Nickel and Soil Fertility: Review of Benefits to Environment and Food Security
Abstract
:1. Introduction
2. The Role of Ni in Soil Fertility and the Plant-Rhizosphere Environment
3. Transport and Accumulation of Ni in Plants
4. Nickel and Biotic Stress in Plants
5. Advancement in Ni Delivery to Plants and Future Research
6. Discussion
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pain, D.J.; Mateo, R.; Green, R.E. Effects of lead from ammunition on birds and other wildlife: A review and update. Ambio 2019, 48, 935–953. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Trace Elements in Soils and Plants; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Cotton, F.A.; Matusz, M.; Poli, R.; Feng, X. Dinuclear formamidinato complexes of nickel and palladium. J. Am. Chem. Soc. 1988, 110, 1144–1154. [Google Scholar] [CrossRef]
- Harasim, P. Nickel resources and sources. In Nickel in Soils and Plants; CRC Press: Boca Raton, FL, USA, 2018; pp. 87–104. [Google Scholar]
- Alloway, B. Heavy Metals in Soils, 2nd ed.; Blackie Academic and Professional: London, UK, 1995. [Google Scholar]
- Gasparatos, D.; Barbayiannis, N. The Origin of Nickel in Soils. In Nickel in Soils and Plants; CRC Press: Boca Raton, FL, USA, 2018; pp. 105–128. [Google Scholar]
- Kabata-Pendias, A.; Szteke, B. Trace Elements in Abiotic and Biotic Environments; Taylor & Francis: Boca Raton, FL, USA, 2015. [Google Scholar]
- Albanese, S.; Sadeghi, M.; Lima, A.; Cicchella, D.; Dinelli, E.; Valera, P.; Falconi, M.; Demetriades, A.; De Vivo, B.; Team, G.P. GEMAS: Cobalt, Cr, Cu and Ni distribution in agricultural and grazing land soil of Europe. J. Geochem. Explor. 2015, 154, 81–93. [Google Scholar] [CrossRef]
- Reimann, C.; de Caritat, P. Establishing geochemical background variation and threshold values for 59 elements in Australian surface soil. Sci. Total Environ. 2017, 578, 633–648. [Google Scholar] [CrossRef]
- Yao, W.; Xie, X.; Zhao, P.; Bai, J. Global scale geochemical mapping program—Contributions from China. J. Geochem. Explor. 2014, 139, 9–20. [Google Scholar] [CrossRef]
- Gough, L.P. Geochemical Landscapes of Alaska: New Map Presentations and Interpretations for 23 Elements in Surficial Materials; US Geological Survey: Reston, VA, USA, 2005. [Google Scholar]
- Ajala, L.; Onwukeme, V.; Mgbemena, M. Speciation of some trace metals in floodplain soil of Eke-Mgbom, Afikpo, Nigeria. Am. Chem. Sci. J. 2014, 4, 963–974. [Google Scholar] [CrossRef]
- Holmgren, G.; Meyer, M.; Chaney, R.; Daniels, R. Cadmium, Lead, Zinc, Copper, and Nickel in Agricultural Soils of the United States of America. J. Environ. Qual. 1993, 22, 335–348. [Google Scholar] [CrossRef]
- Nachtergaele, F. Soil taxonomy—A basic system of soil classification for making and interpreting soil surveys. Geoderma 2001, 99, 336–337. [Google Scholar] [CrossRef]
- Hseu, Z.-Y.; Chen, Z.-S. Nickel in serpentine soils. In Nickel in Soils and Plants; CRC Press: Boca Raton, FL, USA, 2018; pp. 181–198. [Google Scholar]
- Bear, F.E. Trace elements, progress report on research with particular reference to New Jersey soils. J. Agric. Food Chem. 1954, 2, 244–251. [Google Scholar] [CrossRef]
- Rinklebe, J.; Shaheen, S.M. Redox chemistry of nickel in soils and sediments: A review. Chemosphere 2017, 179, 265–278. [Google Scholar] [CrossRef]
- Uchimiya, M.; Bannon, D.; Nakanishi, H.; McBride, M.B.; Williams, M.A.; Yoshihara, T. Chemical speciation, plant uptake, and toxicity of heavy metals in agricultural soils. J. Agric. Food Chem. 2020, 68, 12856–12869. [Google Scholar] [CrossRef]
- Iyaka, Y.A. Nickel in soils: A review of its distribution and impacts. Sci. Res. Essays 2011, 6, 6774–6777. [Google Scholar]
- Derome, J.; Lindross, A.-J. Copper and nickel mobility in podzolic forest soils subjected to heavy metal and sulphur deposition in western Finland. Chemosphere 1998, 36, 1131–1136. [Google Scholar] [CrossRef]
- Adamo, P.; Dudka, S.; Wilson, M.; McHardy, W. Chemical and mineralogical forms of Cu and Ni in contaminated soils from the Sudbury mining and smelting region, Canada. Environ. Pollut. 1996, 91, 11–19. [Google Scholar] [CrossRef]
- Parzentny, H.R.; Róg, L. Distribution and mode of occurrence of co, ni, cu, zn, as, ag, cd, sb, pb in the feed coal, fly ash, slag, in the topsoil and in the roots of trees and undergrowth downwind of three power stations in poland. Minerals 2021, 11, 133. [Google Scholar] [CrossRef]
- Mirlean, N.; Roisenberg, A.; Chies, J.O. Metal contamination of vineyard soils in wet subtropics (southern Brazil). Environ. Pollut. 2007, 149, 10–17. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Pham, Q.V.; Nguyen, T.P.M.; Vu, V.T.; Do, T.H.; Hoang, M.T.; Thu Thuy Thi, N.; Minh, T.B. Distribution characteristics and ecological risks of heavy metals in bottom ash, fly ash, and particulate matter released from municipal solid waste incinerators in northern Vietnam. Environ. Geochem. Health 2023, 45, 2579–2590. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Sun, G.; Zhang, C.; Chen, Y.; Yang, W.; Shang, L. A new geochemical method for determining the sources of atmospheric particles: A case study from Gannan, Northeast China. Atmosphere 2019, 10, 632. [Google Scholar] [CrossRef]
- Heckman, J.; Angle, J.; Chaney, R. Soybean nodulation and nitrogen fixation on soil previously amended with sewage sludge. Biol. Fertil. Soils 1986, 2, 181–185. [Google Scholar] [CrossRef]
- Dellantonio, A.; Fitz, W.J.; Repmann, F.; Wenzel, W.W. Disposal of coal combustion residues in terrestrial systems: Contamination and risk management. J. Environ. Qual. 2010, 39, 761–775. [Google Scholar] [CrossRef]
- Antonkiewicz, J.; Kowalewska, A.; Mikołajczak, S.; Kołodziej, B.; Bryk, M.; Spychaj-Fabisiak, E.; Koliopoulos, T.; Babula, J. Phytoextraction of heavy metals after application of bottom ash and municipal sewage sludge considering the risk of environmental pollution. J. Environ. Manag. 2022, 306, 114517. [Google Scholar] [CrossRef]
- Asgari, K.; Cornelis, W.M. Heavy metal accumulation in soils and grains, and health risks associated with use of treated municipal wastewater in subsurface drip irrigation. Environ. Monit. Assess. 2015, 187, 410. [Google Scholar] [CrossRef]
- Regulation (EU) 2019/1009 of the European Parliament and of the Council laying down rules on the making available on the market of EU fertilising products and amending Regulations (EC) No. 1069/2009 and (EC) No. 1107/2009 and repealing Regulation (EC) No. 2003/2003. FAOLEX 2019, LEX-FAOC187729, 1–114.
- Molina, M.; Aburto, F.; Calderón, R.; Cazanga, M.; Escudey, M. Trace element composition of selected fertilizers used in Chile: Phosphorus fertilizers as a source of long-term soil contamination. Soil Sediment Contam. 2009, 18, 497–511. [Google Scholar] [CrossRef]
- Liu, G.; Simonne, E.; Li, Y. Nickel Nutrition in Plants; FAS Extension University of Florida: Gainesville, FL, USA, 2011; Volume 6. [Google Scholar]
- Sawyer, D.C.; Barak, P. Mehlich III predicts that soils in Wisconsin and Illinois may cause nickel deficiency in crops. Plant Soil 2023, 497, 523–534. [Google Scholar] [CrossRef]
- Nyczepir, A.; Wood, B.; Reilly, C. Field Deficiency of Nickel in Trees: Symptoms and Causes. In Proceedings of the V International Symposium on Mineral Nutrition of Fruit Plants 721, Talca, Chile, 16–21 January 2005; pp. 83–98. [Google Scholar]
- Barker, A.V.; Pilbeam, D.J. Handbook of Plant Nutrition; CRC press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Heckman, J.; Angle, J.; Chaney, R. Residual Effects of Sewage Sludge on Soybean: I. Accumulation of Heavy Metals. J. Environ. Qual. 1987, 16, 113–117. [Google Scholar] [CrossRef]
- Siqueira Freitas, D.; Wurr Rodak, B.; Rodrigues dos Reis, A.; de Barros Reis, F.; Soares de Carvalho, T.; Schulze, J.; Carbone Carneiro, M.A.; Guimaraes Guilherme, L.R. Hidden nickel deficiency? Nickel fertilization via soil improves nitrogen metabolism and grain yield in soybean genotypes. Front. Plant Sci. 2018, 9, 614. [Google Scholar] [CrossRef]
- Westfall, D.; Mortvedt, J.; Peterson, G.; Gangloff, W. Efficient and environmentally safe use of micronutrients in agriculture. Commun. Soil Sci. Plant Anal. 2005, 36, 169–182. [Google Scholar] [CrossRef]
- Schaumlöffel, D. Nickel species: Analysis and toxic effects. J. Trace Elem. Med. Biol. 2012, 26, 1–6. [Google Scholar] [CrossRef]
- Buxton, S.; Garman, E.; Heim, K.E.; Lyons-Darden, T.; Schlekat, C.E.; Taylor, M.D.; Oller, A.R. Concise Review of Nickel Human Health Toxicology and Ecotoxicology. Inorganics 2019, 7, 89. [Google Scholar] [CrossRef]
- Spears, J. Nickel as a “newer trace element” in the nutrition of domestic animals. J. Anim. Sci. 1984, 59, 823–835. [Google Scholar] [CrossRef] [PubMed]
- Spears, J.W. Boron, chromium, manganese, and nickel in agricultural animal production. Biol. Trace Elem. Res. 2019, 188, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Jin, D.; Zhao, S.; Zheng, N.; Bu, D.; Beckers, Y.; Wang, J. Urea nitrogen induces changes in rumen microbial and host metabolic profiles in dairy cows. Livest. Sci. 2018, 210, 104–110. [Google Scholar] [CrossRef]
- Clough, T.J.; Cardenas, L.M.; Friedl, J.; Wolf, B. Nitrous oxide emissions from ruminant urine: Science and mitigation for intensively managed perennial pastures. Curr. Opin. Environ. Sustain. 2020, 47, 21–27. [Google Scholar] [CrossRef]
- Sharma, A.; Nagpal, A.K. Contamination of vegetables with heavy metals across the globe: Hampering food security goal. J. Food Sci. Technol. 2020, 57, 391–403. [Google Scholar] [CrossRef] [PubMed]
- Mania, M.; Rebeniak, M.; Postupolski, J. Food as a source of exposure to nickel. Rocz. Państwowego Zakładu Hig. 2019, 70, 393–399. [Google Scholar]
- Smart, G.; Sherlock, J. Nickel in foods and the diet. Food Addit. Contam. 1987, 4, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Onianwa, P.; Lawal, J.; Ogunkeye, A.; Orejimi, B. Cadmium and nickel composition of Nigerian foods. J. Food Compos. Anal. 2000, 13, 961–969. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, Z.; Yang, G.; Wang, Q. Health risk assessment of Chinese consumers to nickel via dietary intake of foodstuffs. Food Addit. Contam. Part A 2014, 31, 1861–1871. [Google Scholar] [CrossRef]
- Chain, E.P.o.C.i.t.F.; Schrenk, D.; Bignami, M.; Bodin, L.; Chipman, J.K.; Del Mazo, J.; Grasl-Kraupp, B.; Hogstrand, C.; Hoogenboom, L.; Leblanc, J.C. Update of the risk assessment of nickel in food and drinking water. EFSA J. 2020, 18, e06268. [Google Scholar]
- Seregin, I.V.; Kozhevnikova, A.D. Physiological role of nickel and its toxic effects on higher plants. Russ. J. Plant Physiol. 2006, 53, 257–277. [Google Scholar] [CrossRef]
- Massoura, S.T.; Echevarria, G.; Becquer, T.; Ghanbaja, J.; Leclerc-Cessac, E.; Morel, J.-L. Control of nickel availability by nickel bearing minerals in natural and anthropogenic soils. Geoderma 2006, 136, 28–37. [Google Scholar] [CrossRef]
- Rooney, C.P.; Zhao, F.-J.; McGrath, S.P. Phytotoxicity of nickel in a range of European soils: Influence of soil properties, Ni solubility and speciation. Environ. Pollut. 2007, 145, 596–605. [Google Scholar] [CrossRef] [PubMed]
- Ge, Y.; Murray, P.; Hendershot, W.H. Trace metal speciation and bioavailability in urban soils. Environ. Pollut. 2000, 107, 137–144. [Google Scholar] [CrossRef]
- Echevarria, G.; Massoura, S.T.; Sterckeman, T.; Becquer, T.; Schwartz, C.; Morel, J.L. Assessment and control of the bioavailability of nickel in soils. Environ. Toxicol. Chem. 2006, 25, 643–651. [Google Scholar] [CrossRef]
- Sajwani, K.S.; Ornes, W.H.; Youngblood, T.V.; Alva, A.K. Uptake of soil applied cadmium, nickel and selenium by bush beans. Water Air Soil Pollut. 1996, 91, 209–217. [Google Scholar] [CrossRef]
- Peralta-Videa, J.; Gardea-Torresdey, J.; Tiemann, K.; Gomez, E.; Arteaga, S.; Rascon, E.; Parsons, J. Uptake and effects of five heavy metals on seed germination and plant growth in alfalfa (Medicago sativa L.). Bull. Environ. Contam. Toxicol 2001, 66, 727–734. [Google Scholar]
- Krupa, Z.; Siedlecka, A.; Maksymiec, W.; Baszyński, T. In vivo response of photosynthetic apparatus of Phaseolus vulgaris L. to nickel toxicity. J. Plant Physiol. 1993, 142, 664–668. [Google Scholar] [CrossRef]
- Neumann, P.M.; Chamel, A. Comparative phloem mobility of nickel in nonsenescent plants. Plant Physiol. 1986, 81, 689–691. [Google Scholar] [CrossRef]
- Welch, R.M.; Shuman, L. Micronutrient nutrition of plants. Crit. Rev. Plant Sci. 1995, 14, 49–82. [Google Scholar] [CrossRef]
- Fismes, J.; Echevarria, G.; Leclerc-Cessac, E.; Morel, J.L. Uptake and transport of radioactive nickel and cadmium into three vegetables after wet aerial contamination. J. Environ. Qual. 2005, 34, 1497–1507. [Google Scholar] [CrossRef]
- Page, V.; Weisskopf, L.; Feller, U. Heavy metals in white lupin: Uptake, root-to-shoot transfer and redistribution within the plant. New Phytol. 2006, 171, 329–341. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.S.A.; Ashraf, M. Essential Roles and Hazardous Effects of Nickel in Plants. In Reviews of Environmental Contamination and Toxicology; Whitacre, D.M., Ed.; Springer: New York, NY, USA, 2011; pp. 125–167. [Google Scholar]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Found. Crystallogr. 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Kumar, O.; Singh, S.K.; Latare, A.M.; Yadav, S.N. Foliar fertilization of nickel affects growth, yield component and micronutrient status of barley (Hordeum vulgare L.) grown on low nickel soil. Arch. Agron. Soil Sci. 2018, 64, 1407–1418. [Google Scholar] [CrossRef]
- Hosseini, H.; Khoshgoftarmanesh, A. The effect of foliar application of nickel in the mineral form and urea-Ni complex on fresh weight and nitrogen metabolism of lettuce. Sci. Hortic. 2013, 164, 178–182. [Google Scholar] [CrossRef]
- de Queiroz Barcelos, J.P.; de Souza Osorio, C.R.W.; Leal, A.J.F.; Alves, C.Z.; Santos, E.F.; Reis, H.P.G.; dos Reis, A.R. Effects of foliar nickel (Ni) application on mineral nutrition status, urease activity and physiological quality of soybean seeds. Aust. J. Crop Sci. 2017, 11, 184–192. [Google Scholar] [CrossRef]
- The International Nickel Company. Nickel Compounds as Fungicides; ICB-39; The International Nickel Company, Inc.: New York, NY, USA, 1964. [Google Scholar]
- Ewart, A.J. On Bitter Pit and the Sensitivity of Apples to Poison; Ford & Son, Printers: Chicago, IL, USA, 1913. [Google Scholar]
- Brown, P.H.; Welch, R.M.; Cary, E.E. Nickel: A micronutrient essential for higher plants. Plant Physiol. 1987, 85, 801–803. [Google Scholar] [CrossRef]
- Macedo, F.G.; de Melo, W.J.; Cecílio Filho, A.B.; Santos, E.F.; Cruz, R.B.; Belloti, M. Nickel reduces blossom-end rot even under calcium deficiency conditions; evidence from physiological responses of the NI-CA interaction. J. Plant Nutr. 2023, 46, 2893–2904. [Google Scholar] [CrossRef]
- Bock, C.H.; Pisani, C.; Wood, B.W. Nickel and Plant Disease. In Mineral Nutrition and Plant Disease; Datnoff, L.E., Elmer, W.H., Rodrigues, F.A., Eds.; APS Press: St. Paul, MN, USA, 2023. [Google Scholar]
- Hausinger, R.P. Chapter Four—Five decades of metalloenzymology. In The Enzymes; Kaguni, L.S., Tamanoi, F., Eds.; Academic Press: New York, NY, USA, 2023; Volume 54, pp. 71–105. [Google Scholar]
- Mustafiz, A.; Ghosh, A.; Tripathi, A.K.; Kaur, C.; Ganguly, A.K.; Bhavesh, N.S.; Tripathi, J.K.; Pareek, A.; Sopory, S.K.; Singla-Pareek, S.L. A unique Ni2+-dependent and methylglyoxal-inducible rice glyoxalase I possesses a single active site and functions in abiotic stress response. Plant J. 2014, 78, 951–963. [Google Scholar] [CrossRef] [PubMed]
- Freeman, J.L.; Persans, M.W.; Nieman, K.; Albrecht, C.; Peer, W.; Pickering, I.J.; Salt, D.E. Increased glutathione biosynthesis plays a role in nickel tolerance in thlaspi nickel hyperaccumulators. Plant Cell 2004, 16, 2176–2191. [Google Scholar] [CrossRef]
- Fabiano, C.C.; Tezotto, T.; Favarin, J.L.; Polacco, J.C.; Mazzafera, P. Essentiality of nickel in plants: A role in plant stresses. Front. Plant Sci. 2015, 6, 754. [Google Scholar] [CrossRef]
- Apel, K.; Hirt, H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 2004, 55, 373–399. [Google Scholar] [CrossRef]
- Gajewska, E.; Skłodowska, M.; Słaba, M.; Mazur, J. Effect of nickel on antioxidative enzyme activities, proline and chlorophyll contents in wheat shoots. Biol. Plant. 2006, 50, 653–659. [Google Scholar] [CrossRef]
- Yu, H.; Li, W.; Liu, X.; Song, Q.; Li, J.; Xu, J. Physiological and molecular bases of the nickel toxicity responses in tomato. Stress Biol. 2024, 4, 25. [Google Scholar] [CrossRef] [PubMed]
- Alfano, M.; Cavazza, C. Structure, function, and biosynthesis of nickel-dependent enzymes. Protein Sci. 2020, 29, 1071–1089. [Google Scholar] [CrossRef]
- Torres, E.; Kalcsits, L.; Nieto, L.G. Is calcium deficiency the real cause of bitter pit? A review. Front. Plant Sci. 2024, 15, 1383645. [Google Scholar] [CrossRef]
- Wood, B.W.; Reilly, C.C.; Nyczepir, A.P. Mouse-ear of pecan: A nickel deficiency. HortScience 2004, 39, 1238–1242. [Google Scholar] [CrossRef]
- Mehlich, A. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Commun. Soil Sci. Plant Anal. 1984, 15, 1409–1416. [Google Scholar] [CrossRef]
- Lindsay, W.L.; Norvell, W. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci. Soc. Am. J. 1978, 42, 421–428. [Google Scholar] [CrossRef]
- Barman, M.; Datta, S.P.; Rattan, R.K.; Meena, M.C. Critical Limits of Deficiency of Nickel in Intensively Cultivated Alluvial Soils. J. Soil Sci. Plant Nutr. 2020, 20, 284–292. [Google Scholar] [CrossRef]
- Okoli, N.; Uzoho, B.; Ahukaemere, C.; Egboka, N.; Irokwe, I. Chemical fractionation and mobility of nickel in soils in relation to parent materials. Arch. Agron. Soil Sci. 2021, 67, 1075–1092. [Google Scholar] [CrossRef]
- Barrow, N.; Hartemink, A.E. The effects of pH on nutrient availability depend on both soils and plants. Plant Soil 2023, 487, 21–37. [Google Scholar] [CrossRef]
- Macedo, F.G.; Santos, E.F.; Lavres, J. Agricultural crop influences availability of nickel in the rhizosphere; a study on base cation saturations, Ni dosages and crop succession. Rhizosphere 2020, 13, 100182. [Google Scholar] [CrossRef]
- Deng, T.-H.-B.; van der Ent, A.; Tang, Y.-T.; Sterckeman, T.; Echevarria, G.; Morel, J.-L.; Qiu, R.-L. Nickel hyperaccumulation mechanisms: A review on the current state of knowledge. Plant Soil 2018, 423, 1–11. [Google Scholar] [CrossRef]
- Shalev, D.E. Studying peptide-metal ion complex structures by solution-state NMR. Int. J. Mol. Sci. 2022, 23, 15957. [Google Scholar] [CrossRef]
- Cataldo, D.A.; Garland, T.R.; Wildung, R.E.; Drucker, H. Nickel in plants: II. Distribution and chemical form in soybean plants. Plant Physiol. 1978, 62, 566–570. [Google Scholar] [CrossRef]
- Montargès-Pelletier, E.; Chardot, V.; Echevarria, G.; Michot, L.J.; Bauer, A.; Morel, J.-L. Identification of nickel chelators in three hyperaccumulating plants: An X-ray spectroscopic study. Phytochemistry 2008, 69, 1695–1709. [Google Scholar] [CrossRef]
- Agrawal, B.; Czymmek, K.J.; Sparks, D.L.; Bais, H.P. Transient influx of nickel in root mitochondria modulates organic acid and reactive oxygen species production in nickel hyperaccumulator Alyssum murale. J. Biol. Chem. 2013, 288, 7351–7362. [Google Scholar] [CrossRef] [PubMed]
- Wenzel, W.W.; Bunkowski, M.; Puschenreiter, M.; Horak, O. Rhizosphere characteristics of indigenously growing nickel hyperaccumulator and excluder plants on serpentine soil. Environ. Pollut. 2003, 123, 131–138. [Google Scholar] [CrossRef]
- Pianelli, K.; Mari, S.; Marquès, L.; Lebrun, M.; Czernic, P. Nicotianamine over-accumulation confers resistance to nickel in Arabidopsis thaliana. Transgenic Res. 2005, 14, 739–748. [Google Scholar] [CrossRef]
- Kim, S.; Takahashi, M.; Higuchi, K.; Tsunoda, K.; Nakanishi, H.; Yoshimura, E.; Mori, S.; Nishizawa, N.K. Increased nicotianamine biosynthesis confers enhanced tolerance of high levels of metals, in particular nickel, to plants. Plant Cell Physiol. 2005, 46, 1809–1818. [Google Scholar] [CrossRef] [PubMed]
- Vacchina, V.; Mari, S.; Czernic, P.; Marquès, L.; Pianelli, K.; Schaumlöffel, D.; Lebrun, M.; Łobiński, R. Speciation of nickel in a hyperaccumulating plant by high-performance liquid chromatography−inductively coupled plasma mass spectrometry and electrospray MS/MS assisted by cloning using yeast complementation. Anal. Chem. 2003, 75, 2740–2745. [Google Scholar] [CrossRef] [PubMed]
- Colpas, G.J.; Hausinger, R.P. In Vivo and in Vitro Kinetics of Metal Transfer by the Klebsiella aerogenes Urease Nickel Metallochaperone, UreE* 210. J. Biol. Chem. 2000, 275, 10731–10737. [Google Scholar] [CrossRef]
- Hausinger, R.P. Metallocenter assembly in nickel-containing enzymes. JBIC J. Biol. Inorg. Chem. 1997, 2, 279–286. [Google Scholar] [CrossRef]
- Küpper, H.; Lombi, E.; Zhao, F.J.; Wieshammer, G.; McGrath, S.P. Cellular compartmentation of nickel in the hyperaccumulators Alyssum lesbiacum, Alyssum bertolonii and Thlaspi goesingense. J. Exp. Bot. 2001, 52, 2291–2300. [Google Scholar] [CrossRef]
- Cataldo, D.A.; Garland, T.R.; Wildung, R.E. Nickel in plants: I. Uptake kinetics using intact soybean seedlings. Plant Physiol. 1978, 62, 563–565. [Google Scholar] [CrossRef]
- Hassan, M.U.; Chattha, M.U.; Khan, I.; Chattha, M.B.; Aamer, M.; Nawaz, M.; Ali, A.; Khan, M.A.U.; Khan, T.A. Nickel toxicity in plants: Reasons, toxic effects, tolerance mechanisms, and remediation possibilities—A review. Environ. Sci. Pollut. Res. 2019, 26, 12673–12688. [Google Scholar] [CrossRef]
- Brooks, R.R.; Lee, J.; Reeves, R.D.; Jaffre, T. Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. J. Geochem. Explor. 1977, 7, 49–57. [Google Scholar] [CrossRef]
- Boyd, R.S. Ecology of Metal Hyperaccumulation. New Phytol. 2004, 162, 563–567. [Google Scholar] [CrossRef]
- Boyd, R.S.; Davis, M.A.; Wall, M.A.; Balkwill, K. Nickel defends the South African hyperaccumulator Senecio coronatus (Asteraceae) against Helix aspersa (Mollusca: Pulmonidae). Chemoecology 2002, 12, 91–97. [Google Scholar] [CrossRef]
- van der Pas, L.; Ingle, R.A. Towards an Understanding of the Molecular Basis of Nickel Hyperaccumulation in Plants. Plants 2019, 8, 11. [Google Scholar] [CrossRef] [PubMed]
- Nishida, S.; Kato, A.; Tsuzuki, C.; Yoshida, J.; Mizuno, T. Induction of Nickel Accumulation in Response to Zinc Deficiency in Arabidopsis thaliana. Int. J. Mol. Sci. 2015, 16, 9420–9430. [Google Scholar] [CrossRef] [PubMed]
- Nishida, S.; Tsuzuki, C.; Kato, A.; Aisu, A.; Yoshida, J.; Mizuno, T. AtIRT1, the Primary Iron Uptake Transporter in the Root, Mediates Excess Nickel Accumulation in Arabidopsis thaliana. Plant Cell Physiol. 2011, 52, 1433–1442. [Google Scholar] [CrossRef]
- Ingle, R.A.; Mugford, S.T.; Rees, J.D.; Campbell, M.M.; Smith, J.A.C. Constitutively High Expression of the Histidine Biosynthetic Pathway Contributes to Nickel Tolerance in Hyperaccumulator Plants. Plant Cell 2005, 17, 2089–2106. [Google Scholar] [CrossRef] [PubMed]
- White, J.F.; Kingsley, K.L.; Zhang, Q.; Verma, R.; Obi, N.; Dvinskikh, S.; Elmore, M.T.; Verma, S.K.; Gond, S.K.; Kowalski, K.P. Endophytic microbes and their potential applications in crop management. Pest Manag. Sci. 2019, 75, 2558–2565. [Google Scholar] [CrossRef]
- Vivas, A.; Biró, B.; Németh, T.; Barea, J.M.; Azcón, R. Nickel-tolerant Brevibacillus brevis and arbuscular mycorrhizal fungus can reduce metal acquisition and nickel toxicity effects in plant growing in nickel supplemented soil. Soil Biol. Biochem. 2006, 38, 2694–2704. [Google Scholar] [CrossRef]
- Ważny, R.; Rozpądek, P.; Domka, A.; Jędrzejczyk, R.J.; Nosek, M.; Hubalewska-Mazgaj, M.; Lichtscheidl, I.; Kidd, P.; Turnau, K. The effect of endophytic fungi on growth and nickel accumulation in Noccaea hyperaccumulators. Sci. Total Environ. 2021, 768, 144666. [Google Scholar] [CrossRef]
- Weyens, N.; van der Lelie, D.; Taghavi, S.; Vangronsveld, J. Phytoremediation: Plant–endophyte partnerships take the challenge. Curr. Opin. Biotechnol. 2009, 20, 248–254. [Google Scholar] [CrossRef]
- Weyens, N.; Croes, S.; Dupae, J.; Newman, L.; van der Lelie, D.; Carleer, R.; Vangronsveld, J. Endophytic bacteria improve phytoremediation of Ni and TCE co-contamination. Environ. Pollut. 2010, 158, 2422–2427. [Google Scholar] [CrossRef]
- Chen, J.; Li, N.; Han, S.; Sun, Y.; Wang, L.; Qu, Z.; Dai, M.; Zhao, G. Characterization and bioremediation potential of nickel-resistant endophytic bacteria isolated from the wetland plant Tamarix chinensis. FEMS Microbiol. Lett. 2020, 367, fnaa098. [Google Scholar] [CrossRef]
- Lodewyckx, C.; Taghavi, S.; Mergeay, M.; Vangronsveld, J.; Clijsters, H.; Lelie, D.v.d. The effect of recombinant heavy metal-resistant endophytic bacteria on heavy metal uptake by their host plant. Int. J. Phytoremediat. 2001, 3, 173–187. [Google Scholar] [CrossRef]
- Madhaiyan, M.; Poonguzhali, S.; Sa, T. Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato (Lycopersicon esculentum L.). Chemosphere 2007, 69, 220–228. [Google Scholar] [CrossRef]
- Visioli, G.; Vamerali, T.; Mattarozzi, M.; Dramis, L.; Sanangelantoni, A.M. Combined endophytic inoculants enhance nickel phytoextraction from serpentine soil in the hyperaccumulator Noccaea caerulescens. Front. Plant Sci. 2015, 6, 638. [Google Scholar] [CrossRef] [PubMed]
- Weyens, N.; Truyens, S.; Saenen, E.; Boulet, J.; Dupae, J.; Taghavi, S.; van der Lelie, D.; Carleer, R.; Vangronsveld, J. Endophytes and Their Potential to Deal with Co-Contamination of Organic Contaminants (Toluene) and Toxic Metals (Nickel) During Phytoremediation. Int. J. Phytoremediat. 2011, 13, 244–255. [Google Scholar] [CrossRef] [PubMed]
- White, J.F.; Kingsley, K.L.; Verma, S.K.; Kowalski, K.P. Rhizophagy cycle: An oxidative process in plants for nutrient extraction from symbiotic microbes. Microorganisms 2018, 6, 95. [Google Scholar] [CrossRef]
- Goldstein, W.; White, J. Seed endophytes, rhizophagy, nutrient density, nitrogen efficiency and fixation in corn. In Proceedings of the 2022 Organic Seed Alliance Growers Conference, Virtual, 4–11 February 2022. [Google Scholar]
- White, J.F., Jr.; Kingsley, K.L.; Verma, S.K.; Kowalski, K. Rhizophagy cycle: A nutritional symbiosis involving bacteria that alternate between root—endophytic and free—living soil phases. In Proceedings of the 10th International Symposium on Fungal Endophytes of Grasses, Salamanca, Spain, 18–21 June 2018. [Google Scholar]
- Ameer, M.A.A.; Hussein, H.N. Induction of Rhizophagy by yeast Saccharomyces cerevisiae in roots of lettuce Lactuca sativa. In Proceedings of the Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2020; p. 012116. [Google Scholar]
- Wood, B.W.; Reilly, C.C.; Bock, C.H.; Hotchkiss, M.W. Suppression of pecan scab by nickel. HortScience 2012, 47, 503–508. [Google Scholar] [CrossRef]
- Keil, H.L.F.H.P. Rust Eradication. U.S. Patent US-2971880-A, 14 February 1961. [Google Scholar]
- Macomber, L.; Hausinger, R.P. Mechanisms of nickel toxicity in microorganisms. Metallomics 2011, 3, 1153–1162. [Google Scholar] [CrossRef]
- Gerwien, F.; Skrahina, V.; Kasper, L.; Hube, B.; Brunke, S. Metals in fungal virulence. FEMS Microbiol. Rev. 2018, 42, fux050. [Google Scholar] [CrossRef]
- Dalton, D.A. Essentiality of nickel for plants. In Nickel in Soils and Plants; CRC Press: London, UK, 2018; pp. 1–20. [Google Scholar]
- Carlini, C.R.; Ligabue-Braun, R. Ureases as multifunctional toxic proteins: A review. Toxicon 2016, 110, 90–109. [Google Scholar] [CrossRef]
- Becker-Ritt, A.B.; Martinelli, A.H.S.; Mitidieri, S.; Feder, V.; Wassermann, G.E.; Santi, L.; Vainstein, M.H.; Oliveira, J.T.A.; Fiuza, L.M.; Pasquali, G.; et al. Antifungal activity of plant and bacterial ureases. Toxicon 2007, 50, 971–983. [Google Scholar] [CrossRef]
- Mishra, D.; Kar, M. Nickel in plant growth and metabolism. Bot. Rev. 1974, 40, 395–452. [Google Scholar] [CrossRef]
- Chen, Q.Y.; Brocato, J.; Laulicht, F.; Costa, M. Mechanisms of Nickel Carcinogenesis. In Essential and Non-Essential Metals: Carcinogenesis, Prevention and Cancer Therapeutics; Mudipalli, A., Zelikoff, J.T., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 181–197. [Google Scholar]
- Das, K.K.; Das, S.N.; Dhundasi, S.A. Nickel, its adverse health effects & oxidative stress. Indian J. Med. Res. 2008, 128, 412–425. [Google Scholar] [PubMed]
- Genchi, G.; Carocci, A.; Lauria, G.; Sinicropi, M.S.; Catalano, A. Nickel: Human Health and Environmental Toxicology. Int. J. Environ. Res. Public Health 2020, 17, 679. [Google Scholar] [CrossRef] [PubMed]
- Kazantzis, K.; Thomidis, T. Effect of cultivar resistance and pre-harvest nickel applications on fruit rots, shot-hole, Alternaria leaf spot and fruit cracking. Eur. J. Hortic. Sci. 2023, 88, 12. [Google Scholar] [CrossRef]
- Reilly, C.; Crawford, M.; Buck, J. Nickel suppresses daylily rust, Puccinia hemerocallidis on susceptible daylilies, Hemerocallis ssp. in greenhouse and field trials. Phytopathology 2005, 95, 588. [Google Scholar]
- Ahmed, A.I.; Yadav, D.R.; Lee, Y.S. Applications of nickel nanoparticles for control of Fusarium wilt on lettuce and tomato. Int. J. Innov. Res. Sci. Eng. Technol 2016, 5, 7378–7385. [Google Scholar]
- Einhardt, A.M.; Ferreira, S.; Hawerroth, C.; Valadares, S.V.; Rodrigues, F.Á. Nickel potentiates soybean resistance against infection by Phakopsora pachyrhizi. Plant Pathol. 2020, 69, 849–859. [Google Scholar] [CrossRef]
- Lamichhane, J.R.; Osdaghi, E.; Behlau, F.; Köhl, J.; Jones, J.B.; Aubertot, J.-N. Thirteen decades of antimicrobial copper compounds applied in agriculture. A review. Agron. Sustain. Dev. 2018, 38, 28. [Google Scholar] [CrossRef]
- La Torre, A.; Iovino, V.; Caradonia, F. Copper in plant protection: Current situation and prospects. Phytopathol. Mediterr. 2018, 57, 201–236. [Google Scholar]
- Solanki, P.; Bhargava, A.; Chhipa, H.; Jain, N.; Panwar, J. Nano-fertilizers and their smart delivery system. In Nanotechnologies in Food and Agriculture; Mahendra, R., Caue, R., Luiz, M., Nelson, D., Eds.; Springer International Publishing Switzerland: Cham, Switzerland, 2015; pp. 81–101. [Google Scholar]
- Rabinovich, A.; Rouff, A.A. Effect of phenolic organics on the precipitation of struvite from simulated dairy wastewater. ACS EST Water 2021, 1, 910–918. [Google Scholar] [CrossRef]
- Rouff, A.A.; Juarez, K.M. Zinc interaction with struvite during and after mineral formation. Environ. Sci. Technol. 2014, 48, 6342–6349. [Google Scholar] [CrossRef] [PubMed]
- Rabinovich, A.; Rouff, A.A. Changes to struvite growth and morphology as impacted by low molecular weight organics. ACS EST Water 2023, 3, 2277–2285. [Google Scholar] [CrossRef]
- Taddeo, R.; Honkanen, M.; Kolppo, K.; Lepistö, R. Nutrient management via struvite precipitation and recovery from various agroindustrial wastewaters: Process feasibility and struvite quality. J. Environ. Manag. 2018, 212, 433–439. [Google Scholar] [CrossRef] [PubMed]
- Goswami, O.; Rouff, A.A. Interaction of divalent metals with struvite: Sorption, reversibility, and implications for mineral recovery from wastes. Environ. Technol. 2023, 44, 2315–2326. [Google Scholar] [CrossRef]
- Lu, X.; Xu, W.; Zeng, Q.; Liu, W.; Wang, F. Quantitative, morphological, and structural analysis of Ni incorporated with struvite during precipitation. Sci. Total Environ. 2022, 817, 152976. [Google Scholar] [CrossRef]
- Rabinovich, A.; Rouff, A.A.; Lew, B.; Ramlogan, M.V. Aerated fluidized bed treatment for phosphate recovery from dairy and swine wastewater. ACS Sustain. Chem. Eng. 2018, 6, 652–659. [Google Scholar] [CrossRef]
- Nepfumbada, C.; Tavengwa, N.T.; Masindi, V.; Foteinis, S.; Chatzisymeon, E. Recovery of phosphate from municipal wastewater as calcium phosphate and its subsequent application for the treatment of acid mine drainage. Resour. Conserv. Recycl. 2023, 190, 106779. [Google Scholar] [CrossRef]
- Kopittke, P.M.; Lombi, E.; Wang, P.; Schjoerring, J.K.; Husted, S. Nanomaterials as fertilizers for improving plant mineral nutrition and environmental outcomes. Environ. Sci. Nano 2019, 6, 3513–3524. [Google Scholar] [CrossRef]
- Maity, D.; Gupta, U.; Saha, S. Biosynthesized metal oxide nanoparticles for sustainable agriculture: Next-generation nanotechnology for crop production, protection and management. Nanoscale 2022, 14, 13950–13989. [Google Scholar] [CrossRef] [PubMed]
- Shinde, N.A.; Kawar, P.G.; Dalvi, S.G. Chitosan-based nanoconjugates: A promising solution for enhancing crops drought-stress resilience and sustainable yield in the face of climate change. Plant Nano Biol. 2024, 7, 100059. [Google Scholar] [CrossRef]
- Ramírez-Rodríguez, G.B.; Dal Sasso, G.; Carmona, F.J.; Miguel-Rojas, C.; Pérez-de-Luque, A.; Masciocchi, N.; Guagliardi, A.; Delgado-López, J.M. Engineering biomimetic calcium phosphate nanoparticles: A green synthesis of slow-release multinutrient (NPK) nanofertilizers. ACS Appl. Bio Mater. 2020, 3, 1344–1353. [Google Scholar] [CrossRef] [PubMed]
- Dimkpa, C.O.; Singh, U.; Adisa, I.O.; Bindraban, P.S.; Elmer, W.H.; Gardea-Torresdey, J.L.; White, J.C. Effects of manganese nanoparticle exposure on nutrient acquisition in wheat (Triticum aestivum L.). Agronomy 2018, 8, 158. [Google Scholar] [CrossRef]
- Song, U.; Kim, J. Zinc oxide nanoparticles: A potential micronutrient fertilizer for horticultural crops with little toxicity. Hortic. Environ. Biotechnol. 2020, 61, 625–631. [Google Scholar] [CrossRef]
- Sharma, P.; Sharma, A.; Sharma, M.; Bhalla, N.; Estrela, P.; Jain, A.; Thakur, P.; Thakur, A. Nanomaterial fungicides: In vitro and in vivo antimycotic activity of cobalt and nickel nanoferrites on phytopathogenic fungi. Glob. Chall. 2017, 1, 1700041. [Google Scholar] [CrossRef] [PubMed]
- Phogat, N.; Ali Khan, S.; Shankar, S.; A Ansary, A.; Uddin, I. Fate of inorganic nanoparticles in agriculture. Adv. Mater. Lett. 2016, 7, 3–12. [Google Scholar] [CrossRef]
- Banerjee, A.; Sarkar, A.; Acharya, K.; Chakraborty, N. Nanotechnology: An emerging hope in crop improvement. Lett. Appl. NanoBioScience 2021, 10, 2784–2803. [Google Scholar]
- Wang, P.; Lombi, E.; Zhao, F.-J.; Kopittke, P.M. Nanotechnology: A New Opportunity in Plant Sciences. Trends in Plant Science 2016, 21, 699–712. [Google Scholar] [CrossRef] [PubMed]
- Jośko, I.; Oleszczuk, P.; Futa, B. The effect of inorganic nanoparticles (ZnO, Cr2O3, CuO and Ni) and their bulk counterparts on enzyme activities in different soils. Geoderma 2014, 232, 528–537. [Google Scholar] [CrossRef]
- Nowack, B.; Bucheli, T.D. Occurrence, behavior and effects of nanoparticles in the environment. Environ. Pollut. 2007, 150, 5–22. [Google Scholar] [CrossRef]
- Zhou, P.; Jiang, Y.; Adeel, M.; Shakoor, N.; Zhao, W.; Liu, Y.; Li, Y.; Li, M.; Azeem, I.; Rui, Y.; et al. Nickel Oxide Nanoparticles Improve Soybean Yield and Enhance Nitrogen Assimilation. Environ. Sci. Technol. 2023, 57, 7547–7558. [Google Scholar] [CrossRef]
- Chouhan, D.; Dutta, A.; Kumar, A.; Mandal, P.; Choudhuri, C. Application of nickel chitosan nanoconjugate as an antifungal agent for combating Fusarium rot of wheat. Sci. Rep. 2022, 12, 14518. [Google Scholar] [CrossRef] [PubMed]
- Parthasarathy, R.; Jayabaskaran, C.; Manikandan, A.; Anusuya, S. Synthesis of Nickel-Chitosan Nanoparticles for Controlling Blast Diseases in Asian Rice. Appl. Biochem. Biotechnol. 2023, 195, 2134–2148. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Wang, L.; Mettenbrink, E.M.; DeAngelis, P.L.; Wilhelm, S. Nanoparticle Toxicology. Annu. Rev. Pharmacol. Toxicol. 2021, 61, 269–289. [Google Scholar] [CrossRef] [PubMed]
- Klaine, S.J.; Koelmans, A.A.; Horne, N.; Carley, S.; Handy, R.D.; Kapustka, L.; Nowack, B.; von der Kammer, F. Paradigms to assess the environmental impact of manufactured nanomaterials. Environ. Toxicol. Chem. 2012, 31, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Auffan, M.; Santaella, C.; Thiéry, A.; Paillès, C.; Rose, J.; Achouak, W.; Thill, A.; Masion, A.; Wiesner, M.; Bottero, J.-Y. Ecotoxicity of Inorganic Nanoparticles: From Unicellular Organisms to Invertebrates. In Encyclopedia of Nanotechnology; Bhushan, B., Ed.; Springer: Dordrecht, The Netherlands, 2012; pp. 623–636. [Google Scholar]
- Iftikhar, M.; Noureen, A.; Jabeen, F.; Uzair, M.; Rehman, N.; Sher, E.K.; Katubi, K.M.; Américo-Pinheiro, J.H.P.; Sher, F. Bioinspired engineered nickel nanoparticles with multifunctional attributes for reproductive toxicity. Chemosphere 2023, 311, 136927. [Google Scholar] [CrossRef]
- Shah, G.A.; Ahmed, J.; Iqbal, Z.; Hassan, F.-u.; Rashid, M.I. Toxicity of NiO nanoparticles to soil nutrient availability and herbage N uptake from poultry manure. Sci. Rep. 2021, 11, 11540. [Google Scholar] [CrossRef]
- Hasegawa, T.; Sakurai, G.; Fujimori, S.; Takahashi, K.; Hijioka, Y.; Masui, T. Extreme climate events increase risk of global food insecurity and adaptation needs. Nat. Food 2021, 2, 587–595. [Google Scholar] [CrossRef]
- McNear, D.H., Jr.; Chaney, R.L.; Sparks, D.L. The hyperaccumulator Alyssum murale uses complexation with nitrogen and oxygen donor ligands for Ni transport and storage. Phytochemistry 2010, 71, 188–200. [Google Scholar] [CrossRef]
- Morris, J.W.; Scheckel, K.G.; McNear, D.H. Biogeochemistry of nickel in soils, plants, and the rhizosphere. In Nickel in Soils and Plants; CRC Press: Boca Raton, FL, USA, 2018; pp. 51–86. [Google Scholar]
- de Oliveira, J.B.; Lavres, J.; Kopittke, P.M.; Chaney, R.L.; Harris, H.H.; Erskine, P.D.; Howard, D.L.; dos Reis, A.R.; van der Ent, A. Unravelling the fate of foliar-applied nickel in soybean: A comprehensive investigation. Plant Soil 2024, 1–20. [Google Scholar] [CrossRef]
- Caggiano, R.; Sabia, S.; Speranza, A. Trace elements and human health risks assessment of finer aerosol atmospheric particles (PM 1). Environ. Sci. Pollut. Res. 2019, 26, 36423–36433. [Google Scholar] [CrossRef]
- Prueitt, R.L.; Li, W.; Chang, Y.-C.; Boffetta, P.; Goodman, J.E. Systematic review of the potential respiratory carcinogenicity of metallic nickel in humans. Crit. Rev. Toxicol. 2020, 50, 605–639. [Google Scholar] [CrossRef] [PubMed]
- Bar-Tal, A.; Fine, P.; Yermiyahu, U.; Ben-Gal, A.; Hass, A. Practices that simultaneously optimize water and nutrient use efficiency: Israeli experiences in fertigation and irrigation with treated wastewater. In Managing Water and Fertilizer for Sustainable Agricultural Intensification; IFA, IWMI, IPNI and IPI: Paris, France, 2015; pp. 209–241. [Google Scholar]
- Pinto, I.S.; Neto, I.F.; Soares, H.M. Biodegradable chelating agents for industrial, domestic, and agricultural applications—A review. Environ. Sci. Pollut. Res. 2014, 21, 11893–11906. [Google Scholar] [CrossRef] [PubMed]
- Brusko, V.; Garifullin, B.; Geniyatullina, G.; Kuryntseva, P.; Galieva, G.; Galitskaya, P.; Selivanovskaya, S.; Dimiev, A.M. Novel Biodegradable Chelating Agents for Micronutrient Fertilization. J. Agric. Food Chem. 2023, 71, 14979–14988. [Google Scholar] [CrossRef]
- Apodaca, L. Nitrogen Statistics and Information|U.S. Geological Survey. Available online: https://www.usgs.gov/centers/national-minerals-information-center/nitrogen-statistics-and-information (accessed on 31 July 2024).
- Hu, Y.; Schmidhalter, U. Annual consumption and types of synthetic nitrogen fertilizers: Ammonia emission indicators for mitigation strategies in the European Union. Environ. Sustain. Indic. 2024, 22, 100365. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, L.; Zhao, Y.; Zhang, L.; Zhang, J.; Liu, M.; Zhou, M.; Luo, B. High-resolution ammonia emissions from nitrogen fertilizer application in China during 2005–2020. Atmosphere 2022, 13, 1297. [Google Scholar] [CrossRef]
- Motasim, A.M.; Samsuri, A.W.; Nabayi, A.; Akter, A.; Haque, M.A.; Abdul Sukor, A.S.; Adibah, A.M. Urea application in soil: Processes, losses, and alternatives—A review. Discov. Agric. 2024, 2, 42. [Google Scholar] [CrossRef]
- Good, A.G.; Beatty, P.H. Fertilizing nature: A tragedy of excess in the commons. PLoS Biol. 2011, 9, e1001124. [Google Scholar] [CrossRef]
- Hirel, B.; Tétu, T.; Lea, P.J.; Dubois, F. Improving nitrogen use efficiency in crops for sustainable agriculture. Sustainability 2011, 3, 1452–1485. [Google Scholar] [CrossRef]
- Reiter, M.; Samtani, J.; Torres Quezada, E.; Singh, V.; Doughty, H.; Kuhar, T.P.; Sutton, K.; Wilson, J.; Langston, D.; Rideout, S. 2022–2023 Mid-Atlantic Commercial Vegetable Production Recommendations; Virginia Cooperative Extension: Fairfax, VA, USA, 2022. [Google Scholar]
- Topcu, Y.; Nambeesan, S.U.; van der Knaap, E. Blossom-end rot: A century-old problem in tomato (Solanum lycopersicum L.) and other vegetables. Mol. Hortic. 2022, 2, 1. [Google Scholar] [CrossRef]
Deficiency | Related Macronutrient | Crop | Damage to Crop | Ref |
---|---|---|---|---|
Bitter pit | Ca | apple | lower fruit value, decreased fruit shelf life | [81] |
Blossom end rot | Ca | tomato (Solanum lycopersicum), bell pepper (Capsicum annuum), eggplant (Solanum melongena) | loss of fruit due to tissue damage | [71] |
Diminished seed viability | N/A | all seed-bearing plants | poor seed development | [70] |
Mouse-ear | urea-N | pecan, hazelnut | urea toxicity damage to leaf | [82] |
Model Crop | Fungal Diseases | Application (Estimated kg ha−1) | Effect | Refs |
---|---|---|---|---|
Cherry | Leaf spot (Alternaria alternaria) | 0.125 | 50–60% less leaf spot | [135] |
Daylily | Daylily rust (Puccinia hemerocallidis) | N/A, 200 mg L−1 | 90% reduction | [136] |
Lettuce, Tomato | Fusarium wilt (F. oxysporum f. sp. lactucae and F. oxysporum f. sp. lycopersici) | N/A, nickel nanoparticles 100 ppm | 30–60% growth inhibition | [137] |
Pecan | Pecan scab (Fusicladium effusum G. Winter) | 0.05–0.1 | reduces leaf lesions by 50% | [124] |
Soybean | Asian soybean rust (Phakopsora pachyrhizi) | 0.075 | lowers severity by 35% | [138] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rabinovich, A.; Di, R.; Lindert, S.; Heckman, J. Nickel and Soil Fertility: Review of Benefits to Environment and Food Security. Environments 2024, 11, 177. https://doi.org/10.3390/environments11080177
Rabinovich A, Di R, Lindert S, Heckman J. Nickel and Soil Fertility: Review of Benefits to Environment and Food Security. Environments. 2024; 11(8):177. https://doi.org/10.3390/environments11080177
Chicago/Turabian StyleRabinovich, Alon, Rong Di, Sean Lindert, and Joseph Heckman. 2024. "Nickel and Soil Fertility: Review of Benefits to Environment and Food Security" Environments 11, no. 8: 177. https://doi.org/10.3390/environments11080177
APA StyleRabinovich, A., Di, R., Lindert, S., & Heckman, J. (2024). Nickel and Soil Fertility: Review of Benefits to Environment and Food Security. Environments, 11(8), 177. https://doi.org/10.3390/environments11080177