Challenges and Limitations of Karst Aquifer Vulnerability Mapping Based on the PaPRIKa Method—Application to a Large European Karst Aquifer (Fontaine de Vaucluse, France)
Abstract
:1. Introduction
2. The Fontaine de Vaucluse Karst Aquifer
2.1. Catchment Area
2.2. Climatological and Hydrological Background
2.3. Geological Background
2.4. Hydrogeological Background
3. Outline of the PaPRIKa Method
4. Results
4.1. Aquifer Structure Criteria (P and R)
4.1.1. Soil
4.1.2. Epikarst
4.1.3. Unsaturated Zone (UZ)
4.2. Aquifer Funtionning Criteria (I and Ka)
4.2.1. Karst Features
- Cave descriptions are used to determine their vulnerability index, including maximum cave depth and the horizontal conduit size. Threshold values of cave depth are the same as for the unsaturated zone; the deeper the cave, the higher the index. This index also depends on horizontal cave development depending on a classification: 0 to 20 m, 20 to 100 m and more than 100 m. Moreover, cave density is used as a karstification index, so if numerous caves with small extent are near each other (less than 100 m), their index is higher.
- Analysis of the digital elevation model makes it possible to locate endorheic areas such as sinkholes. Sinkhole impact on surface flows is ambiguous because it can enable rapid infiltration in the case of open holes [30], or delay infiltration and promote evaporation in the case of sinkholes filled with clay [31]. Sinkholes have an index of 3.
- Dry valleys concentrate surface runoff, so their index is set to 2.
4.2.2. Karst Spring Behavior
4.3. Intrinsinc Vulnerability Map
5. Discussion
5.1. The Appropriate Weighting System
5.2. Vulnerability Assesment Validation Issues
6. Conclusions
6.1. The PaPRIKa Method and the Related QGIS Plugin
- Vulnerability assessment validation tools;
- Sensitivity analysis of criteria.
6.2. The Intrinsic Vulnerability Map of the Fontaine de Vaucluse
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Margat, J. Vulnérabilité des Nappes d’eau Souterraine à la Pollution; BRGM Publication: Orléans, France, 1968; Volume 68.
- Vrba, J.; Zaporozec, A. Guidebook on Mapping Groundwater Vulnerability; UNESDOC: Paris, France, 1994. [Google Scholar]
- Zwahlen, F. (Ed.) Vulnerability and Risk Mapping for the Protection of Carbonate (Karst) Aquifers. COST Action 620 Final Report; Office for Official Publications of the European Communities: Brussels, Belgium, 2004; p. 297. [Google Scholar]
- Dörfliger, N.; Plagnes, V. Cartographie de la Vulnerabilité des AquifèRes Karstiques. Guide MéThodologique de la MéThode PaPRIKa; RP-57527-FR; BRGM: Orléans, France, 2009; p. 105.
- Graf, T. Physically-Based Assessment of Intrinsic Groundwater Resource Vulnerability. Ph.D. Thesis, Université Laval, Québec, QC, Canada, 2015. [Google Scholar]
- Gogu, R.C.; Dassargues, A. Current trends and future challenges in groundwater vulnerability assessment using overlay and index methods. Environ. Geol. 2000, 39, 549–559. [Google Scholar] [CrossRef]
- Daly, D.; Dassargues, A.; Drew, D.; Dunne, S.; Goldscheider, N.; Neale, S.; Popescu, I.; Zwahlen, F. Main concepts of the “European approach” to karst-groundwater-vulnerability assessment and mapping. Hydrogeol. J. 2002, 10, 340–345. [Google Scholar] [CrossRef]
- Gogu, R.C.; Hallet, V.; Dassargues, A. Comparison of aquifer vulnerability assessment techniques. Application to the Néblon river basin (Belgium). Environ. Geol. 2003, 44, 881–892. [Google Scholar] [CrossRef]
- Goldscheider, N. Karst groundwater vulnerability mapping: Application of a new method in the Swabian Alb, Germany. Hydrogeol. J. 2005, 13, 555–564. [Google Scholar] [CrossRef]
- Vías, J.M.; Andreo, B.; Perles, M.J.; Carrasco, F. A comparative study of four schemes for groundwater vulnerability mapping in a diffuse flow carbonate aquifer under Mediterranean climatic conditions. Environ. Geol. 2005, 47, 586–595. [Google Scholar] [CrossRef]
- Ravbar, N.; Goldscheider, N. Comparative application of four methods of groundwater vulnerability mapping in a Slovene karst catchment. Hydrogeol. J. 2009, 17, 725–733. [Google Scholar] [CrossRef]
- Kavouri, K.P.; Plagnes, V.; Tremoulet, J.; Dörfliger, N.; Rejiba, F.; Marchet, P. PaPRIKa: A method for estimating karst resource and source vulnerability—application to the Ouysse karst system (southwest France). Hydrogeol. J. 2011, 19, 339–353. [Google Scholar] [CrossRef]
- Ollivier, C.; Lecomte, Y.; Chalikakis, K.; Mazzilli, N.; Danquigny, C.; Emblanch, C. A QGIS plugin based on the PaPRIKa method for karst aquifer vulnerability mapping. Groundwater 2019, 57, 1–4. [Google Scholar] [CrossRef]
- Puig, J.M. Le Système Karstique de la Fontaine de Vaucluse. Ph.D. Thesis, Université d’Avignon et des Pays de Vaucluse, Avignon, France, 1989. [Google Scholar]
- Lacassin, J.C.; Escoffier, L.; Davy, G.; Bourguignon, P.; Bruvier, G.; Visquenel, M.; Leonardon, E.; Schram, M. Notice des la Carte des Pédopaysages des Alpes de Haute Provence; Technical Report; SCP-INRA-PACA: Maastricht, The Netherlands, 2010. [Google Scholar]
- Blavoux, B.; Mudry, J.; Puig, J.M. Bilan, fonctionnement du système karstique de la Fontaine de Vaucluse (Sud-Est de la France). Geodin. Acta 1992, 5, 153–172. [Google Scholar] [CrossRef]
- Hibsch, C.; Kandel, D.; Montenat, C.; Ott d’Estevou, P. Evenements tectoniques cretaces dans la partie meridionale du bassin subalpin (massif Ventoux-Lure et partie orientale de l’arc de Castellane, SE France); implications geodynamiques. Bull. Soc. Géol. Fr. 1992, 163, 147–158. [Google Scholar]
- Couturaud, A. Hydrogéologie de la Partie Occidentale du Système Karstique de Vaucluse (Karstification et Aquifère sous Couverture). Ph.D. Thesis, Université d’Avignon et des Pays de Vaucluse, Avignon, France, 1993. [Google Scholar]
- Emblanch, C.; Zuppi, G.M.; Mudry, J.; Blavoux, B.; Batiot, C. Carbon 13 of TDIC to quantify the role of the unsaturated zone: The example of the Vaucluse karst systems (Southeastern France). J. Hydrol. 2003, 279, 262–274. [Google Scholar] [CrossRef]
- Barbel-Perineau, A.; Barbiero, L.; Danquigny, C.; Emblanch, C.; Mazzilli, N.; Babic, M.; Simler, R.; Valles, V. Karst flow processes explored through analysis of long-term unsaturated zone discharge hydrochemistry: A 10 year study in Rustrel, France. Hydrogeol. J. 2019. (accepted). [Google Scholar]
- Ollivier, C.; Danquigny, C.; Mazzilli, N.; Barbel-Perineau, A. Contribution of Hydrogeological Time Series Statistical Analysis to the Study of Karst Unsaturated Zone (Rustrel, France). In Hydrogeological and Environmental Investigations in Karst Systems; Andreo, B., Carrasco, F., Durán, J.J., Jiménez, P., LaMoreaux, J.W., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 27–33. [Google Scholar] [CrossRef]
- Caballero, Y.; Lanini, S.; Seguin, J.; Charlier, J.B.; Ollivier, C. Caractérisation de la Recharge des AquifèRes et éVolution Future en Contexte de Changement Climatique. Application au Bassin Rhône Méditerranée Corse. Rapport de fin de 1ère Année; Technical Report RP-64779-FR; BRGM: Paris, France, 2015.
- Carrière, S.D.; Chalikakis, K.; Danquigny, C.; Davi, H.; Mazzilli, N.; Ollivier, C.; Emblanch, C. The role of porous matrix in water flow regulation within a karst unsaturated zone: An integrated hydrogeophysical approach. Hydrogeol. J. 2016, 24, 1905–1918. [Google Scholar] [CrossRef]
- Dörfliger, N.; Zwahlen, F. Practical Guide: Groundwater Vulnerability Mapping in Karstic Regions (EPIK); Swiss Agency for the Environment, Forests and Landscape (SAEFL): Bern, Switzerland, 1998; p. 56. [Google Scholar]
- Petelet-Giraud, E.; Dörfliger, N.; Crochet, P. RISKE: Méthode d’évaluation multicritère de la vulnérabilité des aquifères karstiques. Application aux systèmes des Fontanilles et Cent-Fonts (Hérault, Sud de la France). Hydrogéologie 2000, 4, 71–88. [Google Scholar]
- Marìn, A.I.; Dörfliger, N.; Andreo, B. Comparative application of two methods (COP and PaPRIKa) for groundwater vulnerability mapping in Mediterranean karst aquifers (France and Spain). Environ. Earth Sci. 2012, 65, 2407–2421. [Google Scholar] [CrossRef]
- Huneau, F.; Jaunat, J.; Kavouri, K.; Plagnes, V.; Rey, F.; Dörfliger, N. Intrinsic vulnerability mapping for small mountainous karst aquifers, implementation of the new PaPRIKa method to Western Pyrenees (France). Eng. Geol. 2013, 161, 81–93. [Google Scholar] [CrossRef]
- Kavouri, K.P.; Karatzas, G.P.; Plagnes, V. A coupled groundwater-flow-modelling and vulnerability-mapping methodology for karstic terrain management. Hydrogeol. J. 2017, 25, 1301–1317. [Google Scholar] [CrossRef]
- Kazakis, N.; Chalikakis, K.; Mazzilli, N.; Ollivier, C.; Manakos, A.; Voudouris, K. Management and research strategies of karst aquifers in Greece: Literature overview and exemplification based on hydrodynamic modelling and vulnerability assessment of a strategic karst aquifer. Sci. Total Environ. 2018, 643, 592–609. [Google Scholar] [CrossRef]
- Jeelani, G.; Shah, R.A.; Deshpande, R.D.; Fryar, A.E.; Perrin, J.; Mukherjee, A. Distinguishing and estimating recharge to karst springs in snow and glacier dominated mountainous basins of the western Himalaya, India. J. Hydrol. 2017, 550, 239–252. [Google Scholar] [CrossRef]
- Hu, K.; Chen, H.; Nie, Y.; Wang, K. Seasonal recharge and mean residence times of soil and epikarst water in a small karst catchment of southwest China. Sci. Rep. 2015, 5, 10215. [Google Scholar] [CrossRef] [Green Version]
- Mangin, A. Contribution à L’étude Hydrodynamique des Aquifères Karstiques. Ph.D. Thesis, Institut des sciences de la Terre, Dijon, France, 1975. [Google Scholar]
- Machiwal, D.; Jha, M.K.; Singh, V.P.; Mohan, C. Assessment and mapping of groundwater vulnerability to pollution: Current status and challenges. Earth-Sci. Rev. 2018, 185, 901–927. [Google Scholar] [CrossRef]
- Misaghi, F.; Delgosha, F.; Razzaghmanesh, M.; Myers, B. Introducing a water quality index for assessing water for irrigation purposes: A case study of the Ghezel Ozan River. Sci. Total Environ. 2017, 589, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Dixon, B. Applicability of neuro-fuzzy techniques in predicting ground-water vulnerability: A GIS-based sensitivity analysis. J. Hydrol. 2005, 309, 17–38. [Google Scholar] [CrossRef]
- Gontara, M.; Allouche, N.; Jmal, I.; Bouri, S. Sensitivity analysis for the GALDIT method based on the assessment of vulnerability to pollution in the northern Sfax coastal aquifer, Tunisia. Arab. J. Geosci. 2016, 9. [Google Scholar] [CrossRef]
Leakage Index | Descritpion | Equivalent Protection Index |
---|---|---|
1 | Very porous soil with very fast infiltration | 4 |
2 | Fast infiltration | 3 |
3 | Moderate infiltration | 2 |
4 | Infiltration is not total | 2 |
5 | Minor infiltration | 2 |
6 | Infiltration weak | 2 |
7 | Infiltration very weak | 1 |
8 | Infiltration close to nil | 1 |
9 | Impervious soil | 1 |
Index | UZ Thickness |
---|---|
1 | >400 m |
2 | 200 to 400 |
3 | 15 to 400 |
4 | <15 |
Version | p | r | i | k |
---|---|---|---|---|
V0 | 0.25 | 0.25 | 0.25 | 0.25 |
V1 | 0.2 | 0.2 | 0.5 | 0.1 |
V2 | 0.2 | 0.2 | 0.3 | 0.3 |
V3 | 0.2 | 0.2 | 0.4 | 0.2 |
V4 | 0.3 | 0.1 | 0.5 | 0.1 |
V5 | 0.3 | 0.1 | 0.3 | 0.3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ollivier, C.; Chalikakis, K.; Mazzilli, N.; Kazakis, N.; Lecomte, Y.; Danquigny, C.; Emblanch, C. Challenges and Limitations of Karst Aquifer Vulnerability Mapping Based on the PaPRIKa Method—Application to a Large European Karst Aquifer (Fontaine de Vaucluse, France). Environments 2019, 6, 39. https://doi.org/10.3390/environments6030039
Ollivier C, Chalikakis K, Mazzilli N, Kazakis N, Lecomte Y, Danquigny C, Emblanch C. Challenges and Limitations of Karst Aquifer Vulnerability Mapping Based on the PaPRIKa Method—Application to a Large European Karst Aquifer (Fontaine de Vaucluse, France). Environments. 2019; 6(3):39. https://doi.org/10.3390/environments6030039
Chicago/Turabian StyleOllivier, Chloé, Konstantinos Chalikakis, Naomi Mazzilli, Nerantzis Kazakis, Yoann Lecomte, Charles Danquigny, and Christophe Emblanch. 2019. "Challenges and Limitations of Karst Aquifer Vulnerability Mapping Based on the PaPRIKa Method—Application to a Large European Karst Aquifer (Fontaine de Vaucluse, France)" Environments 6, no. 3: 39. https://doi.org/10.3390/environments6030039
APA StyleOllivier, C., Chalikakis, K., Mazzilli, N., Kazakis, N., Lecomte, Y., Danquigny, C., & Emblanch, C. (2019). Challenges and Limitations of Karst Aquifer Vulnerability Mapping Based on the PaPRIKa Method—Application to a Large European Karst Aquifer (Fontaine de Vaucluse, France). Environments, 6(3), 39. https://doi.org/10.3390/environments6030039