Photocatalytic Degradation of Toluene, Butyl Acetate and Limonene under UV and Visible Light with Titanium Dioxide-Graphene Oxide as Photocatalyst
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Analytical Parameters and Instrumentation
2.3. Chamber Parameters
2.4. Light Sources
2.5. Degradation Experiments under UV and Visible Light
2.5.1. General Information
2.5.2. Degradation Experiments in 20 L Emission Test Chambers
2.5.3. Degradation Experiments in a 1 m³ Emission Test Chamber
3. Results
3.1. Results of the Experiments in 20 L Emission Test Chambers
3.2. Results of the Experiments in a 1 m³ Emission Test Chamber
3.3. Influence of Relative Humidity
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Klepeis, N.E.; Nelson, W.C.; Ott, W.R.; Robinson, J.P.; Tsang, A.M.; Switzer, P.; Behar, J.V.; Hern, S.C.; Engelmann, W.H. The national human activity pattern survey (NHAPS): A resource for assessing exposure to environmental pollutants. J. Expo. Anal. Environ. Epidemiol. 2001, 11, 231–252. [Google Scholar] [CrossRef] [PubMed]
- Wolkoff, P.; Clausen, P.A.; Jensen, B.; Nielsen, G.D.; Wilkins, C.K. Are we measuring the relevant indoor pollutants? Indoor Air 1997, 7, 92–106. [Google Scholar] [CrossRef]
- Mo, J.; Zhang, Y.; Xu, Q.; Lamson, J.J.; Zhao, R. Photocatalytic purification of volatile organic compounds in indoor air: A literature review. Atmos. Environ. 2009, 43, 2229–2246. [Google Scholar] [CrossRef]
- Pelaez, M.; Nolan, N.T.; Pillai, S.C.; Seery, M.K.; Falaras, P.; Kontos, A.G.; Dunlop, P.S.M.; Hamilton, J.W.J.; Byrne, J.A.; O’Shea, K.; et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B Environ. 2012, 125, 331–349. [Google Scholar] [CrossRef]
- Banerjee, S.; Pillai, S.C.; Falaras, P.; O’Shea, K.E.; Byrne, J.A.; Dionysiou, D.D. New insights into the mechanism of visible light photocatalysis. J. Phys. Chem. Lett. 2014, 5, 2543–2554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Jo, W.-K.; Kang, H.-J. Titanium dioxide-graphene oxide composites with different ratios supported by pyrex tube for photocatalysis of toxic aromatic vapors. Powder Technol. 2013, 250, 115–121. [Google Scholar] [CrossRef]
- Khalid, N.R.; Ahmed, E.; Hong, Z.L.; Sana, L.; Ahmed, M. Enhanced photocatalytic activity of graphene-TiO2 composite under visible light irradiation. Curr. Appl. Phys. 2013, 13, 659–663. [Google Scholar] [CrossRef]
- Nguyen-Phan, T.-D.; Pham, V.H.; Shin, E.W.; Pham, H.-D.; Kim, S.; Chung, J.S.; Kim, E.J.; Hur, S.H. The role of graphene oxide content on the adsorption-enhanced photocatalysis of titanium dioxide/graphene oxide composites. Chem. Eng. J. 2011, 170, 226–232. [Google Scholar] [CrossRef]
- Stankovich, S.; Dikin, D.A.; Dommett, G.H.; Kohlhaas, K.M.; Zimney, E.J.; Stach, E.A.; Piner, R.D.; Nguyen, S.T.; Ruoff, R.S. Graphene-based composite materials. Nature 2006, 442, 282–286. [Google Scholar] [CrossRef] [PubMed]
- Leary, R.; Westwood, A. Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis. Carbon 2011, 49, 741–772. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, Z.-R.; Fu, X.; Xu, Y.-J. TiO2-graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: Is TiO2-graphene truly different from other TiO2-carbon composite materials? ACS Nano 2010, 4, 7303–7314. [Google Scholar] [CrossRef] [PubMed]
- Aleksandrzak, M.; Adamski, P.; Kukulka, W.; Zielinska, B.; Mijowska, E. Effect of graphene thickness on photocatalytic activity of TiO2-graphene nanocomposites. Appl. Surface Sci. 2015, 331, 193–199. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, X. Photocatalytic oxidation for indoor air purification: A literature review. Build. Environ. 2003, 38, 645–654. [Google Scholar] [CrossRef]
- Mo, J.H.; Zhang, Y.P.; Xu, Q.J. Effect of water vapor on the by-products and decomposition rate of ppb-level toluene by photocatalytic oxidation. Appl. Catal. B Environ. 2013, 132, 212–218. [Google Scholar] [CrossRef]
- Demeestere, K.; Dewulf, J.; van Langenhove, H. Heterogeneous photocatalysis as an advanced oxidation process for the abatement of chlorinated, monocyclic aromatic and sulfurous volatile organic compounds in air: State of the art. Crit. Rev. Environ. Sci. Technol. 2007, 37, 489–538. [Google Scholar] [CrossRef]
- Korologos, C.A.; Philippopoulos, C.J.; Poulopoulos, S.G. The effect of water presence on the photocatalytic oxidation of benzene, toluene, ethylbenzene and m-xylene in the gas-phase. Atmos. Environ. 2011, 45, 7089–7095. [Google Scholar] [CrossRef]
- Richter, M.; Jann, O.; Horn, W.; Pyza, L.; Wilke, O. System to generate stable long-term voc gas mixtures of concentrations in the ppb range for test and calibration purposes. Gefahrst. Reinhalt. Luft 2013, 73, 103–106. [Google Scholar]
- Mo, J.; Zhang, Y.; Xu, Q.; Zhu, Y.; Lamson, J.J.; Zhao, R. Determination and risk assessment of by-products resulting from photocatalytic oxidation of toluene. Appl. Catal. B Environ. 2009, 89, 570–576. [Google Scholar] [CrossRef]
- Ourrad, H.; Thevenet, F.; Gaudion, V.; Riffault, V. Limonene photocatalytic oxidation at ppb levels: Assessment of gas phase reaction intermediates and secondary organic aerosol heterogeneous formation. Appl. Catal. B Environ. 2015, 168–169, 183–194. [Google Scholar] [CrossRef]
- Sun, J.J.; Li, X.Y.; Zhao, Q.D.; Ke, J.; Zhang, D.K. Novel V2O5/BiVO4/TiO2 nanocomposites with high visible-light-induced photocatalytic activity for the degradation of toluene. J. Phys. Chem C 2014, 118, 10113–10121. [Google Scholar] [CrossRef]
Sample | GO (%) | Catalyst Loading (mg) | Toluene (µg·m−3) | Butyl Acetate (µg·m−3) | Limonene (µg·m−3) |
---|---|---|---|---|---|
A-1 | 0 | 39 | 230 | 130 | 110 |
B-1 | 0.75 | 39 | 100 | 140 | 170 |
B-2 | 0.75 | 78 | 100 | 220 | 390 |
C-1 | 1 | 39 | 190 | 120 | 60 |
C-2 | 1 | 78 | 230 | 140 | 40 |
D-1 | 2.5 | 39 | 140 | 130 | 100 |
D-2 | 2.5 | 78 | 150 | 110 | 90 |
D-3 * | 2.5 | 5 | 90 | 140 | 80 |
E-1 | 5 | 39 | 80 | 120 | 100 |
E-2 | 5 | 78 | 90 | 140 | 40 |
F-1 | 10 | 39 | 220 | 190 | 420 |
F-2 # | 10 | 78 | 230 | 170 | 330 |
G-1 | 14 | 10 | 80 | 120 | 140 |
Sample | GO (%) | Catalyst Loading (mg) | Toluene (µg·m−3) | Butyl Acetate (µg·m−3) | Limonene (µg·m−3) |
---|---|---|---|---|---|
A-1 | 0 | 39 | 290 | 380 | 360 |
D-1 | 2.5 | 39 | 290 | 390 | 330 |
Sample | GO (%) | Catalyst Loading (mg) | UV LED Light | Blue LED Light | ||||
---|---|---|---|---|---|---|---|---|
Toluene (%) | Butyl Acetate (%) | Limonene (%) | Toluene (%) | Butyl Acetate (%) | Limonene (%) | |||
A-1 | 0 | 39 | >95 | >95 | >95 | 0 | 0 | 92 |
B-1 | 0.75 | 39 | >95 | >95 | >95 | 0 | 12 | >95 |
B-2 | 0.75 | 78 | >95 | >95 | >95 | 0 | 10 | >95 |
C-1 | 1 | 39 | >95 | >95 | >95 | 0 | 0 | >95 |
C-2 | 1 | 78 | >95 | >95 | >95 | 0 | 39 | >95 |
D-1 | 2.5 | 39 | >95 | >95 | >95 | 0 | 14 | >95 |
D-2 | 2.5 | 78 | >95 | >95 | >95 | 0 | 34 | >95 |
D-3 * | 2.5 | 5 | >95 | >95 | >95 | 0 | 0 | 92 |
E-1 | 5 | 39 | 93 | >95 | >95 | 0 | 11 | >95 |
E-2 | 5 | 78 | 94 | >95 | >95 | 0 | 0 | >95 |
F-1 | 10 | 39 | 23 | 92 | 94 | 0 | 0 | 14 |
F-2 | 10 | 78 | 18 | 81 | 84 | n.m. | n.m. | n.m. |
G-1 | 14 | 10 | 0 | 26 | >95 | 0 | 0 | 10 |
Sample | Toluene (%) | Butyl Acetate (%) | Limonene (%) | Formaldehyde (µg·m−3) | Acetaldehyde (µg·m−3) | Formic Acid (µg·m−3) | Acetic Acid (µg·m−3) |
---|---|---|---|---|---|---|---|
A-1 | 5 | 10 | 12 | 9 | n.d. | 14 | 32 |
D-1 | 9 | 21 | 15 | 18 | 10 | 55 | 43 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mull, B.; Möhlmann, L.; Wilke, O. Photocatalytic Degradation of Toluene, Butyl Acetate and Limonene under UV and Visible Light with Titanium Dioxide-Graphene Oxide as Photocatalyst. Environments 2017, 4, 9. https://doi.org/10.3390/environments4010009
Mull B, Möhlmann L, Wilke O. Photocatalytic Degradation of Toluene, Butyl Acetate and Limonene under UV and Visible Light with Titanium Dioxide-Graphene Oxide as Photocatalyst. Environments. 2017; 4(1):9. https://doi.org/10.3390/environments4010009
Chicago/Turabian StyleMull, Birte, Lennart Möhlmann, and Olaf Wilke. 2017. "Photocatalytic Degradation of Toluene, Butyl Acetate and Limonene under UV and Visible Light with Titanium Dioxide-Graphene Oxide as Photocatalyst" Environments 4, no. 1: 9. https://doi.org/10.3390/environments4010009
APA StyleMull, B., Möhlmann, L., & Wilke, O. (2017). Photocatalytic Degradation of Toluene, Butyl Acetate and Limonene under UV and Visible Light with Titanium Dioxide-Graphene Oxide as Photocatalyst. Environments, 4(1), 9. https://doi.org/10.3390/environments4010009