Land Use/Land Cover Change Detection and Urban Sprawl Analysis in the Mount Makiling Forest Reserve Watersheds and Buffer Zone, Philippines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Urban Sprawl Detection and Assessment
2.2.1. Spatial Data Acquisition
2.2.2. Image Preprocessing
2.2.3. Classification and Analysis
2.2.4. Accuracy Assessment
2.2.5. Classification Post Processing
2.2.6. Calculation of Shannon’s Entropy
3. Results and Discussion
3.1. Land Classification Change Analysis
3.2. Land Cover Change Detection
3.3. Classification Accuracy Assessment
- The legal standing of maps and reports derived from remotely-sensed data.
- The operational use of such data for decision making e.g., watershed management.
- The validity as input for scientific research.
- Overall accuracy—shows the overall quality of the data and computed as:Overall Accuracy = Total Correct (sum of the major diagonal)/Total number of pixels in the matrix
- Producer’s accuracy—measures the error of omission or samples that are omitted from the correct classification since it indicates the probability that a reference sample will be correctly classified. It is called the producer’s accuracy since the analyst is concerned in mapping the Earth surface correctly. Computed as:Producer’s Accuracy = Total number of correct pixels in a category/Total number of pixels of that category as derived from the reference data (column total)
- User’s Accuracy—measures the error of commission or the reliability of the map since it indicates how accurate the maps to represent what actually seen on the ground. Computed as:User’s Accuracy = Total number of pixels in a category/Total number of pixels that were actually classified in that category (row total)
- Kappa Coefficient (K)—provides a more unbiased estimate of the overall agreement [48,54]. The K interpretation values range from poor to excellent agreement ranging from 0 to 1. The closer the value of K to one (1.0) the more acceptable the classification [48] and computed using the formula [45]:K = N∑(Xij) − ∑(rowi total)(colj total)/N2 − ∑(rowi total)(coljtotal)
N—total number of observations; Values of K interpretation: Xij—sum of the major diagonal; <0 No agreement rowi—marginal total for rowi; 0.0–0.20 Slight agreement colj—marginal total for columnj; 0.21–0.40 Fair agreement 0.41–0.60 Moderate agreement 0.81–1.00 Almost perfect agreement
3.4. Urban Sprawl in the MMFR Watersheds
3.5. Urban Sprawl in the MMFR Buffer Zone
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Esbah, H.; Deniz, B.; Kara, B.; Atatanir, L. Monitoring Urban Development Near a protected area. In Proceedings of the Urban Remote Sensing Joint Event, Paris, France, 11–13 April 2007; pp. 1–6. [Google Scholar] [CrossRef]
- Daniel, T.C.; Muhar, A.; Arnberger, A.; Aznar, O.; Boyd, J.W.; Chan, K.M.A.; Costanza, R.; Elmqvist, T.; Flint, C.G.; Gobster, P.H. Contributions of cultural services to the ecosystem services agenda. Proc. Natl. Acad. Sci. USA 2012, 109, 8812–8819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pressey, R.L.; Humphries, C.J.; Margules, C.R.; Vane-Wright, R.I.; Williams, P.H. Beyond opportunism: Key principles for systematic reserve selection. Trends Ecol. Evol. 1993, 8, 124–128. [Google Scholar] [CrossRef]
- Meffe, G.; Carroll, R. Principles of Conservation Biology; Sinauer Press: Sunderland, UK, 1997. [Google Scholar]
- Howard, P.C.; Viskanic, P.; Davenport, T.R.B.; Kigenyi, F.W.; Baltzer, M.; Dickinson, C.J.; Lwanga, J.S.; Matthews, R.A.; Balmford, A. Complementarity and the use of indicator groups for reserve selection in Uganda. Nature 1998, 39, 472–475. [Google Scholar] [CrossRef]
- Götmark, F.; Söderlundh, H.; Thorell, M. Buffer zones for forest reserves: Opinions of landowners and conservation value of their forest around nature reserves in southern Sweden. Biodivers. Conserv. 2000, 9, 1377–1390. [Google Scholar] [CrossRef]
- Tryzna, T. Global Urbanization and Protected Areas: Challenges and Opportunities Posed by a Major Factor of Global Change- and Creative Ways of Responding; California Institute of Public Affairs: Sacramento, CA, USA, 2007; 52p. [Google Scholar]
- Wang, G.; Jiang, G.; Zhou, Y.; Liu, Q.; Ji, Y.; Wang, S.; Chen, S.; Liu, H. Biodiversity Conservation in a fast-growing metropolitan area in China: A case study of plant diversity in Beijing. Biodivers. Conserv. 2007, 16, 4025–4038. [Google Scholar] [CrossRef]
- Mutuga, F. The Effect of Urbanization on Protected areas: The Impact of Urban Growth on a Wildlife Protected Area: A Case Study of Nairobi National Park. Master’s Thesis, IIIEE Lund University, Lund, Sweden, June 2009. Available online: http://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=1513631&fileOId=1513632/ (accessed on 26 November 2017).
- The Environmental Literacy Council. Urban Sprawl. Available online: https://enviroliteracy.org/land-use/urbanization/urban-sprawl/ (accessed on 28 November 2017).
- Joppa, L.N.; Loarie, S.R.; Pimm, S.L. On Population Growth near Protected Areas. PLoS ONE 2009, 4, e4279. [Google Scholar] [CrossRef]
- Beatley, T. Land Development and endangered species: Emerging conflicts. In The Sustainable Urban Development Reader; Wheeler, S.M., Beatley, T., Eds.; Routledge: London, UK, 2004; pp. 116–199. [Google Scholar]
- Rathore, B.M.S. Joint management options for protected areas. In People and Protected Areas: Towards Participatory Conservation in India; Kothari, A., Singh, N., Suri, S., Eds.; Sage: New Delhi, India, 1996. [Google Scholar]
- McDonald, R.; Kareiva, P.; Forman, R. The implications of current and future urbanization for global protected areas and biodiversity conservation. Biodivers. Conserv. 2008, 141, 1695–1703. [Google Scholar] [CrossRef]
- Biswal, A.; Jeyaram, A.; Mukherjee, S.; Kumar, U. Analysis of Temporal and Spatial Changes in the Vegetation Density of Similipal Biosphere Reserve in Odisha (India) Using Multitemporal Satellite Imagery. Int. J. Ecol. 2013, 368419. [Google Scholar] [CrossRef]
- Sunar Erbek, A.; Ulubay, A.; Maktav, D.; Yağiz, E. The use of satellite image maps for urban planning in Turkey. Int. J. Remote Sens. 2005, 26, 775–784. [Google Scholar] [CrossRef]
- Willis, K.S. Remote sensing change detection for ecological monitoring in United States protected areas. Biodivers. Conserv. 2015, 182, 233–242. [Google Scholar] [CrossRef]
- Mohammady, S.; Delavar, M.R. Urban sprawl assessment and modeling using Landsat images and GIS. Model. Earth Syst. Environ. 2016, 2, 155. [Google Scholar] [CrossRef]
- Franklin, S.E. Remote Sensing for Sustainable Forest Management; CRC Press LLC: Boca Raton, FL, USA, 2001. [Google Scholar]
- Lopez, J.M.R.; Heider, K.; Scheffran, J. Frontiers of Urbanization: Identifying and Explaining Urbanization Hotspots in the South of Mexico City using Human and Remote Sensing. Appl. Geogr. 2017, 79, 1–10. [Google Scholar] [CrossRef]
- Jensen, J.R.; Cowen, D.C. Remote sensing of urban/suburban infrastructure and socio-economic attributes. Photogramm. Eng. Remote Sens. 1999, 65, 611–622. [Google Scholar]
- Brandt, J.; Kuemmerle, T.; Li, H.; Ren, G.; Zhu, J.; Radeloff, V. Using Landsat imagery to map forest change in southwest China in response to the national logging ban and ecotourism development. Remote Sens. Environ. 2012, 121, 358–369. [Google Scholar] [CrossRef]
- Republic Act 6967. An Act to Vest Control, Jurisdiction and Administration of the Forest Reserve in Mount Makiling in the University of the Philippines in Los Baños. Available online: http://www.officialgazette.gov.ph/1990/10/15/republic-act-no-6967-2/ (accessed on 24 November 2017).
- Bantayan, N.C.; Abraham, E.R.G.; Fernando, E.S. Geodatabase Development for Forest Restoration and Biodiversity Conservation in the Mt. Makiling Forest Reserve, Philippines. Philipp. Agric. Sci. 2008, 91, 365–371. [Google Scholar]
- Lapitan, P.; Castillo, M.; Pampolina, N. Mt. Makiling Forest Reserve Spring Well of Natural and Knowledge Resources of the Philippines; ASEAN-Korea Environmental Cooperation Unit (AKECU), National Instrumentation Center for Environmental Management, College of Agriculture and Life Sciences, Seoul National University: Seoul, Korea, 2011; p. 9. ISBN 978-89-6558-046-1. [Google Scholar]
- Lapitan, P.G. Restoration of Mt Makiling—A Biodiversity Hotspot and Ecotourism Destination in the Philippines. In Proceedings of the IUFRO Conference on Forest Landscape Restoration, Seoul, Korea, 14–19 May 2007; Stanturf, J., Ed.; Korean Forest Research Institute: Seoul, Korea, 2007. [Google Scholar]
- Vallesteros, A.P. GIS-Based Determination of Socioeconomic Variables Affecting Land-Use Change in Mt. Makiling Forest Reserve, Philippines. Master’s Thesis, UPLB College, Laguna, Philippines, 2002. [Google Scholar]
- Combalicer, M.; Kim, D.; Lee, D.K.; Combalicer, E.; Cruz, R.V.; Im, S. Changes in the forest landscape of Mt. Makiling Forest Reserve, Philippines. For. Sci. Technol. 2011, 7, 60–67. [Google Scholar] [CrossRef]
- Ranada, P. Mt Makiling Named ASEAN Heritage Park. October 4 2013. Available online: http://www.rappler.com/nation/40522-makiling-asean-heritage-park/ (accessed on 31 March 2017).
- Combalicer, E.; Im, S. Change Anomalies of Hydrologic Responses to Climate Variability and Land Use Changes in the Mt. Makiling Forest Reserve. J. Environ. Sci. Manag. 2012, 15, 1–13. [Google Scholar]
- Proclamation 1257, s. 1998. Designating Certain Areas Surrounding the Makiling Forest Reserve as Buffer Zone and Prescribing Guidelines Thereof. Available online: http://www.officialgazette.gov.ph/2007/03/23/proclamation-no-1257-s-2007/ (Accessed on 30 March 2017).
- Pulhin, J.; Tapia, M. History of a Legend: Managing the Makiling Forest Reserve. 2005. Available online: http://www.fao.org/tempref/docrep/fao/007/AE542e/ae542e23.pdf (accessed on 15 October 2016).
- Lusterio, R. Policy-Making for Sustainable Development: The Case of Makiling Forest Reserve. Philippine Social Sciences Review, [S.l.], June 2011. ISSN 0031-7802. Available online: http://ovcrd.upd.edu.ph/pssr/article/view/2123/ (Accessed on 24 November 2017).
- Philippine Statistics Authority (PSA). Philippine Population Density (Based on the 2015 Census of Population). 2015. Available online: https://psa.gov.ph/sites/default/files/attachments/hsd/pressrelease/2015%20Population%20Density_web.xlsx/ (Accessed on 22 November 2017).
- Proclamation Order No. 349, s. 2000. Designating and Declaring the Municipality of Los Baños, Laguna as a Special Science and Nature City of the Philippines. Available online: http://www.officialgazette.gov.ph/2000/08/07/proclamation-order-no-349-s-2000/ (Accessed on 24 November 2017).
- Bagarino, R.T. A Spatial Analysis of Population Growth and Urbanization in Calamba City Using GIS. J. Nat. Stud. 2015, 14, 1–13. Available online: http://www.journalofnaturestudies.org/files/JNS14-2/14(2)%201-13%20Bagarinao-fullpaper.pdf (accessed on 24 November 2017).
- Philippine Statistics Authority (PSA). 2010 Census of Population and Housing Philippines. 2010. Available online: https://psa.gov.ph/sites/default/files/attachments/hsd/article/Table%202_0.pdf/ (accessed on 24 November 2017).
- Department of Interior and Local Government CALABARZON. Sto. Tomas. 2014. Available online: http://calabarzon.dilg.gov.ph/89-lgus/batangas?start=8/ (accessed on 24 November 2017).
- Landsat Satellite Image (July 29, 2015; Landsat 8 OLI/TIRS) Downloaded Dated October 2017 Courtesy of US Geological Survey Science of a Changing World. Available online: https://earthexplorer.usgs.gov/ (accessed on 18 October 2017).
- Landsat Satellite Image (January 26, 1992; Landsat TM) Downloaded Dated October 2017 Courtesy of US Geological Survey Science of a Changing World. Available online: https://earthexplorer.usgs.gov/ (accessed on 18 October 2017).
- Landsat Satellite Image (April 04, 2002; Landsat 7 ETM+) Downloaded Dated October 2017 Courtesy of US Geological Survey Science of a Changing World. Available online: https://earthexplorer.usgs.gov/ (accessed on 18 October 2017).
- Chander, G.; Markham, B. Revised Landsat-5 TM Radiometric Calibration Procedures and Postcalibration Dynamic Ranges. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2674–2677. [Google Scholar] [CrossRef]
- Dewa, R.P.; Danoedoro, P. The effect of image radiometric correction on the accuracy of vegetation canopy density estimate using several Landsat-8 OLI’s vegetation indices: A case study of Wonosari area, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2017, 54, 012046. [Google Scholar] [CrossRef] [Green Version]
- Ghebrezgabher, M.G.; Yan, T.; Yang, X.; Wang, X.; Khan, M. Extracting and analyzing forest and woodland cover change in Eritrea based on Landsat data using supervised classification. Egypt. J. Remote Sens. Space Sci. 2016, 19, 37–47. [Google Scholar] [CrossRef]
- Jensen, J.R. Introductory Digital Image Processing: A Remote Sensing Perspective; Prentice Hall Inc.: Upper Saddle River, NJ, USA, 1996; pp. 379–386. [Google Scholar]
- Richards, J.A.; Jia, X. Remote Sensing Digital Image Analysis, an Introduction, 4th ed.; Springer: Canberra, Australia, 2005. [Google Scholar]
- Google Earth Pro V. 7.3.2.5491 (July 20, 2015). Mount Makiling Forest Reserve, Los Baňos, Laguna, Philippines, Latitude 14008′03.61″N, Longitude 121012′12.98″E, Elevation 2785ft, Eye Alt 11816ft, Digital Globe 2018. Available online: https://www.google.com/earth/download/gep/agree.html (accessed on 24 October 2017).
- Natarajan, K.; Latva-Käyrä, P.; Zyadin, A.; Pelkonen, P. New methodological approach for biomass resource assessment in India using GIS application and land use/land cover (LULC) maps. Renew. Sustain. Energy Rev. 2016, 63, 256–268. [Google Scholar] [CrossRef]
- Scharsich, V.; Mtata, K.; Hauhs, M.; Lange, H.; Bogner, C. Analysing land cover and land use change in the Matobo National Park and surroundings in Zimbabwe. Remote Sens. Environ. 2017, 194, 278–286. [Google Scholar] [CrossRef]
- Food and Agriculture Organization (FAO). Global Forest Resources Assessment. Terms and Definitions. Forest Resources Assessment Programme; Working Paper 144/E; FAO: Rome, Italy, 2010; Available online: http://www.fao.org/docrep/014/am665e/am665e00.pdf. (accessed on 10 October 2017).
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Zhang, X.; Pan, D.; Chen, J.; Zhan, Y.; Mao, Z. Using longtime series of Landsat data to monitor impervious surface dynamics a case study in the Zhoushan Islands. J. Appl. Remote Sens. 2013, 7, 1–14. [Google Scholar] [CrossRef]
- Wasige, J.E.; Groen, T.A.; Smaling, E.S.; Jetten, V. Monitoring basin-scale land cover changes in Kagera Basin of Lake Victoria using ancillary data and remote sensing. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 32–42. [Google Scholar] [CrossRef]
- Nurwanda, A.; Zain, A.F.; Rustiadi, E. Analysis of land cover changes and landscape fragmentation in Batanghari Regency, Jambi Province. Procedia Soc. Behav. Sci. 2016, 227, 87–94. [Google Scholar] [CrossRef]
- Paquit, J.C.; Mindaña, F.N.W. Modeling the spatial pattern of carbon stock in Central Mindanao University using inVEST tool. J. Biodivers. Environ. Sci. 2017, 10, 103–113. [Google Scholar]
- National Mapping and Resource Information Authority. 2017. Available online: http://www.namria.gov.ph/ (accessed on 16 October 2017).
- O’Neill, R.V.; Krummel, J.R.; Gardner, R.H.; Sugihara, G.; Jackson, B.; Deangelis, D.L.; Milne, B.T.; Turner, M.G.; Zygmunt, B.; Christensen, S.W.; et al. Indices of landscape pattern. Landsc. Ecol. 1988, 1, 153–162. [Google Scholar] [CrossRef]
- McGarigal, K.; Marks, B.J. FRAGSTATS: Spatial Pattern Analysis Program for Quantifying Landscape Structure; General Technical Report PNW-351; USDA Forest Service: Washington, DC, USA, 1995. [Google Scholar]
- Bhatta, B.; Saraswati, S.; Bandyopadhyay, D. Urban sprawl measurement from remote sensing data. Appl. Geogr. 2010, 30, 731–740. [Google Scholar] [CrossRef]
- Yeh, A.; Li, X. Measurement and Monitoring of Urban Sprawl in a Rapidly Growing Region Using Entropy. Photogram. Eng. Remote Sens. 2001, 67, 83–90. Available online: https://www.asprs.org/wp-content/uploads/pers/2001journal/january/2001_jan_83-90.pdf (accessed on 30 November 2017).
- Theil, H. Economics and Information Theory; North-Holland: Amsterdam, The Netherlands, 1967; p. 488. [Google Scholar]
- Thomas, R.W. Information Statistics in Geography, Geo Abstracts; University of East Anglia: Norwich, UK, 1981; p. 42. [Google Scholar]
- Dadras, M.; Shafri, H.Z.M.; Ahmad, N.; Pradhan, B.; Safarpour, S. Six decades of urban growth using remote sensing and GIS in the city of Bandar Abbas, Iran. IOP Conf. Ser.: Earth Environ. Sci. 2014, 20, 012007. [Google Scholar] [CrossRef] [Green Version]
- Singh, B. Urban Growth Using Shannon’s Entropy: A Case Study of Rohtak City. Int. J. Adv. Remote Sens. GIS 2014, 3, 544–552. Available online: http://technical.cloud-journals.com/index.php/IJARSG/article/view/Tech-237/ (accessed on 2 December 2017).
- Chong, C. Comparison of Spatial Data Types for Urban Sprawl Analysis Using Shannon’s Entropy. Master’s Thesis, University of Southern California, Angeles, CA, USA, May 2017. Available online: https://spatial.usc.edu/wp-content/uploads/2017/02/Chong_Cora.pdf (accessed on 30 November 2017).
- Effat, H.; ElShobaki, M. Modeling and Mapping of Urban Sprawl Pattern in Cairo Using Multi-Temporal Landsat Images, and Shannon’s Entropy. Adv. Remote Sens. 2015, 4, 303–318. [Google Scholar] [CrossRef]
- Grădinaru, S.R.; Iojă, C.; Onose, D.; Gavrilidis, A.; Pătru-Stupariu, I.; Kienast, F. Hersperger, A. Land abandonment as a precursor of built-up development at the sprawling periphery of former socialist cities. Ecol. Indic. 2015, 57, 305–313. [Google Scholar] [CrossRef]
- Panaguiton, L.; Eustaquio, R.; Campo, P. Urban Sprawl Assessment in the Mount Makiling Forest Reserve Using Remote Sensing and GIS Technologies. In Proceedings of the 19th Conference on Remote Sensing 1998, Manila, Philippines, 16–20 November 1998; p. E-6. [Google Scholar]
- Joshi, R.R.; Warthe, M.; Dwivedi, S.; Vijay, R.; Chakrabarti, T. Monitoring changes in land use land cover of Yamuna riverbed in Delhi: A multi-temporal analysis. Int. J. Remote Sens. 2011, 32, 9547–9558. [Google Scholar] [CrossRef]
- Congalton, R.G. Remote sensing brief, accuracy assessment: A user’s perspective. Photogram. Eng. Remote Sens. 1986, 52, 397–399. [Google Scholar]
- Comber, A.; Fisher, P.; Brunsdon, C.; Khmag, A. Spatial analysis of remote sensing image classification accuracy. Remote Sens. Environ. 2012, 127, 237–246. [Google Scholar] [CrossRef] [Green Version]
- Barrett, B.; Nitze, I.; Green, S.; Cawkwell, F. Assessment of multi-temporal, multi-sensor radar and ancillary spatial data for grasslands monitoring in Ireland using machine learning approaches. Remote Sens. Environ. 2014, 152, 109–124. [Google Scholar] [CrossRef] [Green Version]
- Baumann, M.; Ozdogan, M.; Wolter, P.T.; Krylov, A.; Vladimirova, N.; Radeloff, V.C. Landsat remote sensing of forest windfall disturbance. Remote Sens. Environ. 2014, 143, 171–179. [Google Scholar] [CrossRef]
- Churches, S.E.; Wampler, P.J.; Sun WSmith, A.J. Evaluation of forest cover estimates for Haiti using supervised classification of Landsat data. Int. J. Appl. Earth Obs. Geoinf. 2014, 30, 203–216. [Google Scholar] [CrossRef] [Green Version]
- Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data—Principles and Practices, 2nd ed.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2008. [Google Scholar]
- Anderson, J.F.; Hardy, E.E.; Roach, J.T.; Witmer, R.E. A Land Use and Land Cover Classification System for Use with Remote Sensor Data; U.S. Geological Survey Professional Paper 964; U.S. Geological Survey: Washington, DC, USA, 1976; pp. 28–32. [Google Scholar]
- Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
Municipality/City | Population | Land Area (km²) | Population Density (person/km²) |
---|---|---|---|
Bay, Laguna | 62,143 | 42.66 | 1457 |
Calamba City, Laguna | 454,486 | 149.50 | 3040 |
Los Baños, Laguna | 112,008 | 54.22 | 2066 |
Santo Tomas, Batangas | 179,844 | 95.41 | 1885 |
Data | Sensor | Date Acquired | Scale/Resolution | Data Source | Projection |
---|---|---|---|---|---|
MMFR Watersheds (shapefile) | - | 12 November 2017 | - | UPLB-MCME | WGS 84 UTM 51N |
MMFR Buffer Zone Boundary (shapefile) | - | 12 November 2017 | - | UPLB-MCME | WGS 84 UTM 51N |
MMFR Boundary (shapefile) | - | 12 November 2017 | - | UPLB-MCME | WGS 84 UTM 51N |
Landsat 5 | MSS | 26 January 1992 | 30 m | USGS Earth Explorer | WGS 84 UTM 51N |
Landsat 7 | ETM+ | 4 April 2002 | 30 m | USGS Earth Explorer | WGS 84 UTM 51N |
Landsat 8 | OLI/TIRS | 29 July 2015 | 30 m | USGS Earth Explorer Survey | WGS 84 UTM 51N |
I.D. NO. | Land Cover Classes | FAO’s FRA 2010 |
---|---|---|
1 | Forest | Vegetation or tree cover more than 5 m in height with more than two species, and the canopy or crown ranges from 10% to 40% for open forest and above 40% for closed forest and the forest includes the riverine and mangrove. |
2 | Agricultural Areas/Land | All other non-forested land, including grassland, agricultural land, and cropland. |
3 | Built-up | All other non-forested land, such as urban areas, human settlements and road networks. |
4 | Water | Inland water bodies generally include major rivers, lakes and water reservoirs. |
Class | 1992 | 2002 | 2015 | 1992–2002 Area Changed (ha) | 2002–2015 Area Changed (ha) | |||
---|---|---|---|---|---|---|---|---|
Class Area (ha) | % | Class Area (ha) | % | Class Area (ha) | % | |||
Forest | 7884.90 | 53.77 | 5783.63 | 39.44 | 5149.76 | 35.12 | −2101.28 | −633.87 |
Agricultural Areas | 5526.36 | 37.68 | 7466.02 | 50.91 | 6130.60 | 41.80 | 1939.66 | −1335.42 |
Built-up | 1235.88 | 8.43 | 1398.60 | 9.54 | 3368.63 | 22.97 | 162.72 | 1970.0325 |
Water | 17.28 | 0.12 | 17.28 | 0.12 | 16.54 | 0.11 | 0.00 | −0.7425 |
Total | 14,665.00 | 100.00 | 14,665.00 | 100.00 | 14,665.00 | 100.00 | - | - |
Class | 1992 | 2002 | 2015 | 1992–2002 Area Changed (ha) | 2002–2015 Area Changed (ha) | |||
---|---|---|---|---|---|---|---|---|
Class Area (ha) | % | Class Area (ha) | % | Class Area (ha) | % | |||
Forest | 1193.62 | 82.82 | 955.14 | 66.27 | 860.15 | 59.68 | −238.48 | −94.98 |
Agricultural Areas | 225.06 | 15.61 | 441.98 | 30.67 | 531.59 | 36.88 | 216.92 | 89.62 |
Built-up | 22.67 | 1.57 | 44.18 | 3.07 | 49.22 | 3.41 | 21.52 | 5.03 |
Water | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 | 0.00 | 0.00 |
Total | 1441.30 | 100.00 | 1441.30 | 100 | 1441.30 | 100 | - | - |
Classes | Forest | Agricultural Areas | Built-Up | Water | Total | Commission Error (%) | User’s Accuracy (%) |
---|---|---|---|---|---|---|---|
Forest | 30 | 1 | 0 | 0 | 31 | 3.23 | 96.77 |
Agricultural areas | 0 | 26 | 2 | 0 | 28 | 7.14 | 92.86 |
Built-up | 0 | 3 | 28 | 0 | 31 | 9.68 | 90.32 |
Water | 0 | 0 | 0 | 3 | 3 | 0.00 | 100.00 |
Total | 30 | 30 | 30 | 3 | 93 | ||
Omission Error (%) | 0.00 | 13.33 | 6.67 | 0.00 | |||
Producer’s Accuracy (%) | 100.00 | 86.67 | 93.33 | 100.00 | |||
Overall Accuracy (%) | 93.55 | ||||||
Kappa Coefficient | 0.91 |
Year | Built-Up Area (ha) | Value of Shannon’s Entropy | Value of Relative Shannon’s Entropy | Log(n) | Log(n)/2 | ∆H 1992–2002 | ∆H 2002–2015 |
---|---|---|---|---|---|---|---|
1992 | 1235.88 | 2.34 | 0.83 | 2.83 | 1.41 | 0.16 | −0.007 |
2002 | 1398.60 | 2.50 | 0.88 | ||||
2015 | 3368.63 | 2.49 | 0.88 | ||||
Log(670) |
Year | Built-Up Area (ha) | Value of Shannon’s Entropy | Value of Relative Shannon’s Entropy | Log(n) | Log(n)/2 | ∆H 1992–2002 | ∆H 2002–2015 |
---|---|---|---|---|---|---|---|
1992 | 22.67 | 1.29 | 0.59 | 2.17 | 1.085 | 0.18 | −0.01 |
2002 | 44.18 | 1.47 | 0.68 | ||||
2015 | 49.22 | 1.46 | 0.67 | ||||
Log(147) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soriano, M.; Hilvano, N.; Garcia, R.; Hao, A.J.; Alegre, A.; Tiburan, Jr., C. Land Use/Land Cover Change Detection and Urban Sprawl Analysis in the Mount Makiling Forest Reserve Watersheds and Buffer Zone, Philippines. Environments 2019, 6, 9. https://doi.org/10.3390/environments6020009
Soriano M, Hilvano N, Garcia R, Hao AJ, Alegre A, Tiburan, Jr. C. Land Use/Land Cover Change Detection and Urban Sprawl Analysis in the Mount Makiling Forest Reserve Watersheds and Buffer Zone, Philippines. Environments. 2019; 6(2):9. https://doi.org/10.3390/environments6020009
Chicago/Turabian StyleSoriano, Merlyn, Noba Hilvano, Ronald Garcia, Aldrin Joseph Hao, Aldin Alegre, and Cristino Tiburan, Jr. 2019. "Land Use/Land Cover Change Detection and Urban Sprawl Analysis in the Mount Makiling Forest Reserve Watersheds and Buffer Zone, Philippines" Environments 6, no. 2: 9. https://doi.org/10.3390/environments6020009
APA StyleSoriano, M., Hilvano, N., Garcia, R., Hao, A. J., Alegre, A., & Tiburan, Jr., C. (2019). Land Use/Land Cover Change Detection and Urban Sprawl Analysis in the Mount Makiling Forest Reserve Watersheds and Buffer Zone, Philippines. Environments, 6(2), 9. https://doi.org/10.3390/environments6020009