From Waste to Resource: Evaluating Biomass Residues as Ozone-Catalyst Precursors for the Removal of Recalcitrant Water Pollutants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Preparation of Biochars (BCs) and Activated Carbons (ACs)
2.3. Characterization Techniques
2.4. Catalytic Ozonation Experiments
2.5. Analytical Methods
3. Results and Discussion
3.1. Characterization of the Prepared Materials
3.2. Adsorption Experiments
3.3. Catalytic Ozonation
3.4. Comparative Cost Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. TGA and DTG Curves of Biomass Residues
Biomass Source | Volatile Matter (wt. % Dry Basis) | Fixed Carbon (wt. % Dry Basis) | Ash (wt. %) |
---|---|---|---|
Orange Peel (OP) | 99.7 | 0.3 | 0.6 |
Cork Waste (CK) | 93.2 | 0.0 | 6.8 |
Coffee Ground (CG) | 79.8 | 1.0 | 19.2 |
Almond Shell (AS) | 77.4 | 16.9 | 5.7 |
Peanut Shell (PS) | 92.8 | 0.1 | 7.1 |
Appendix B. Data Used for the Cost Analysis
Power Muffle | 6.1 | Kwatts |
Power Furnace | 4.8 | Kwatts |
Average Energy Price | 0.00672 | €/KWH |
Price N2 | 0.0025 | €/L |
Price CO2 | 0.0034 | €/L |
Carbon Materials | Drying Time (min) | Pyrolysis + Activation Time (min) | Cool-Down Time (min) | € Gases | Price Electricity € | Production Yield (%) | Output g/Batch | Cost/Batch (€/g) |
---|---|---|---|---|---|---|---|---|
BCOP | 720 | 140 | 120 | 0.065 | 0.567 | 0.34 | 0.68 | 0.930 |
BCCK | 720 | 180 | 120 | 0.075 | 0.589 | 0.18 | 0.27 | 2.458 |
BCCG | 720 | 160 | 180 | 0.085 | 0.578 | 0.18 | 0.36 | 1.841 |
BCAS | 720 | 140 | 120 | 0.065 | 0.567 | 0.3 | 4.5 | 0.140 |
BCPS | 720 | 200 | 180 | 0.095 | 0.599 | 0.33 | 2.31 | 0.301 |
ACOP | 720 | 140 | 120 | 0.07 | 0.567 | 0.36 | 0.72 | 0.888 |
ACCK | 720 | 180 | 120 | 0.08 | 0.589 | 0.2 | 0.3 | 2.239 |
ACCG | 720 | 160 | 180 | 0.09 | 0.578 | 0.25 | 0.5 | 1.344 |
ACAS | 720 | 140 | 120 | 0.07 | 0.567 | 0.32 | 4.8 | 0.133 |
ACPS | 720 | 200 | 180 | 0.11 | 0.599 | 0.38 | 2.66 | 0.265 |
References
- Graca, C.A.L.; Zema, R.; Orge, C.A.; Restivo, J.; Sousa, J.; Pereira, M.F.R.; Soares, O.S.G.P. Temperature and nitrogen-induced modification of activated carbons for efficient catalytic ozonation of salicylic acid as a model emerging pollutant. J. Environ. Manag. 2023, 344, 118639. [Google Scholar] [CrossRef] [PubMed]
- Paíga, P.; Correia, M.; Fernandes, M.J.; Silva, A.; Carvalho, M.; Vieira, J.; Jorge, S.; Silva, J.G.; Freire, C.; Delerue-Matos, C. Assessment of 83 pharmaceuticals in WWTP influent and effluent samples by UHPLC-MS/MS. Sci. Total Environ. 2019, 648, 582–600. [Google Scholar] [CrossRef]
- Yu, X.P.; Yu, F.R.; Li, Z.P.; Zhan, J. Occurrence, distribution, and ecological risk assessment of pharmaceuticals and personal care products in the surface water of the middle and lower reaches of the Yellow River (Henan section). J. Hazard. Mater. 2023, 443, 130369. [Google Scholar] [CrossRef]
- European Commission. Proposal for a Directive of the European Parliament and of the Council Concerning Urban Wastewater Treatment (Recast). EUR-Lex. 2022. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52022PC0541 (accessed on 30 July 2024).
- Deng, Y.; Zhao, R.Z. Advanced Oxidation Processes (AOPs) in Wastewater Treatment. Curr. Pollut. Rep. 2015, 1, 167–176. [Google Scholar] [CrossRef]
- Graça, C.A.L.; Ribeirinho-Soares, S.; Abreu-Silva, J.; Ramos, I.I.; Ribeiro, A.R.; Castro-Silva, S.M.; Segundo, M.A.; Manaia, C.M.; Nunes, O.C.; Silva, A.M.T. A Pilot Study Combining Ultrafiltration with Ozonation for the Treatment of Secondary Urban Wastewater: Organic Micropollutants, Microbial Load and Biological Effects. Water 2020, 12, 3458. [Google Scholar] [CrossRef]
- Lim, S.; Shi, J.L.; von Gunten, U.; McCurry, D.L. Ozonation of organic compounds in water and wastewater: A critical review. Water Res. 2022, 213, 118053. [Google Scholar] [CrossRef]
- Kasprzyk-Hordern, B.; Ziólek, M.; Nawrocki, J. Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment. Appl. Catal. B—Environ. 2003, 46, 639–669. [Google Scholar] [CrossRef]
- Gonçalves, A.G.; Orfao, J.J.M.; Pereira, M.F.R. Ozonation of bezafibrate over ceria and ceria supported on carbon materials. Environ. Technol. 2015, 36, 776–785. [Google Scholar] [CrossRef] [PubMed]
- Cretin, M.; LE, T.X.H. •OH Radicals Production. In Encyclopedia of Membranes; Drioli, E., Giorno, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1–2. [Google Scholar]
- López-Francés, A.; Bernat-Quesada, F.; Cabrero-Antonino, M.; Ferrer, B.; Dhakshinamoorthy, A.; Baldoví, H.G.; Navalón, S. Nanographite: A highly active and durable metal-free ozonation catalyst with application in natural waters. Appl. Catal. B 2023, 336, 122924. [Google Scholar] [CrossRef]
- Jaria, G.; Silva, C.P.; Oliveira, J.; Santos, S.M.; Gil, M.V.; Otero, M.; Calisto, V.; Esteves, V.I. Production of highly efficient activated carbons from industrial wastes for the removal of pharmaceuticals from water-A full factorial design. J. Hazard. Mater. 2019, 370, 212–218. [Google Scholar] [CrossRef] [PubMed]
- Faria, P.C.C.; Orfäo, J.J.M.; Pereira, M.F.R. Ozone decomposition in water catalyzed by activated carbon: Influence of chemical and textural properties. Ind. Eng. Chem. Res. 2006, 45, 2715–2721. [Google Scholar] [CrossRef]
- Liu, Z.Q.; Li, J.Y.; Li, S.T. Catalytic Ozonation over Activated Carbon-based Materials. In Advanced Ozonation Processes for Water and Wastewater Treatment: Active Catalysts and Combined Technologies; Cao, H., Xie, Y., Wang, Y., Xiao, J., Eds.; The Royal Society of Chemistry: London, UK, 2022; pp. 85–122. [Google Scholar]
- Li, H.; Liu, S.; Qiu, S.; Sun, L.; Yuan, X.; Xia, D. Catalytic ozonation oxidation of ketoprofen by peanut shell-based biochar: Effects of the pyrolysis temperatures. Environ. Technol. 2022, 43, 848–860. [Google Scholar] [CrossRef] [PubMed]
- Brito, G.M.; Roldi, L.L.; Schetino, M.A., Jr.; Checon Freitas, J.C.; Cabral Coelho, E.R. High-performance of activated biocarbon based on agricultural biomass waste applied for 2,4-D herbicide removing from water: Adsorption, kinetic and thermodynamic assessments. J. Environ. Sci. Health B 2020, 55, 767–782. [Google Scholar] [CrossRef] [PubMed]
- Debevc, S.; Weldekidan, H.; Snowdon, M.R.; Vivekanandhan, S.; Wood, D.F.; Misra, M.; Mohanty, A.K. Valorization of almond shell biomass to biocarbon materials: Influence of pyrolysis temperature on their physicochemical properties and electrical conductivity. Carbon Trends 2022, 9, 100214. [Google Scholar] [CrossRef]
- Portugal Startups. From Waste to Taste: Growing Mushrooms from Recycled Coffee Grounds. Portugal Startups. Available online: https://portugalstartups.com/2019/11/from-waste-to-taste-growing-mushrooms-from-recycled-coffee-grounds/ (accessed on 30 July 2024).
- Visit Portugal. The Cork. Available online: https://www.visitportugal.com/en/content/the-cork (accessed on 30 July 2024).
- Campos, C.R.; Sousa, B.; Silva, J.; Braga, M.; Araújo, S.d.S.; Sales, H.; Pontes, R.; Nunes, J. Positioning Portugal in the context of world almond production and research. Agriculture 2023, 13, 1716. [Google Scholar] [CrossRef]
- Guiné, R.P.F.; Correia, P.; Fernandes, S.; Ramalhosa, E. Consumption of nuts and similar dried foods in Portugal and level of knowledge about their chemical composition and health effects. J. Nuts. 2021, 12, 171–200. [Google Scholar]
- Akhil, D.; Lakshmi, D.; Kartik, A.; Vo, D.V.N.; Arun, J.; Gopinath, K.P. Production, characterization, activation and environmental applications of engineered biochar: A review. Environ. Chem. Lett. 2021, 19, 2261–2297. [Google Scholar] [CrossRef]
- Kwon, D.; Oh, J.I.; Lam, S.S.; Moon, D.H.; Kwon, E.E. Orange peel valorization by pyrolysis under the carbon dioxide environment. Bioresource Technol. 2019, 285, 121356. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, A.; Saha, B.; Niu, C.; Dalai, A.K. Preparation of activated carbon from spent coffee grounds and functionalization by deep eutectic solvent: Effect of textural properties and surface chemistry on CO2 capture performance. J. Environ. Chem. Eng. 2022, 10, 108815. [Google Scholar] [CrossRef]
- Sen, A.U.; Fonseca, F.G.; Funke, A.; Pereira, H.; Lemos, F. Pyrolysis kinetics and estimation of chemical composition of cork. Biomass Convers. Bior. 2022, 12, 4835–4845. [Google Scholar] [CrossRef]
- Francoeur, M.; Yacou, C.; Petit, E.; Granier, D.; Flaud, V.; Gaspard, S.; Brosillon, S.; Ayral, A. Removal of antibiotics by adsorption and catalytic ozonation using magnetic activated carbons prepared from Sargassum sp. J. Water Process Eng. 2023, 53, 103602. [Google Scholar] [CrossRef]
- Hagemann, N.; Spokas, K.; Schmidt, H.P.; Kägi, R.; Böhler, M.A.; Bucheli, T.D. Activated Carbon, Biochar and Charcoal: Linkages and Synergies across Pyrogenic Carbon’s ABCs. Water 2018, 10, 182. [Google Scholar] [CrossRef]
- Bakshi, S.; Banik, C.; Laird, D.A. Estimating the organic oxygen content of biochar. Sci. Rep. 2020, 10, 13082. [Google Scholar] [CrossRef]
- Villalgordo-Hernández, D.; Grau-Atienza, A.; García-Marín, A.A.; Ramos-Fernandez, E.V.; Narciso, J. Manufacture of Carbon Materials with High Nitrogen Content. Materials 2022, 15, 2415. [Google Scholar] [CrossRef] [PubMed]
- Gomes, H.T.; Miranda, S.M.; Sampaio, M.J.; Silva, A.M.T.; Faria, J.L. Activated Carbons treated with sulphuric acid: Catalysts for catalytic wet peroxide oxidation. Catal. Today 2010, 151, 153–158. [Google Scholar] [CrossRef]
- Rocha, R.P.; Restivo, J.; Sousa, J.P.S.; Orfao, J.J.M.; Pereira, M.F.R.; Figueiredo, J.L. Nitrogen-doped carbon xerogels as catalysts for advanced oxidation processes. Catal. Today 2015, 241, 73–79. [Google Scholar] [CrossRef]
- Petit, C.; Peterson, G.W.; Mahle, J.; Bandosz, T.J. The effect of oxidation on the surface chemistry of sulfur-containing carbons and their arsine adsorption capacity. Carbon 2010, 48, 1779–1787. [Google Scholar] [CrossRef]
- Orge, C.A.G.; Graça, C.A.L.; Restivo, J.; Pereira, M.F.R.; Soares, O.S.G.P. Catalytic ozonation of pharmaceutical compounds using carbon-based catalysts. Catal. Commun. 2024, 187, 106863. [Google Scholar] [CrossRef]
- Santos, A.S.G.G.; Orge, C.A.; Soares, O.S.G.P.; Pereira, M.F.R. 4-Nitrobenzaldehyde removal by catalytic ozonation in the presence of CNT. J. Water Process Eng. 2020, 38, 101573. [Google Scholar] [CrossRef]
Sample | SBET (m2g−1) | Smeso (m2g−1) | Vpores (p/p0 = 0.99) (cm3g−1) | Dp BJH (nm) |
---|---|---|---|---|
BCCK | <5 | <5 | 0.01 | 3.5 |
BCOP | 7 | 5 | 0.007 | 3.5 |
BCAS | 8 | 4 | 0.01 | 4.6 |
BCPS | <5 | <5 | 0.006 | 3.7 |
BCCG | 6 | <5 | 0.0001 | 3.6 |
ACCK | 114 | 30 | 0.13 | 3.7 |
ACOP | 6 | <5 | 0.01 | 3.5 |
ACAS | 8 | 6 | 0.01 | 3.6 |
ACPS | 53 | 8 | 0.04 | 4.5 |
ACCG | <5 | <5 | 0.03 | 3.6 |
Biomass Source | C [%] | H [%] | N [%] | S [%] | O [%] | |
---|---|---|---|---|---|---|
Orange Peel | Biochar | 79.3 ± 22.2 | 4.7 ± 1.3 | 1.53 ± 0.2 | 0.086 ± 0.03 | 20.47 ± 0.75 |
Activated Carbon | 70.8 ± 0.6 | 4.2 ± 0.07 | 1.5 ± 0.07 | 0.04 ± 0.01 | 18.5 ± 0.5 | |
Cork Waste | Biochar | 74.35 ± 0.0 | 2.23 ± 0.0 | 1.43 ± 0.0 | 0.02 ± 0.6 | 9.041 ± 0.5 |
Activated Carbon | 81.8 ± 1.4 | 2.5 ± 0.06 | 1.72 ± 0.03 | 0 | 8.49 ± 0.47 | |
Coffee Ground | Biochar | 76.9 ± 0.41 | 3.3 ± 0.04 | 4.05 ± 0.06 | 0.033 ± 0.007 | 12.08 ± 0.13 |
Activated Carbon | 75.7 ± 0.81 | 3.33 ± 0.06 | 4.07 ± 0.07 | 0.011 ± 0.11 | 10.34 ± 0.21 | |
Almond Shell | Biochar | 77.07 ± 1.26 | 3.718 ± 0.06 | 0.01 ± 0.005 | 0 | 17.61 ± 1.32 |
Activated Carbon | 75.83 ± 0.88 | 3.937 ± 0.05 | 0.02 ± 0.01 | 0 | 20.21 ± 0.50 | |
Peanut Shell | Biochar | 81.24 ± 3.34 | 1.706 ± 0.062 | 2.59 ± 1.23 | 0.071 ± 0.013 | 14.34 ± 0.65 |
Activated Carbon | 72.44 ± 0.1 | 4.155 ± 0.044 | 1.91 ± 0.03 | 0.053 ± 0.016 | 11.5 ± 0.3 |
Adsorption | Catalytic Ozonation | |||
---|---|---|---|---|
Biomass-Derived Carbon Material | Qe (mg/g) | Cost Ratio Adsorption (€ Adsorbent/mg OXL Removed) | % OXL Removed in 180 min | Cost Ratio Catalysis (€ Catalyst/% OXL Removed) |
BCOP | 39.82 | 0.023 | 21 | 0.04 |
BCCK | 0.63 | 3.90 | 41 | 0.06 |
BCCG | 1.33 | 1.38 | 34 | 0.05 |
BCAS | 14.62 | 0.0096 | 49.8 | 0.003 |
BCPS | 9.69 | 0.031 | 46.6 | 0.006 |
ACOP | 1.74 | 0.51 | 7 | 0.13 |
ACCK | 4.19 | 0.53 | 72 | 0.03 |
ACCG | 0.932 | 1.44 | 67.3 | 0.02 |
ACAS | 9.28 | 0.014 | 0 | n.d. |
ACPS | 3.14 | 0.084 | 32.2 | 0.008 |
Commercial Granular-Activated Carbon | 24 | 0.00525 | 63 | 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Graça, C.A.L.; Soares, O.S.G.P. From Waste to Resource: Evaluating Biomass Residues as Ozone-Catalyst Precursors for the Removal of Recalcitrant Water Pollutants. Environments 2024, 11, 172. https://doi.org/10.3390/environments11080172
Graça CAL, Soares OSGP. From Waste to Resource: Evaluating Biomass Residues as Ozone-Catalyst Precursors for the Removal of Recalcitrant Water Pollutants. Environments. 2024; 11(8):172. https://doi.org/10.3390/environments11080172
Chicago/Turabian StyleGraça, Cátia A. L., and Olívia Salomé Gonçalves Pinto Soares. 2024. "From Waste to Resource: Evaluating Biomass Residues as Ozone-Catalyst Precursors for the Removal of Recalcitrant Water Pollutants" Environments 11, no. 8: 172. https://doi.org/10.3390/environments11080172
APA StyleGraça, C. A. L., & Soares, O. S. G. P. (2024). From Waste to Resource: Evaluating Biomass Residues as Ozone-Catalyst Precursors for the Removal of Recalcitrant Water Pollutants. Environments, 11(8), 172. https://doi.org/10.3390/environments11080172