Land Use/Land Cover (LULC) Using Landsat Data Series (MSS, TM, ETM+ and OLI) in Azrou Forest, in the Central Middle Atlas of Morocco
Abstract
:1. Introduction
2. Materials and Methods
3. Methodology
3.1. Data Source and Pre-Processing
3.2. NDVI Classification
3.3. Maximum Likelihood Classifier
3.4. Accuracy Assessment
4. Results and Discussion
4.1. Results
4.1.1. Land Uses/Land Cover Changes Monitoring
4.1.2. Accuracy Assessment
4.1.3. NDVI Land Cover
4.2. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Giri, C.; Wang, Y. Remote Sensing of Land Use and Land Cover; Giri, C., Ed.; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Gong, P.; Wang, J.; Yu, L.; Zhao, Y.; Zhao, Y.; Liang, L.; Niu, Z.; Huang, X.; Fu, H.; Liu, S.; et al. Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data. Int. J. Remote Sens. 2013, 34, 2607–2654. [Google Scholar] [CrossRef]
- Chowdhury, S.; Chao, D.K.; Shipman, T.C.; Wulder, M.A. Utilization of Landsat data to quantify land-use and land-cover changes related to oil and gas activities in West-Central Alberta from 2005 to 2013. GISci. Remote Sens. 2017, 54, 700–720. [Google Scholar] [CrossRef]
- Muttitanon, W.; Tripathi, N.K. Land use/land cover changes in the coastal zone of Ban Don Bay, Thailand using Landsat 5 TM data. Int. J. Remote Sens. 2005, 26, 2311–2323. [Google Scholar] [CrossRef]
- Gerard, F.; Petit, S.; Smith, G.; Thomson, A.; Brown, N.; Manchester, S.; Wadsworth, R.; Bugar, G.; Halada, L.; Bezak, P.; et al. Land cover change in Europe between 1950 and 2000 determined employing aerial photography. Prog. Phys. Geogr. 2010, 34, 183–205. [Google Scholar] [CrossRef] [Green Version]
- Clerici, N.; Paracchini, M.L.; Maes, J. Land-cover change dynamics and insights into ecosystem services in European stream riparian zones. Ecohydrol. Hydrobiol. 2014, 14, 107–120. [Google Scholar] [CrossRef]
- Pervez, M.S.; Henebry, G.M. Assessing the impacts of climate and land use and land cover change on the freshwater availability in the Brahmaputra River basin. J. Hydrol. Reg. Stud. 2015, 3, 285–311. [Google Scholar] [CrossRef]
- Balthazar, V.; Vanacker, V.; Molina, A.; Lambin, E.F. Impacts of forest cover change on ecosystem services in high Andean mountains. Ecol. Indic. 2015, 48, 63–75. [Google Scholar] [CrossRef]
- Pasha, S.V.; Reddy, C.S.; Jha, C.S.; Rao, P.P.; Dadhwal, V.K. Assessment of land cover change hotspots in Gulf of Kachchh, India using multi-temporal remote sensing data and GIS. J. Indian Soc. Remote Sens. 2016, 44, 905–913. [Google Scholar] [CrossRef]
- Baumann, M.; Ozdogan, M.; Wolter, P.T.; Krylov, A.; Vladimirova, N.; Radeloff, V.C. Landsat remote sensing of forest windfall disturbance. Remote Sens. Environ. 2014, 143, 171–179. [Google Scholar] [CrossRef]
- Satyanarayana, B.; Thierry, B.; Seen, D.L.; Raman, A.V.; Muthusankar, G. Remote sensing in mangrove research-relationship between vegetation indices and dendrometric parameters: A case for Coringa, east coast of India. In proceeding of the 22nd Asian Conference on Remote Sensing, Singapore, 5–9 November 2001; Volume 5, p. 9. [Google Scholar]
- Liang, D.; Zuo, Y.; Huang, L.; Zhao, J.; Teng, L.; Yang, F. Evaluation of the consistency of MODIS land cover product (MCD12Q1) based on Chinese 30 m globeland 30 datasets: A case study in Anhui Province, China. ISPRS Int. J. Geo-Inf. 2015, 4, 2519–2541. [Google Scholar] [CrossRef]
- Townshend, J.R.G.; Gayler, J.R.; Hardy, J.R.; Jackson, M.J.; Baker, J.R. Preliminary analysis of LANDSAT-4 Thematic Mapper. Int. J. Remote Sens. 1983, 4, 817–828. [Google Scholar] [CrossRef]
- Taylor, P.; Horler, D.N.H.; Ahern, F.J. Forestry information content of Thematic Mapper data. Int. J. Remote Sens. 2007, 37–41. [Google Scholar] [CrossRef]
- Lunetta, R.S.; Lyon, J.G.; Guindon, B.; Elvidge, C.D. North American landscape characterization dataset development and data fusion issues. Photogramm. Eng. Remote Sens. 1998, 64, 821–828. [Google Scholar]
- Cohen, W.B.; Goward, S.N. Landsat’s role in ecological applications of remote sensing. AIBS Bull. 2004, 54, 535–545. [Google Scholar] [CrossRef]
- Campbell, J.B. Introduction to Remote Sensing, 4th ed.; The Guilford Press: New York, NY, USA, 2007. [Google Scholar]
- Yuan, F.; Sawaya, K.E.; Loeffelholz, B.C.; Bauer, M.E. Land cover classification and change analysis of the Twin Cities (Minnesota) Metropolitan Area by multitemporal Landsat remote sensing. Remote Sens. Environ. 2005, 98, 317–328. [Google Scholar] [CrossRef]
- Demissie, F.; Yeshitila, K.; Kindu, M.; Schneider, T. Land use/Land cover changes and their causes in Libokemkem District of South Gonder, Ethiopia. Remote Sens. Appl. Soc. Environ. 2017, 8, 224–230. [Google Scholar] [CrossRef]
- Barakat, A.; Khellouk, R.; El Jazouli, A.; Touhami, F.; Nadem, S. Monitoring of forest cover dynamics in eastern area of Béni-Mellal Province using ASTER and Sentinel-2A multispectral data. Geol. Ecol. Landsc. 2018, 2, 203–215. [Google Scholar] [CrossRef]
- De Waroux, Y.L.P.; Lambin, E.F. Monitoring degradation in arid and semi-arid forests and woodlands: The case of the argan woodlands (Morocco). Appl. Geogr. 2012, 32, 777–786. [Google Scholar] [CrossRef]
- Hammi, S.; Simonneaux, V.; Cordier, J.B.; Genin, D.; Alifriqui, M.; Montes, N.; Auclair, L. Can traditional forest management buffer forest depletion? Dynamics of Moroccan High Atlas Mountain forests using remote sensing and vegetation analysis. For. Ecol. Manag. 2010, 260, 1861–1872. [Google Scholar] [CrossRef] [Green Version]
- Lu, D.; Mausel, P.; Batistella, M.; Moran, E. Land-cover binary change detection methods for use in the moist tropical region of the Amazon: A comparative study. Int. J. Remote Sens. 2005, 26, 101–114. [Google Scholar] [CrossRef]
- Lu, D.; Mausel, P.; Brondizio, E.; Moran, E. Change detection techniques. Int. J. Remote Sens. 2004, 25, 2365–2401. [Google Scholar] [CrossRef]
- Coppin, P.; Lambin, E.; Jonckheere, I.; Muys, B. Digital change detection methods in natural ecosystem monitoring: A review. In Analysis of Multi-Temporal Remote Sensing Images; World Scientific: Singapore, 2002; pp. 3–36. [Google Scholar]
- Linares, J.C.; Taïqui, L.; Camarero, J.J. Increasing drought sensitivity and decline of Atlas cedar (Cedrus atlantica) in the Moroccan Middle Atlas forests. Forests 2011, 2, 777–796. [Google Scholar] [CrossRef]
- Linares, J.C.; Taïqui, L.; Sangüesa-Barreda, G.; Seco, J.I.; Camarero, J.J. Age-related drought sensitivity of Atlas cedar (Cedrus atlantica) in the Moroccan Middle Atlas forests. Dendrochronologia 2013, 31, 88–96. [Google Scholar] [CrossRef]
- Navarro-Cerrillo, R.M.; Manzanedo, R.D.; Bohorque, J.; Sánchez, R.; Sánchez, J.; de Miguel, S.; Solano, D.; Qarro, M.; Griffith, D.; Palacios, G. Structure and spatio-temporal dynamics of cedar forests along a management gradient in the Middle Atlas, Morocco. For. Ecol. Manag. 2013, 289, 341–353. [Google Scholar] [CrossRef]
- Mohajane, M.; Essahlaoui, A.; Oudija, F.; El Hafyani, M.; Cláudia Teodoro, A. Mapping Forest Species in the Central Middle Atlas of Morocco (Azrou Forest) through Remote Sensing Techniques. ISPRS Int. J. Geo-Inf. 2017, 6, 275. [Google Scholar] [CrossRef]
- Hyyppä, J.; Hyyppä, H.; Inkinen, M.; Engdahl, M.; Linko, S.; Zhu, Y.H. Accuracy comparison of various remote sensing data sources in the retrieval of forest stand attributes. For. Ecol. Manag. 2000, 128, 109–120. [Google Scholar] [CrossRef]
- Fidah, A.; Salhi, N.; Rahouti, M.; Kabouchi, B.; Ziani, M.; Aberchane, M.; Famiri, A. Natural durability of Cedrus atlantica wood related to the bioactivity of its essential oil against wood decaying fungi. Maderas. Ciencia y Tecnología 2016, 18, 567–576. [Google Scholar] [CrossRef]
- El Abidine, A.Z.; Lamhamedi, M.S.; Taoufik, A. Relations hydriques des arbres sains et dépérissants de Cedrus atlantica M. au Moyen Atlas Tabulaire au Maroc. Geo-Eco-Trop 2013, 37, 157–176. [Google Scholar]
- Osunmadewa, B.A.; Gebrehiwot, W.Z.; Csaplovics, E.; Adeofun, O.C. Spatio-temporal monitoring of vegetation phenology in the dry sub-humid region of Nigeria using time series of AVHRR NDVI and TAMSAT datasets. Open Geosci. 2018, 10, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Pal, M.; Mather, P.M. An assessment of the effectiveness of decision tree methods for land cover classification. Remote Sens. Environ. 2003, 86, 554–565. [Google Scholar] [CrossRef]
- ERDAS. ERDAS Field Guide, Revised and Expanded, 15th ed.; ERDAS, Inc.: Atlanta, GA, USA, 1999. [Google Scholar]
- TOBA Societe d’Etudes Techniques & d’Ingenierie (SOGREAH-TTOBA). Etudes d’aménagement Concerte Des Forets et Parcours Collectifs De La Province d’Ifrane. Foret d’Azrou: Plan d’aménagement; Royaume du Maroc—Haut-Commissariat aux Eaux et Forêts, à la Lutte contre la Désertification; Direction Regionale des Eaux et Forêts de Meknes: Rabat, Morocco, 2007. [Google Scholar]
- Linares, J.C.; Tíscar, P.A.; Camarero, J.J.; Taïqui, L.; Viñegla, B.; Seco, J.I.; Merino, J.; Carreira, J.A. Tree growth decline on relict Western-Mediterranean mountain forests: Causes and impacts. In Forest Decline: Causes and Impacts; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2011. [Google Scholar]
- Le Dilemme Entre Développement Et Protection Dans Les Montagnes Du Maroc-Le Cas Des Parcs Du Moyen Atlas. Available online: https://journals.openedition.org/geocarrefour/3002 (accessed on 17 October 2018).
- Sun, Z.; Ma, R.; Wang, Y. Using landsat data to determine land use changes in Datong basin, China. Environ. Geol. 2009, 57, 1825–1837. [Google Scholar] [CrossRef]
- QGIS. QGIS Geographic Information System; Open Source Geospatial Foundation Project. Available online: https://qgis.org/en/site/ (accessed on 15 May 2018 ).
- Semi-Automatic Classification Plugin Documentation. Available online: https://media.readthedocs.org/pdf/semiautomaticclassificationmanual-v3/latest/semiautomaticclassificationmanual-v3.pdf (accessed on 17 October 2018).
- Chavez, P.S., Jr. An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data. Remote Sens. Environ. 1988, 24, 459–479. [Google Scholar] [CrossRef]
- Schroeder, T.A.; Cohen, W.B.; Song, C.; Canty, M.J.; Yang, Z. Radiometric correction of multi-temporal Landsat data for characterization of early successional forest patterns in Western Oregon. Remote Sens. Environ. 2006, 103, 16–26. [Google Scholar] [CrossRef]
- Tan, K.C.; San Lim, H.; MatJafri, M.Z.; Abdullah, K. Landsat data to evaluate urban expansion and determine land use/land cover changes in Penang Island, Malaysia. Environ. Earth Sci. 2010, 60, 1509–1521. [Google Scholar] [CrossRef]
- Nelson, G.C.; Geoghegan, J. Deforestation and land use change: Sparse data environments. Agric. Econ. 2002, 27, 201–216. [Google Scholar] [CrossRef]
- Wang, Z.; Yao, W.; Tang, Q.; Liu, L.; Xiao, P.; Kong, X.; Zhang, P.; Shi, F.; Wang, Y. Continuous Change Detection of Forest/Grassland and Cropland in the Loess Plateau of China Using all Available Landsat Data. Remote Sens. 2018, 10, 1775. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Song, C.; Woodcock, C.E.; Seto, K.C.; Lenney, M.P.; Macomber, S.A. Classification and change detection using Landsat TM data: When and how to correct atmospheric effects? Remote Sens. Environ. 2001, 75, 230–244. [Google Scholar] [CrossRef]
- Currit, N. Development of a remotely sensed, historical land-cover change database for rural Chihuahua, Mexico. Int. J. Appl. Earth Obs. Geoinf. 2005, 7, 232–247. [Google Scholar] [CrossRef]
- Paola, J.D.; Schowengerdt, R.A. A detailed comparison of back propagation neural network and maximum-likelihood classifiers for urban land use classification. IEEE Trans. Geosci. Remote Sens. 1995, 33, 981–996. [Google Scholar] [CrossRef]
- Remote Sensing Digital Image Analysis An Introduction. Available online: https://link.springer.com/book/10.1007/3-540-29711-1 (accessed on 17 October 2018).
- Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Neural Network Approaches Versus Statistical Methods in Classification of Multisource Remote Sensing Data. Available online: https://ntrs.nasa.gov/search.jsp?R=19900062611 (accessed on 17 October 2018).
- Otukei, J.R.; Blaschke, T. Land cover change assessment using decision trees, support vector machines and maximum likelihood classification algorithms. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, S27–S31. [Google Scholar] [CrossRef]
- Wardlow, B.D.; Egbert, S.L.; Kastens, J.H. Analysis of time-series MODIS 250 m vegetation index data for crop classification in the US Central Great Plains. Remote Sens. Environ. 2007, 108, 290–310. [Google Scholar] [CrossRef]
- Wei, J.; Liu, X.; Liu, J. Integrating textural and spectral features to classify silicate-bearing rocks using Landsat 8 data. Appl. Sci. 2016, 6, 283. [Google Scholar] [CrossRef]
- Wang, Y.; Qi, Q.; Liu, Y. Unsupervised segmentation evaluation using area-weighted variance and Jeffries-Matusita distance for remote sensing images. Remote Sens. 2018, 10, 1193. [Google Scholar] [CrossRef]
- Lu, D.; Weng, Q. A survey of image classification methods and techniques for improving classification performance. Int. J. Remote Sens. 2007, 28, 823–870. [Google Scholar] [CrossRef] [Green Version]
- Teodoro, A.C.; Araujo, R. Comparison of performance of object-based image analysis techniques available in open source software (Spring and Orfeo Toolbox/Monteverdi) considering very high spatial resolution data. J. Appl. Remote Sens. 2016, 10, 016011. [Google Scholar] [CrossRef]
- Derivation and Applications of Probabilistic Measures of Class Membership from the Maximum-Likelihood Classification. Available online: https://www.asprs.org/wp-content/uploads/pers/1992journal/sep/1992_sep_1335-1341.pdf (accessed on 17 October 2018).
- Smits, P.C.; Commission, E.; Dellepiane, S.G. Quality assessment of image classification algorithms for land-cover mapping: A review and a proposal for a cost-based approach. Int. J. Remote Sens. 1999, 20. [Google Scholar] [CrossRef]
- Manandhar, R.; Odeh, I.O.; Ancev, T. Improving the accuracy of land use and land cover classification of Landsat data using post-classification enhancement. Remote Sens. 2009, 1, 330–344. [Google Scholar] [CrossRef]
- Anderson, J.R. A Land Use and Land cover Classification System for Use with Remote Sensor Data; US Government Printing Office: Washington, DC, USA, 1976; Volume 964. [Google Scholar]
- Thomlinson, J.R.; Bolstad, P.V.; Cohen, W.B. Coordinating methodologies for scaling land cover classifications from site-specific to global: Steps toward validating global map products. Remote Sens. Environ. 1999, 70, 16–28. [Google Scholar] [CrossRef]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Reis, S. Analyzing land use/land cover changes using remote sensing and GIS in Rize, North-East Turkey. Sensors 2008, 8, 6188–6202. [Google Scholar] [CrossRef] [PubMed]
- Tole, L. An estimate of forest cover extent and change in Jamaica using Landsat MSS data. Int. J. Remote Sens. 2002, 23, 91–106. [Google Scholar] [CrossRef]
- Apan, A.A. Land cover mapping for tropical forest rehabilitation planning using remotely-sensed data. Int. J. Remote Sens. 1997, 18, 1029–1049. [Google Scholar] [CrossRef]
- Pang, C.; Yu, H.; He, J.; Xu, J. Deforestation and changes in landscape patterns from 1979 to 2006 in Suan County, DPR Korea. Forests 2013, 4, 968–983. [Google Scholar] [CrossRef]
- Ozesmi, S.L.; Bauer, M.E. Satellite remote sensing of wetlands. Wetl. Ecol. Manag. 2002, 10, 381–402. [Google Scholar]
- Lu, D.; Moran, E.; Batistella, M. Linear mixture model applied to Amazonian vegetation classification. Remote Sens. Environ. 2003, 87, 456–469. [Google Scholar] [CrossRef] [Green Version]
- Haboudane, D. Deforestation detection and monitoring in cedar forests of the Moroccan Middle-Atlas Mountains. In Proceedings of the 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 23–28 July 2007; pp. 4327–4330. [Google Scholar]
- Observations Satellitaires de L’état de la Cédraie du MOYEN Atlas: Étude Régionale de la Déforestation et Détection Localisée du Dépérissement du Cèdre. Available online: https://www.researchgate.net/profile/Jad_Tahouri/publication/306938711_Le_patrimoine_forestier_et_le_developpement_durable_du_Maroc_Cedre-Magot_est-ce_qu’il_existe_un_rapport_entre_la_degradation_de_la_foret_des_cedraies_et_le_singe_magot/links/5808c3de08aefaf02a2f7a84/Le-patrimoine-forestier-et-le-developpement-durable-du-Maroc-Cedre-Magot-est-ce-quil-existe-un-rapport-entre-la-degradation-de-la-foret-des-cedraies-et-le-singe-magot.pdf (accessed on 17 October 2018).
- Transtec. Mission D’evaluation Finale Du Projet. Développement Rural Participatif Dans le Moyen Atlas Central (Projet Khénifra) au Maroc. 2010. Available online: http://www.eauxetforets.gov.ma/admin/telechargement/fr/Projet_Khenifra.pdf (accessed on 17 October 2018).
- Bilan des Réalisations du HCEFLCD 2011/DPSIC/DSI/SSE. Available online: http://www.eauxetforets.gov.ma (accessed on 20 November 2018).
- Forets et Développement Durable Dans Les Provinces de Chefchaouen et Ifrane. Available online: http://www.eauxetforets.gov.ma/fr/index.aspx (accessed on 17 October 2018).
Date (yyyy/mm/dd) | Pass | Spatial Resolution (m) | Cloud Cover | |
---|---|---|---|---|
MSS | 1987/09/12 | Descending | 79 | 0% |
TM | 1995/07/02 | Descending | 30 | 0% |
ETM+ | 2000/08/06 | Descending | 30 | 0% |
TM | 2011/07/28 | Descending | 30 | 0% |
OLI | 2017/07/28 | Descending | 30 | 0% |
Image | Class | Number of Pixels |
---|---|---|
MSS | Holm oak | 8462 |
Cedar forest | 11,641 | |
Bare soil | 29,025 | |
TM (1995) | Holm oak | 4639 |
Cedar forest | 11,549 | |
Bare soil | 11,803 | |
ETM+ | Holm oak | 5300 |
Cedar forest | 7160 | |
Bare soil | 17,069 | |
TM (2011) | Holm oak | 10,102 |
Cedar forest | 19,385 | |
Bare soil | 14,773 | |
OLI (2017) | Holm oak | 7076 |
Cedar forest | 12,169 | |
Bare soil | 15,203 |
Landsat Images | ROI Pairs | Separability |
---|---|---|
MSS (1987) | cedar forest/holm oak | 1.25491 |
bare soil/holm oak | 1.99234 | |
bare soil/cedar forest | 1.99536 | |
TM (1995) | cedar forest/holm oak | 1.88294 |
bare soil/holm oak | 1.99711 | |
bare soil/cedar forest | 1.99982 | |
ETM+ (2000) | cedar forest/holm oak | 1.75028 |
bare soil/holm oak | 1.99974 | |
bare soil/cedar forest | 1.99990 | |
TM (2011) | cedar forest/holm oak | 1.89461 |
bare soil/holm oak | 1.99786 | |
bare soil/cedar forest | 1.99999 | |
Landsat 8 OLI (2017) | cedar forest/holm oak | 1.85464 |
bare soil/holm oak | 1.99978 | |
bare soil/cedar forest | 1.99999 |
LULC Classes | 1987 | 1995 | 2000 | 2011 | 2017 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Area (ha) | % | Area (ha) | % | Area (ha) | % | Area (ha) | % | Area (ha) | % | |
Cedar forest | 3868.1 | 38.7 | 2882.3 | 35.9 | 6064.5 | 24.6 | 6356.1 | 25.8 | 7463.5 | 30.3 |
Holm oak | 11,214.7 | 15.7 | 12,883.4 | 11.7 | 9827.1 | 39.0 | 10,560.7 | 42.9 | 9151.9 | 37.1 |
Bare soil | 9528.5 | 45.5 | 8845.6 | 52.3 | 8719.7 | 35.4 | 7694.5 | 31.2 | 7995.9 | 32.4 |
Year: 1987 | |||||
---|---|---|---|---|---|
LULC class | Cedar forest | Holm oak | Bare soil | Producer’s accuracy | User’s accuracy |
Cedar forest | 103,634 | 999,900 | 8917 | 0.09 | 0.50 |
Holm oak | 99,998 | 110,711 | 99,969 | 0.35 | 0.09 |
Bare soil | 1092 | 9344 | 2,240,347 | 0.99 | 0.95 |
Overall accuracy: 66.8%; Kappa accuracy: 0.413 | |||||
Year: 1995 | |||||
LULC class | Cedar forest | Holm oak | Bare soil | Producer’s accuracy | User’s accuracy |
Cedar forest | 3,657,203 | 147 | 17 | 0.99 | 0.99 |
Holm oak | 601 | 14,034 | 11 | 0.95 | 0.98 |
Bare soil | 32 | 15 | 1852 | 0.97 | 0.98 |
Overall accuracy: 99.9%; Kappa accuracy: 0.974 | |||||
Year: 2000 | |||||
LULC class | Cedar forest | Holm oak | Bare soil | Producer’s accuracy | User’s accuracy |
Cedar forest | 130,000 | 528 | 87 | 0.99 | 0.96 |
Holm oak | 4900 | 817,769 | 73 | 0.99 | 0.99 |
Bare soil | 53 | 432 | 2,720,070 | 0.99 | 0.99 |
Overall accuracy: 99.8%; Kappa accurac:0.995 | |||||
Year: 2011 | |||||
Cedar forest | Holm oak | Bare soil | Producer’s accuracy | User’s accuracy | |
Cedar forest | 3,800,00 | 800 | 76 | 0.99 | 0.99 |
Holm oak | 1300 | 662,000 | 52 | 0.99 | 0.99 |
Bare soil | 24 | 12 | 2,629,648 | 0.99 | 0.99 |
Overall accuracy: 99.9%; Kappa accuracy: 0.998 | |||||
Year: 2017 | |||||
Cedar forest | Holm oak | Bare soil | Producer’s accuracy | User’s accuracy | |
Cedar forest | 325,000 | 300 | 19 | 0.99 | 0.99 |
Holm oak | 900 | 673,000 | 12 | 0.99 | 0.99 |
Bare soil | 61 | 12 | 2,674,608 | 0.99 | 0.99 |
Overall accuracy: 99.9%; Kappa accuracy: 0.999 |
NDVI Classes | 1987 | 1995 | 2000 | 2011 | 2017 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Area (km2) | % | Area (km2) | % | Area (km2) | % | Area (km2) | % | Area (km2) | % | |
Low-density vegetation | 67.4 | 27.4 | 20.4 | 8.2 | 81.2 | 33 | 46.6 | 18.9 | 5.1 | 2.1 |
Moderate-density vegetation | 107.8 | 43.8 | 90.2 | 36.6 | 150.5 | 61.1 | 181.5 | 73.7 | 81.7 | 33.2 |
High-density vegetation | 70.8 | 28.7 | 135.5 | 55.05 | 14.3 | 5.8 | 17.9 | 7.2 | 159.1 | 64.6 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohajane, M.; Essahlaoui, A.; Oudija, F.; Hafyani, M.E.; Hmaidi, A.E.; Ouali, A.E.; Randazzo, G.; Teodoro, A.C. Land Use/Land Cover (LULC) Using Landsat Data Series (MSS, TM, ETM+ and OLI) in Azrou Forest, in the Central Middle Atlas of Morocco. Environments 2018, 5, 131. https://doi.org/10.3390/environments5120131
Mohajane M, Essahlaoui A, Oudija F, Hafyani ME, Hmaidi AE, Ouali AE, Randazzo G, Teodoro AC. Land Use/Land Cover (LULC) Using Landsat Data Series (MSS, TM, ETM+ and OLI) in Azrou Forest, in the Central Middle Atlas of Morocco. Environments. 2018; 5(12):131. https://doi.org/10.3390/environments5120131
Chicago/Turabian StyleMohajane, Meriame, Ali Essahlaoui, Fatiha Oudija, Mohammed El Hafyani, Abdellah El Hmaidi, Abdelhadi El Ouali, Giovanni Randazzo, and Ana C. Teodoro. 2018. "Land Use/Land Cover (LULC) Using Landsat Data Series (MSS, TM, ETM+ and OLI) in Azrou Forest, in the Central Middle Atlas of Morocco" Environments 5, no. 12: 131. https://doi.org/10.3390/environments5120131
APA StyleMohajane, M., Essahlaoui, A., Oudija, F., Hafyani, M. E., Hmaidi, A. E., Ouali, A. E., Randazzo, G., & Teodoro, A. C. (2018). Land Use/Land Cover (LULC) Using Landsat Data Series (MSS, TM, ETM+ and OLI) in Azrou Forest, in the Central Middle Atlas of Morocco. Environments, 5(12), 131. https://doi.org/10.3390/environments5120131