Greenhouse Gas Emission Assessment from Electricity Production in the Czech Republic
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Weldu, Y.W.; Assefa, G. The search for most cost-effective way of achieving environmental sustainability status in electricity generation: Environmental life cycle cost analysis of energy scenarios. J. Clean. Prod. 2017, 142, 2296–2304. [Google Scholar] [CrossRef]
- Astudillo, M.F. Life cycle inventories of electricity supply through the lens of data quality: Exploring challenges and opportunities. Int. J. Life Cycle Assess. 2017, 22, 374–386. [Google Scholar] [CrossRef]
- Treyer, K.; Bauer, C. Life cycle inventories of electricity generation and power supply in version 3 of the ecoinvent database—Part II: Electricity markets. Int. J. Life Cycle Assess. 2014. [Google Scholar] [CrossRef]
- Asif, M.; Dehwah, A.H.A.; Ashraf, F.; Khan, H.S.; Shaukat, M.M.; Hassan, M.T. Life Cycle Assessment of a Three-Bedroom House in Saudi Arabia. Environments 2017, 4, 52. [Google Scholar] [CrossRef]
- Raugei, M.; Leccisi, E. A comprehensive assessment of the energy performance of the full range of electricity generation technologies deployed in the United Kingdom. Energy Policy 2016, 9, 46–59. [Google Scholar] [CrossRef]
- Václavík, V.; Valíček, J.; Dvorský, T.; Hryniewicz, T.; Rokosz, K.; Harničárová, M.; Kušnerová, M.; Daxner, J.; Bendová, M. A method of utilization of polyurethane after the end of its life cycle. Rocznik Ochrony Środowiska 2012, 14, 96–106. [Google Scholar]
- Dvorský, T.; Václavík, V.; Šimíček, V.; Břenek, A. Research of the Use of Waste Rigid Polyurethane Foam in the Segment of Lightweight Concretes. Inzynieria Mineralna 2015, 36, 51–56. [Google Scholar]
- Břenek, A.; Öchsner, A.; Václavík, V.; Altenbach, H.; Dvorský, T.; Daxner, J.; Dirner, V.; Bendová, M.; Harničárová, M.; Valíček, J. Capillary Active Insulations Based on Waste Calcium Silicates. Adv. Struct. Mater. 2015, 70, 177–188. [Google Scholar]
- Günkaya, Z.; Özdemir, A.; Özkan, A.; Banar, M. Environmental Performance of Electricity Generation Based on Resources: A Life Cycle Assessment Case Study in Turkey. Sustainability 2016, 8, 1097. [Google Scholar] [CrossRef]
- Laurent, A.; Espinosa, N. Environmental impacts of electricity generation at global, regional and national scales in 1980–2011: What can we learn for future energy planning? Energy Environ. Sci. 2015, 8, 689–701. [Google Scholar] [CrossRef] [Green Version]
- Ou, X.; Yan, X.; Zhang, X. Life-cycle energy consumption and greenhouse gas emissions for electricity generation and supply in China. Appl. Energy 2011, 88, 289–297. [Google Scholar] [CrossRef]
- Garcia, R.; Marques, P.; Freire, F. Life-cycle assessment of electricity in Portugal. Appl. Energy 2014, 134, 563–572. [Google Scholar] [CrossRef]
- Stamford, L.; Azapagic, A. Life cycle sustainability assessment of UK electricity scenarios to 2070. Energy Sustain. Dev. 2014, 23, 194–211. [Google Scholar] [CrossRef]
- Peiu, N. Life cycle inventory study of the electrical energy production in Romania. Int. J. Life Cycle Assess. 2007, 12, 225–229. [Google Scholar] [CrossRef]
- Felix, M.; Gheewala, S.H. Environmental assessment of electricity production in Tanzania. Energy Sustain. Dev. 2012, 16, 439–447. [Google Scholar] [CrossRef]
- Santoyo-Castelazo, E.; Gujba, H.; Azapagic, A. Life cycle assessment of electricity generation in Mexico. Energy 2011, 36, 1488–1499. [Google Scholar] [CrossRef]
- Brizmohun, R.; Ramjeawon, T.; Azapagic, A. Life cycle assessment of electricity generation in Mauritius. J. Clean. Prod. 2014, 16, 1727–1734. [Google Scholar] [CrossRef]
- Jones, C.; Gilbert, P.; Raugei, M.; Mander, S.; Leccisi, E. An approach to prospective consequential life cycle assessment and net energy analysis of distributed electricity generation. Energy Policy 2017, 100, 350–358. [Google Scholar] [CrossRef]
- Hondo, H. Life cycle GHG emission analysis of power generation systems: Japanese case. Energy 2005, 30, 2042–2056. [Google Scholar] [CrossRef]
- Kannan, R.; Leong, K.C.; Osman, R.; Ho, H.K. Life cycle energy, emissions and cost inventory of power generation technologies in Singapore. Renew. Sustain. Energy Rev. 2007, 11, 702–715. [Google Scholar] [CrossRef]
- Fantin, V.; Giuliano, A.; Manfredi, M.; Ottaviano, G.; Stefanova, M.; Masoni, P. Environmental assessment of electricity generation from an Italian anaerobic digestion plant. Biomass Bioenergy 2015, 83, 422–435. [Google Scholar] [CrossRef]
- Tomasini-Montenegro, C.; Santoyo-Castelazo, E.; Gujba, H.; Romero, R.J.; Santoyo, E. Life cycle assessment of geothermal power generation technologies: An updated review. Appl. Therm. Eng. 2017, 114, 1119–1136. [Google Scholar] [CrossRef]
- Turconi, R.; O’Dwyer, C.; Flynn, D.; Astrup, T. Emissions from cycling of thermal power plants in electricity systems with high penetration of wind power: Life cycle assessment for Ireland. Appl. Energy 2014, 131, 1–8. [Google Scholar] [CrossRef]
- Ehtiwesh, I.A.S.; Coelho, M.C.; Sousa, A.C.M. Exergetic and environmental life cycle assessment analysis of concentrated solar power plants. Renew. Sustain. Energy Rev. 2016, 56, 145–155. [Google Scholar] [CrossRef]
- Peric, M.; Komatina, M.; Bugarski, B.; Antonijevic, D. Best Practices of Biomass Energy Life Cycle Assessment and Possible Applications in Serbia. Croat. J. For. Eng. 2016, 37, 375–390. [Google Scholar]
- Gu, H.M.; Bergman, R. Cradle-to-grave life cycle assessment of syngas electricity from woody biomass residues. Wood Fiber Sci. 2017, 49, 177–192. [Google Scholar]
- Honus, S.; Kumagai, S.; Němček, O.; Yoshioka, T. Replacing conventional fuels in USA, Europe, and UK with plastic pyrolysis gases—Part I: Experiments and graphical interchangeability methods. Energy Convers. Manag. 2016, 126, 1118–1127. [Google Scholar] [CrossRef]
- Honus, S.; Kumagai, S.; Yoshioka, T. Replacing conventional fuels in USA, Europe, and UK with plastic pyrolysis gases—Part II: Multi-index interchangeability methods. Energy Convers. Manag. 2016, 126, 1128–1145. [Google Scholar] [CrossRef]
- Liang, X.; Wang, Z.; Zhou, Z.; Huang, Z.; Zhou, J.; Cen, K. Up-to-date life cycle assessment and comparison study of clean coal power generation technologies in China. J. Clean. Prod. 2013, 39, 24–31. [Google Scholar] [CrossRef]
- Burchart-Korol, D.; Korol, J.; Czaplicka-Kolarz, K. Life cycle assessment of heat production from underground coal gasification. Int. J. Life Cycle Assess. 2016, 21, 1391–1403. [Google Scholar] [CrossRef]
- Hyder, Z.; Ripepi, N.S.; Karmis, M.E. A life cycle comparison of greenhouse emissions for power generation from coal mining and underground coal gasification. Mitig. Adapt. Strateg. Glob. Chang. 2016, 21, 515–546. [Google Scholar] [CrossRef]
- Koci, V.; Trecakova, T. Mixed municipal waste management in the Czech Republic from the point of view of the LCA method. Int. J. Life Cycle Assess. 2011, 16, 113–124. [Google Scholar] [CrossRef]
- Luňáčková, P.; Průša, J.; Janda, K. The merit order effect of Czech photovoltaic plants. Energy Policy 2017, 106, 138–147. [Google Scholar] [CrossRef]
- Europe Commission. EU Reference Scenario 2016—Energy, Transport and GHG Emissions—Trends to 2050; The European Commission Report; Europe Commission: Brussels, Belgium, 2016. [Google Scholar]
- International Organization for Standardization (ISO). 14044:2006—Environmental Management. Life Cycle Assessment. Requirements and Guidelines. Available online: https://www.saiglobal.com/pdftemp/previews/osh/iso/updates2006/wk26/iso_14044-2006.pdf (accessed on 1 July 2006).
- Intergovernmental Panel on Climate Change. IPCC Fifth Assessment Report. The Physical Science Basis. 2007. Available online: http://www.ipcc.ch (accessed on 15 November 2017).
- Energy Policies of IEA Countries—Czech Republic 2016. Review The International Energy Agency. Available online: http://www.iea.org (accessed on 8 November 2017).
- The Voice of Coal in Europe. Available online: https://euracoal.eu/info/country-profiles/czech-republic/ (accessed on 8 January 2018).
- State Energy Policy of the Czech Republic. Available online: https://www.mzp.cz/C125750E003B698B/en/climate_energy/$FILE/OEOK-State_Energy_Policy-20160310.pdf (accessed on 24 November 2017).
- Ministry of Agriculture of the Czech Republic. Action Plan for Biomass in the Czech Republic for the Period 2012–2020; Ministry of Agriculture: Prague, Czech Republic, 2016.
- Czech Republic—Energy System Overview. Available online: http://www.iea.org/media/countries/CzechRepublic.pdf (accessed on 15 November 2017).
Year | Total | Nuclear | Hard Coal | Lignite | Oil | Natural Gas | Biomass Waste | Hydro | Wind | Solar |
---|---|---|---|---|---|---|---|---|---|---|
2000 | 917 | 1.45 | 112.69 | 746.98 | 6.15 | 48.97 | 0.43 | 0.09 | 0.00 | 0.00 |
2005 | 773 | 2.35 | 94.15 | 624.03 | 4.79 | 47.01 | 0.53 | 0.11 | 0.00 | 0.00 |
2010 | 707 | 2.56 | 86.02 | 570.10 | 2.24 | 44.14 | 1.50 | 0.12 | 0.04 | 0.62 |
2015 | 670 | 2.62 | 77.99 | 516.98 | 3.39 | 65.17 | 1.58 | 0.11 | 0.07 | 2.25 |
2020 | 673 | 2.69 | 81.97 | 543.32 | 0.00 | 41.13 | 0.80 | 0.12 | 0.11 | 2.39 |
2025 | 661 | 2.58 | 76.08 | 504.22 | 0.00 | 73.27 | 1.95 | 0.11 | 0.11 | 2.33 |
2030 | 651 | 2.51 | 70.36 | 466.33 | 0.00 | 107.05 | 2.50 | 0.11 | 0.12 | 2.28 |
2035 | 517 | 3.30 | 50.23 | 332.96 | 0.00 | 124.62 | 2.98 | 0.11 | 0.12 | 2.27 |
2040 | 355 | 4.12 | 25.02 | 165.80 | 0.00 | 153.58 | 4.27 | 0.12 | 0.12 | 2.28 |
2045 | 262 | 4.53 | 11.57 | 76.65 | 0.00 | 161.37 | 5.14 | 0.14 | 0.20 | 2.22 |
2050 | 331 | 4.22 | 27.81 | 184.39 | 0.00 | 107.67 | 4.43 | 0.14 | 0.20 | 2.54 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jursová, S.; Burchart-Korol, D.; Pustějovská, P.; Korol, J.; Blaut, A. Greenhouse Gas Emission Assessment from Electricity Production in the Czech Republic. Environments 2018, 5, 17. https://doi.org/10.3390/environments5010017
Jursová S, Burchart-Korol D, Pustějovská P, Korol J, Blaut A. Greenhouse Gas Emission Assessment from Electricity Production in the Czech Republic. Environments. 2018; 5(1):17. https://doi.org/10.3390/environments5010017
Chicago/Turabian StyleJursová, Simona, Dorota Burchart-Korol, Pavlína Pustějovská, Jerzy Korol, and Agata Blaut. 2018. "Greenhouse Gas Emission Assessment from Electricity Production in the Czech Republic" Environments 5, no. 1: 17. https://doi.org/10.3390/environments5010017
APA StyleJursová, S., Burchart-Korol, D., Pustějovská, P., Korol, J., & Blaut, A. (2018). Greenhouse Gas Emission Assessment from Electricity Production in the Czech Republic. Environments, 5(1), 17. https://doi.org/10.3390/environments5010017