biomass-energy-resources/reference-biomass/facts-figures/carbon-emissions-of-different-fuels/ (accessed on 7 April 2024).
- Kaufman, A.S.; Meier, P.J.; Sinistore, J.C.; Reinemann, D.J. Applying life-cycle assessment to low carbon fuel standards—How allocation choices influence carbon intensity for renewable transportation fuels. Energy Policy 2010, 38, 5229–5241. [Google Scholar] [CrossRef]
- Rissman, J.; Bataille, C.; Masanet, E.; Aden, N.; Morrow, W.R., III; Zhou, N.; Elliott, N.; Dell, R.; Heeren, N.; Huckestein, B.; et al. Technologies and policies to decarbonize global industry: Review and assessment of mitigation drivers through 2070. Appl. Energy 2020, 266, 114848. [Google Scholar] [CrossRef]
- Leonelli, C.; Mason, T.J. Microwave and ultrasonic processing: Now a realistic option for industry. Chem. Eng. Process. Process Intensif. 2010, 49, 885–900. [Google Scholar] [CrossRef]
- Serrenho, A.C.; Mourão, Z.S.; Norman, J.; Cullen, J.M.; Allwood, J.M. The influence of UK emissions reduction targets on the emissions of the global steel industry. Resour. Conserv. Recycl. 2016, 107, 174–184. [Google Scholar] [CrossRef]
- Marsh, A.; Dillon, T.; Bernal, S. Cement and concrete decarbonisation roadmaps–a meta-analysis within the context of the United Kingdom. RILEM Tech. Lett. 2023, 8, 94–105. [Google Scholar] [CrossRef]
- Turner, K.; Race, J.; Alabi, O.; Katris, A.; Swales, J.K. Policy options for funding carbon capture in regional industrial clusters: What are the impacts and trade-offs involved in compensating industry competitiveness loss? Ecol. Econ. 2021, 184, 106978. [Google Scholar] [CrossRef]
- Hassan, Q.; Abdulateef, A.M.; Hafedh, S.A.; Al-samari, A.; Abdulateef, J.; Sameen, A.Z.; Salman, H.M.; Al-Jiboory, A.K.; Wieteska, S.; Jaszczur, M. Renewable energy-to-green hydrogen: A review of main resources routes, processes and evaluation. Int. J. Hydrogen Energy 2023, 48, 17383–17408. [Google Scholar] [CrossRef]
- Płaza, M.; Pawlik, Ł.; Deniziak, S. Call transcription methodology for contact center systems. IEEE Access 2021, 9, 110975–110988. [Google Scholar] [CrossRef]
- Franzmann, D.; Heinrichs, H.; Lippkau, F.; Addanki, T.; Winkler, C.; Buchenberg, P.; Hamacher, T.; Blesl, M.; Linßen, J.; Stolten, D. Green hydrogen cost-potentials for global trade. Int. J. Hydrogen Energy 2023, 48, 33062–33076. [Google Scholar] [CrossRef]
- Kearns, D.; Liu, H.; Consoli, C. Technology Readiness and Costs of CCS; Global CCS Institute: Melbourne, Australia, 2021; Volume 3. [Google Scholar]
- García-Freites, S.; Gough, C.; Röder, M. The greenhouse gas removal potential of bioenergy with carbon capture and storage (BECCS) to support the UK’s net-zero emission target. Biomass Bioenergy 2021, 151, 106164. [Google Scholar] [CrossRef]
- Allen, P.E.; Hammond, G.P. Bioenergy utilization for a low carbon future in the UK: The evaluation of some alternative scenarios and projections. BMC Energy 2019, 1, 3. [Google Scholar] [CrossRef]
- Stephenson, S.D.; Allwood, J.M. Technology to the rescue? Techno-scientific practices in the United Kingdom Net Zero Strategy and their role in locking in high energy decarbonisation pathways. Energy Res. Soc. Sci. 2023, 106, 103314. [Google Scholar] [CrossRef]
- CCC. The 6th Carbon Budget—The UK’s Path to Net Zero. 2020. Available online: https://www.theccc.org.uk/ (accessed on 25 May 2024).
- Howard, D.C.; Wadsworth, R.A.; Whitaker, J.W.; Hughes, N.; Bunce, R.G. The impact of sustainable energy production on land use in Britain through to 2050. Land Use Policy 2009, 26, S284–S292. [Google Scholar] [CrossRef]
- Konadu, D.D.; Mourão, Z.S.; Allwood, J.M.; Richards, K.S.; Kopec, G.; McMahon, R.; Fenner, R. Land use implications of future energy system trajectories—The case of the UK 2050 Carbon Plan. Energy Policy 2015, 86, 328–337. [Google Scholar] [CrossRef]
- Hammond, G.P.; Li, B. Environmental and resource burdens associated with world biofuel production out to 2050: Footprint components from carbon emissions and land use to waste arisings and water consumption. GCB Bioenergy 2016, 8, 894–908. [Google Scholar] [CrossRef] [PubMed]
- Garvey, A.; Norman, J.B.; Barrett, J. Technology and material efficiency scenarios for net zero emissions in the UK steel sector. J. Clean. Prod. 2022, 333, 130216. [Google Scholar] [CrossRef]
- Li, X.; Arbabi, H.; Bennett, G.; Oreszczyn, T.; Tingley, D.D. Net zero by 2050: Investigating carbon-budget compliant retrofit measures for the English housing stock. Renew. Sustain. Energy Rev. 2022, 161, 112384. [Google Scholar] [CrossRef]
- Tingley, D.D.; Cooper, S.; Cullen, J. Understanding and overcoming the barriers to structural steel reuse, a UK perspective. J. Clean. Prod. 2017, 148, 642–652. [Google Scholar] [CrossRef]
- Dunant, C.F.; Drewniok, M.P.; Sansom, M.; Corbey, S.; Cullen, J.M.; Allwood, J.M. Options to make steel reuse profitable: An analysis of cost and risk distribution across the UK construction value chain. J. Clean. Prod. 2018, 183, 102–111. [Google Scholar] [CrossRef]
- Woodall, C.M.; Fan, Z.; Lou, Y.; Bhardwaj, A.; Khatri, A.; Agrawal, M.; McCormick, C.F.; Friedmann, S.J. Technology options and policy design to facilitate decarbonisation of chemical manufacturing. Joule 2022, 6, 2474–2499. [Google Scholar] [CrossRef]
- Hafez, H.; Bajić, P.; Aidarov, S.; Malija, X.; Drewniok, M.; Purnell, P.; Tošić, N. Parametric study on the decarbonisation potential of structural system and concrete mix design choices for mid-rise concrete buildings. Mater. Struct. 2024, 57, 85. [Google Scholar] [CrossRef]
- Dunant, C.F.; Drewniok, M.P.; Orr, J.J.; Allwood, J.M. Good early stage design decisions can halve embodied CO2 and lower structural frames’ cost. Structures 2021, 33, 343–354. [Google Scholar] [CrossRef]
- Westbroek, C.D.; Bitting, J.; Craglia, M.; Azevedo, J.M.; Cullen, J.M. Global material flow analysis of glass: From raw materials to end of life. J. Ind. Ecol. 2021, 25, 333–343. [Google Scholar] [CrossRef]
- Cui, H.; Sošić, G. Recycling common materials: Effectiveness, optimal decisions, and coordination mechanisms. Eur. J. Oper. Res. 2019, 274, 1055–1068. [Google Scholar] [CrossRef]
- Del Rio, D.D.F.; Sovacool, B.K.; Griffiths, S.; Bazilian, M.; Kim, J.; Foley, A.M.; Rooney, D. Decarbonizing the pulp and paper industry: A critical and systematic review of sociotechnical developments and policy options. Renew. Sustain. Energy Rev. 2022, 167, 112706. [Google Scholar] [CrossRef]
- Del Rio, D.D.F.; Sovacool, B.K.; Foley, A.M.; Griffiths, S.; Bazilian, M.; Kim, J.; Rooney, D. Decarbonizing the ceramics industry: A systematic and critical review of policy options, developments and sociotechnical systems. Renew. Sustain. Energy Rev. 2022, 157, 112081. [Google Scholar] [CrossRef]
- Marteau, T.M. Towards environmentally sustainable human behaviour: Targeting non-conscious and conscious processes for effective and acceptable policies. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2017, 375, 20160371. [Google Scholar] [CrossRef]
- Thomas, G.O.; Poortinga, W.; Sautkina, E. The Welsh single-use carrier bag charge and behavioural spillover. J. Environ. Psychol. 2016, 47, 126–135. [Google Scholar] [CrossRef]
- Drewniok, M.P.; Gao, Y.; Cullen, J.M.; Cabrera Serrenho, A. What to do about plastics? Lessons from a study of United Kingdom plastics flows. Environ. Sci. Technol. 2023, 57, 4513–4521. [Google Scholar] [CrossRef]
- Ossewaarde, M.; Ossewaarde-Lowtoo, R. The EU’s green deal: A third alternative to green growth and degrowth? Sustainability 2020, 12, 9825. [Google Scholar] [CrossRef]
- Barrett, J.; Peters, G.; Wiedmann, T.; Scott, K.; Lenzen, M.; Roelich, K.; Le Quéré, C. Consumption-based GHG emission accounting: A UK case study. Clim. Policy 2013, 13, 451–470. [Google Scholar] [CrossRef]
- Roberts, S.; Simbanegavi, W.; Vilakazi, T. Cementing regional integration or building walls? Competition, cartels and regional integration in the cement industry in Africa. World Econ. 2023, 46, 437–452. [Google Scholar] [CrossRef]
- Kusuma, R.T.; Hiremath, R.B.; Rajesh, P.; Kumar, B.; Renukappa, S. Sustainable transition towards biomass-based cement industry: A review. Renew. Sustain. Energy Rev. 2022, 163, 112503. [Google Scholar] [CrossRef]
- Millward-Hopkins, J.; Zwirner, O.; Purnell, P.; Velis, C.A.; Iacovidou, E.; Brown, A. Resource recovery and low carbon transitions: The hidden impacts of substituting cement with imported ‘waste’materials from coal and steel production. Glob. Environ. Change 2018, 53, 146–156. [Google Scholar] [CrossRef]
Fuel Type | [29] | [30] | [6] |
---|---|---|---|
kgCO2eq/kWh | |||
Coal (All types) | 0.33 | 0.36 | 0.32 |
Oil | 0.26 | 0.26 | 0.27 |
Natural Gas | 0.18 | 0.20 | 0.18 |
Naphthas for Petrochemical Feedstock Use | 0.23 | - | - |
Coke | 0.39 | - | 0.36 |
Municipal Solid Waste | 0.17 | - | - |
Biomass | - | 0.09 | 0.01 |
High-Tech Decarbonisation Strategies till 2050 | ||||
---|---|---|---|---|
Biofuel | Hydrogen Fuel | Electrification | CCS | |
TWh/Year | Mt CO2eq/Year | |||
Cement | 2.91 | 0.00 | 0.00 | 3.32 |
Iron and Steel | 0.00 | 0.00 | 17.25 | 6.97 |
Glass | 0.00 | 0.81 | 4.96 | 0.15 |
Ceramics | 0.80 | 0.00 | 3.02 | 0.23 |
Chemicals | 17.80 | 0.00 | 5.60 | 3.60 |
Paper | 4.58 | 0.98 | 5.57 | 0.00 |
Total (modelled) | 26.1 | 1.80 | 36.4 | 14.3 |
CCC 6th budget-“moderate” scenario | 20 | 0.00 | 8.00 | 8.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hafez, H.; Drewniok, M.P.; Velenturf, A.P.M.; Purnell, P. A Resource-Bound Critical Analysis of the Decarbonisation Roadmaps for the UK Foundation Industries by 2050. Environments 2024, 11, 153. https://doi.org/10.3390/environments11070153
Hafez H, Drewniok MP, Velenturf APM, Purnell P. A Resource-Bound Critical Analysis of the Decarbonisation Roadmaps for the UK Foundation Industries by 2050. Environments. 2024; 11(7):153. https://doi.org/10.3390/environments11070153
Chicago/Turabian StyleHafez, Hisham, Michal P. Drewniok, Anne P. M. Velenturf, and Phil Purnell. 2024. "A Resource-Bound Critical Analysis of the Decarbonisation Roadmaps for the UK Foundation Industries by 2050" Environments 11, no. 7: 153. https://doi.org/10.3390/environments11070153
APA StyleHafez, H., Drewniok, M. P., Velenturf, A. P. M., & Purnell, P. (2024). A Resource-Bound Critical Analysis of the Decarbonisation Roadmaps for the UK Foundation Industries by 2050. Environments, 11(7), 153. https://doi.org/10.3390/environments11070153