Environmental Noise around Hospital Areas: A Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Long-Term Measurements
2.3. Short-Term Measurements
2.4. Environmental Noise Modelling
3. Results
3.1. Long-Term Measurements
3.2. Short-Term Measurements
3.3. Environmental Noise Modelling
- Noise sources related to traffic: eight roads (internal and external roads)
- Noise sources associated with hospital activity: six cooling towers.
- Highly sensitive area: patient wards, dormitories in general, surgical and treatment areas.
- Moderately sensitive area: work areas, meaning those areas in which work is carried out that may be affected by high noise levels. This scale would include the offices of medical and administrative professionals, specialty consultations, laboratories and research centres, training rooms, etc.
- Less sensitive area: areas in which a high level of noise would not cause any harm to patients and professionals. This area would include cafeterias, canteens, warehouses, archives, rooms with air-conditioning facilities, public toilets, etc.
- Undefined area: areas or rooms that do not have an assigned fixed functionality.
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Official Journal of the European Union. Directive 2002/49/EC of the European Parliament and of the Council of 25 June 2002 Relating to the Assessment and Management of Environmental Noise—Declaration by the Commission in the Conciliation Committee on the Directive Relating to the Assessment and Management of Environmental Noise; The European Parliament and the Council of the European Union: Brussels, Belgium, 2002; Available online: http://data.europa.eu/eli/dir/2002/49/oj (accessed on 7 March 2019).
- WHO (World Health Organization). Guidelines for Community Noise; WHO: Geneva, Switzerland, 1999; Available online: http://apps.who.int/iris/handle/10665/66217 (accessed on 7 March 2019).
- USEPA (United States Environmental Protection Agency). Information on Levels of Environmental Noise Requisite to Protect Public Health and Welfare with Adequate Margin of Safety. EPA/ONAC Report No. 550/9-74-004; 1974. Available online: https://nepis.epa.gov/Exe/ZyNET.exe/2000L3LN.TXT?ZyActionD=ZyDocument&Client=EPA&Index=Prior+to+1976&Docs=&Query=&Time=&EndTime=&SearchMethod=1&TocRestrict=n&Toc=&TocEntry=&QField=&QFieldYear=&QFieldMonth=&QFieldDay=&IntQFieldOp=0&ExtQFieldOp=0&XmlQuery=&File=D%3A%5Czyfiles%5CIndex%20Data%5C70thru75%5CTxt%5C00000001%5C2000L3LN.txt&User=ANONYMOUS&Password=anonymous&SortMethod=h%7C-&MaximumDocuments=1&FuzzyDegree=0&ImageQuality=r75g8/r75g8/x150y150g16/i425&Display=hpfr&DefSeekPage=x&SearchBack=ZyActionL&Back=ZyActionS&BackDesc=Results%20page&MaximumPages=1&ZyEntry=1&SeekPage=x&ZyPURL (accessed on 7 March 2019).
- Real Decreto 1367/2007, de 19 de Octubre, por el que se Desarrolla la Ley 37/2003, de 17 de Noviembre, del Ruido, en lo Referente a Zonificación Acústica, Objetivos de Calidad y Emisiones Acústicas. Available online: https://www.boe.es/buscar/pdf/2007/BOE-A-2007-18397-consolidado.pdf (accessed on 7 March 2019).
- Khaiwal, R.; Singh, T.; Tripathy, J.P.; Mor, S.; Munjal, S.; Patro, B.; Panda, N. Assessment of noise pollution in and around a sensitive zone in North India and its non-auditory impacts. Sci. Total Environ. 2016, 566–567, 981–987. [Google Scholar] [CrossRef]
- Loupa, G.; Katikaridis, A.; Karali, D.; Rapsomanikis, S. Mapping the noise in a Greek general hospital. Sci. Total Environ. 2019, 646, 923–929. [Google Scholar] [CrossRef] [PubMed]
- Montes-González, D.; Vílchez-Gómez, R.; Barrigón-Morillas, J.M.; Atanasio-Moraga, P.; Rey-Gozalo, G.; Trujillo-Carmona, J. Noise and Air Pollution Related to Health in Urban Environments. Proceedings 2018, 2, 1311. [Google Scholar] [CrossRef]
- Muzet, A. Environmental noise, sleep and health. Sleep Med. Rev. 2007, 11, 135–142. [Google Scholar] [CrossRef]
- de Kluizenaar, Y.; Janssen, S.A.; van Lenthe, F.J.; Miedema, H.M.; Mackenbach, J.P. Long-term road traffic noise exposure is associated with an increase in morning tiredness. J. Acoust. Soc. Am. 2009, 126, 626–633. [Google Scholar] [CrossRef]
- Miedema, H.M.; Oudshoorn, C.G. Annoyance from transportation noise: Relationships with exposure metrics DNL and DENL and their confidence intervals. Environ. Health Perspect. 2001, 109, 409–416. [Google Scholar] [CrossRef]
- Fredianelli, L.; Carpita, S.; Licitra, G. A procedure for deriving wind turbine noise limits by taking into account annoyance. Sci. Total Environ. 2019, 648, 728–736. [Google Scholar] [CrossRef] [PubMed]
- Babisch, W.; Beule, B.; Schust, M.; Kersten, N.; Ising, H. Traffic noise and risk of myocardial infarction. Epidemiology 2005, 16, 33–40. [Google Scholar] [CrossRef]
- Lercher, P.; Evans, G.W.; Meis, M. Ambient noise and cognitive processes among primary schoolchildren. Environ. Behav. 2003, 35, 725–735. [Google Scholar] [CrossRef]
- Chetoni, M.; Ascari, E.; Bianco, F.; Fredianelli, L.; Licitra, G.; Cori, L. Global noise score indicator for classroom evaluation of acoustic performances in LIFE GIOCONDA project. Noise Mapp. 2016, 3, 157–171. [Google Scholar] [CrossRef]
- Van Kempen, E.; Babisch, W. The quantitative relationship between road traffic noise and hypertension: A meta-analysis. J. Hypertens. 2012, 30, 1075–1086. [Google Scholar] [CrossRef] [PubMed]
- Zambon, G.; Roman, H.; Smiraglia, M.; Benocci, R. Monitoring and prediction of traffic noise in large urban areas. Appl. Sci. 2018, 8, 251. [Google Scholar] [CrossRef]
- Zambon, G.; Benocci, R.; Bisceglie, A.; Roman, H.E.; Bellucci, P. The LIFE DYNAMAP project: Towards a procedure for dynamic noise mapping in urban areas. Appl. Acoust. 2017, 124, 52–60. [Google Scholar] [CrossRef]
- Licitra, G.; Ascari, E.; Fredianelli, L. Prioritizing Process in Action Plans: A Review of Approaches. Curr. Pollut. Rep. 2017, 3, 151–161. [Google Scholar] [CrossRef]
- Prieto Gajardo, C.; Godinho, L.; Amado-Mendes, P.; Barrigon-Morillas, J.M. Numerical analysis of acoustic barriers with a diffusive surface using a 2.5D boundary element model. J. Comput. Acoust. 2015, 23, 1550009. [Google Scholar] [CrossRef]
- Licitra, G.; Fredianelli, L.; Petri, D.; Vigotti, M.A. Annoyance evaluation due to overall railway noise and vibration in Pisa urban areas. Sci. Total Environ. 2016, 568, 1315–1325. [Google Scholar] [CrossRef] [PubMed]
- Bunn, F.; Zannin, P.H.T. Assessment of railway noise in an urban setting. App. Acoust. 2016, 104, 16–23. [Google Scholar] [CrossRef]
- Gagliardi, P.; Fredianelli, L.; Simonetti, D.; Licitra, G. ADS-B System as a Useful Tool for Testing and Redrawing Noise Management Strategies at Pisa Airport. Acta Acust. United Acust. 2017, 103, 543–551. [Google Scholar] [CrossRef]
- Iglesias-Merchan, C.; Diaz-Balteiro, L.; Soliño, M. Transportation planning and quiet natural areas preservation: Aircraft overflights noise assessment in a National Park. Transp. Res. D Transp. Environ. 2015, 41, 1–12. [Google Scholar] [CrossRef]
- Kephalopoulos, S.; Paviotti, M.; Anfosso-Lédée, F.; Van Maercke, D.; Shilton, S.; Jones, N. Advances in the development of common noise assessment methods in Europe: The CNOSSOS-EU framework for strategic environmental noise mapping. Sci. Total Environ. 2014, 482, 400–410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morel, J.; Marquis-Favre, C.; Gille, L.A. Noise annoyance assessment of various urban road vehicle pass-by noises in isolation and combined with industrial noise: A laboratory study. App. Acoust. 2016, 101, 47–57. [Google Scholar] [CrossRef]
- Fredianelli, L.; Del Pizzo, A.; Licitra, G. Recent Developments in Sonic Crystals as Barriers for Road Traffic Noise Mitigation. Environments 2019, 6, 14. [Google Scholar] [CrossRef]
- Persson Waye, K.; Ryherd, E.; Lindahl, B.; Bergbom, I. Relating the hospital sound environment to occupant psychological and physiological response. J. Acoust. Soc. Am. 2008, 123, 3193. [Google Scholar] [CrossRef]
- Ulrich, R. Effects of healthcare acoustics on medical outcomes. J. Acoust. Soc. Am. 2008, 123, 3094. [Google Scholar] [CrossRef]
- Sonnenberg, A.; Donga, M.; Erckenbrecht, J.F.; Wienbeck, M. The effect of mental stress induced by noise on gastric acid secretion and mucosal blood flow. Scand. J. Gastroenterol. Suppl. 1984, 89, 45–48. [Google Scholar]
- Wysocki, A.B. The effect of intermittent noise exposure on wound healing. Adv. Skin Wound Care 1996, 9, 35–39. [Google Scholar]
- Cmiel, C.A.; Karr, D.M.; Gasser, D.M.; Oliphant, L.M.; Neveau, A.J. Noise control: A nursing team’s approach to sleep promotion. Am. J. Nurs. 2004, 104, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Morrison, W.E.; Haas, E.C.; Shaffner, D.H.; Garrett, E.S.; Fackler, J.C. Noise, stress, and annoyance in a pediatric intensive care unit. Crit. Care Med. 2003, 31, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Blomkvist, V.; Eriksen, C.A.; Theorell, T.; Ulrich, R.; Rasmanis, G. Acoustics and psychosocial environment in intensive coronary care. Occup. Environ. Med. 2005, 62, e1. [Google Scholar] [CrossRef]
- Applebaum, D.; Fowler, S.; Fiedler, N.; Osinubi, O.; Robson, M. The impact of environmental factors on nursing stress, job satisfaction, and turnover intention. J. Nurs. Adm. 2010, 40, 323–328. [Google Scholar] [CrossRef] [PubMed]
- Ryherd, E.E.; West, J.E.; Ackerman, J.; Zimring, C.; Waye, K.P. Evaluating and improving hospital soundscapes. In Proceedings of the 41st International Congress and Exposition on Noise Control Engineering, New York, NY, USA, 19–22 August 2008. [Google Scholar]
- Zannin, P.H.T.; Ferraz, F. Assessment of Indoor and Outdoor Noise Pollution at a University Hospital Based on Acoustic Measurements and Noise Mapping. Open J. Acoust. 2016, 6, 71–85. [Google Scholar] [CrossRef]
- Carmona del Río, F.J.; Gómez Escobar, V.; Trujillo Carmona, J.; Vílchez-Gómez, R.; Méndez Sierra, J.A.; Rey Gozalo, G.; Barrigón Morillas, J.M. A street categorization method to study urban noise: The Valladolid (Spain) study. Environ. Eng. Sci. 2011, 28, 811–817. [Google Scholar] [CrossRef]
- Rey Gozalo, G.; Barrigón Morillas, J.M.; Gómez Escobar, V.; Vílchez-Gómez, R.; Méndez Sierra, J.A.; Carmona del Río, F.J.; Prieto Gajardo, C. Study of the categorisation method using long-term measurements. Arch. Acoust. 2013, 38, 397–405. [Google Scholar] [CrossRef]
- Busch-Vishniac, I.J.; West, J.E.; Barnhill, C.; Hunter, T.; Orellana, D.; Chivukula, R. Noise levels in Johns Hopkins Hospital. J. Acoust. Soc. Am. 2005, 118, 3629–3645. [Google Scholar] [CrossRef] [PubMed]
- INE (Instituto Nacional de Estadística). Datos Oficiales de Población 2017. Available online: www.ine.es (accessed on 7 March 2019).
- SES (Servicio Extremeño de Salud). Catálogo de Hospitales de Extremadura. 2015. Available online: https://saludextremadura.ses.es/filescms/web/uploaded_files/Principal/Recursos%20Sanitarios/CATALOGO%20DE%20HOSPITALES%20DE%20EXTREMADURA%202015.pdf (accessed on 7 March 2019).
- Barrigón Morillas, J.M.; Gómez Escobar, V.; Méndez Sierra, J.A.; Vílchez-Gómez, R.; Vaquero, J.M.; Trujillo Carmona, J. A categorization method applied to the study of urban road traffic noise. J. Acoust. Soc. Am. 2005, 116, 2844–2852. [Google Scholar] [CrossRef]
- Rey Gozalo, G.; Barrigón Morillas, J.M.; Gómez Escobar, V. Urban streets functionality as a tool for urban pollution management. Sci. Total Environ. 2013, 461–462, 453–461. [Google Scholar] [CrossRef] [PubMed]
- International Organization for Standardization (ISO). ISO 1996-2: 2007. Description, Measurement and Assessment of Environmental Noise. Part 2: Determination of Environmental Noise Levels; International Organization for Standardization (ISO): Geneva, Switzerland, 2007. [Google Scholar]
- Barrigón Morillas, J.M.; Montes González, D.; Rey Gozalo, G. A review of the measurement procedure of the ISO 1996 standard. Relationship with the European Noise Directive. Sci. Total Environ. 2016, 565, 595–606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montes González, D.; Barrigón Morillas, J.M.; Rey Gozalo, G. The influence of microphone location on the results of urban noise measurements. Appl. Acoust. 2015, 90, 64–73. [Google Scholar] [CrossRef]
- Montes Gonzalez, D.; Barrigón Morillas, J.M.; Rey Gozalo, G. Acoustic behaviour of plates made of different materials for measurements with the microphone flush mounted. Appl. Acoust. 2018, 132, 135–141. [Google Scholar] [CrossRef]
- Official Journal of the European Union. Commission Directive (EU) 2015/996 of 19 May 2015 Establishing Common Noise Assessment Methods according to Directive 2002/49/EC of the European Parliament and of the Council; The European Parliament and the Council of the European Union: Brussels, Belgium, 2015; Available online: https://eur-lex.europa.eu/eli/dir/2015/996/oj (accessed on 7 March 2019).
- Kephalopoulos, S.; Paviotti, M.; Anfosso-Lédée, F. Common Noise Assessment Methods in Europe (CNOSSOS-EU) EUR 25379 EN; Publications Office of the European Union: Luxembourg, 2012; Available online: https://ec.europa.eu/jrc/en/publication/reference-reports/common-noise-assessment-methods-europe-cnossos-eu (accessed on 7 March 2019).
- NMPB-Routes-96. Bruit des Infastructures Routières. Méthode de Calcul Incluant les Effects Météorologiques. Centre D’études sur les Réseaux, les Transports, L’urbanisme et les Constructions Publiques, 1997. Available online: http://dtrf.setra.fr/pdf/pj/Dtrf/0000/Dtrf-0000741/DT741.pdf?openerPage=notice (accessed on 7 March 2019).
- AFNOR (Association Française de Normalisation). NF S 31–133. Bruit des Infrastructures de Transports Terrestres. Calcul de L’atténuation du son lors de sa Propagation en Milieu Extérieur, Incluant les Effets Météorologiques; AFNOR (Association Française de Normalisation): La Plaine Saint-Denis, France, 2011. [Google Scholar]
- International Organization for Standardization (ISO). ISO 9613-2:1996. Acoustics—Attenuation of Sound during Propagation Outdoors—Part 2: General method of Calculation; International Organization for Standardization (ISO): Geneva, Switzerland, 1993. [Google Scholar]
- WG-AEN. Good Practice Guide for Strategic Noise Mapping and the Production of Associated Data on Noise Exposure. Version 2. European Commission Working Group-Assessment of Exposure to Noise (WG-AEN), 13 August 2007. Available online: https://www.lfu.bayern.de/laerm/eg_umgebungslaermrichtlinie/doc/good_practice_guide_2007.pdf (accessed on 7 March 2019).
- Barrigón Morillas, J.M.; Gómez Escobar, V.; Méndez Sierra, J.A.; Vílchez-Gómez, R.; Vaquero, J.M. Measurements of noise pollution in Badajoz City, Spain. Acta Acust. United Acust. 2005, 91, 797–801. [Google Scholar]
- Conti, V.; Orchi, S.; Valentini, M.P.; Nigro, M.; Calò, R. Design and evaluation of electric solutions for public transport. Transp. Res. Proc. 2017, 27, 117–124. [Google Scholar] [CrossRef]
- Wang, X.; González, J.A. Assessing Feasibility of Electric Buses in Small and Medium-Sized Communities. Int. J. Sustain. Transp. 2013, 7, 431–448. [Google Scholar] [CrossRef]
- Can, A.; Aumond, P. Estimation of road traffic noise emissions: The influence of speed and acceleration. Transp. Res. Part D Transp. Environ. 2018, 58, 155–171. [Google Scholar] [CrossRef]
- Ece, M.; Tosun, I.; Ekinci, K.; Yalçindag, N.S. Modeling of road traffic noise and traffic flow measures to reduce noise exposure in Antalya metropolitan municipality. J. Environ. Health Sci. Eng. 2018, 16, 1. [Google Scholar] [CrossRef] [PubMed]
- Ögren, M.; Molnár, P.; Barregard, L. Road traffic noise abatement scenarios in Gothenburg 2015–2035. Environ. Res. 2018, 164, 516–521. [Google Scholar] [CrossRef] [PubMed]
- Bezemer-Krijnen, M.; Wijnant, Y.H.; De Boer, A. Prediction of sound absorption of stacked granular materials for normal and oblique incident sound waves. Acta Acust. United Acust. 2018, 104, 464–476. [Google Scholar] [CrossRef]
Point | Facade | Microphone Location | Height from the Ground (m)/Floor | Most Relevant Sound Sources | Other Considerations |
---|---|---|---|---|---|
LT-1 | South (main) | Balcony | 9 (1st floor) | Road traffic noise from Elvas Ave. and access roads | Closest point to the heliport |
LT-2 | East | Roof | 35 (8th floor) | Road traffic noise from access road to the hospital and car parks | Near the heliport |
LT-3 | North | Roof | 35 (8th floor) | Road traffic noise from car parks Cooling towers | Farthest point from heliport |
LT-4 | West | Balcony | 18 (3rd floor) | Cooling towers | Near the emergency entry |
Point | Location | Other Considerations |
---|---|---|
ST-1 | Below point LT-1 | Near the main entry |
ST-2 | Below point LT-2 | |
ST-3 | Below point LT-3 | Close to the gateway to the outpatient clinic area |
ST-4 | Below point LT-4 | Near the emergency entry |
ST-5 | Right rear edge of hospital enclosure | Access to rear parking area |
ST-6 | Left rear area of hospital enclosure | Near the cooling towers |
ST-7 | Front left side of the main building | Car park street near the emergency access door |
ST-8 | Front left parking area | Next to the access entrance of vehicles from Elvas Avenue |
ST-9 | Close to a crossroads located at the exit of the car parks in the hospital coffee shop area | |
ST-10 | Next to Elvas Avenue | |
ST-11 | Unpaved area on the front right side of the hospital | Near the heliport |
ST-12 | On the road next to the unpaved rear parking area |
LT-1 | LT-2 | |||||
---|---|---|---|---|---|---|
Ld (dBA) | Ld CALC (dBA) | ∆Ld (dBA) | Ld (dBA) | Ld CALC (dBA) | ∆Ld (dBA) | |
Event 1 | 62.4 | 56.0 | 6.4 | 59.5 | 56.7 | 2.8 |
Event 2 | 62.9 | 54.4 | 8.5 | 59.6 | 55.7 | 4.0 |
Event 3 | 61.6 | 55.6 | 6.0 | 58.3 | 56.4 | 2.0 |
Event 4 | 62.3 | 54.1 | 8.2 | 59.9 | 55.5 | 4.4 |
Event 5 | 62.4 | 52.9 | 9.5 | 58.8 | 53.8 | 5.0 |
In Situ | Simulation Results | Differences | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Point | LT-1 | LT-2 | LT-3 | LT-4 | LT-1 | LT-2 | LT-3 | LT-4 | LT-1 | LT-2 | LT-3 | LT-4 |
Ld (dBA) | 56.6 | 57.0 | 57.1 | 54.6 | 57.4 | 60.0 | 60.2 | 56.3 | −0.8 | −3.0 | −3.1 | −1.7 |
Le (dBA) | 54.9 | 55.0 | 57.2 | 53.9 | 56.5 | 58.7 | 58.9 | 55.8 | −1.6 | −3.7 | −1.7 | −1.9 |
Ln (dBA) | 49.8 | 49.7 | 54.3 | 50.5 | 51.3 | 52.8 | 55.4 | 51.7 | −1.5 | −3.1 | −1.1 | −1.2 |
Lden (dBA) | 58.5 | 58.6 | 61.6 | 58.1 | 59.8 | 61.8 | 63.2 | 59.6 | −1.3 | −3.2 | −1.6 | −1.5 |
Orientation | Length (m) | Nº of Assessment Points | % of Highly Sensitive Areas | Ld (dBA) | Ln (dBA) |
---|---|---|---|---|---|
East | 155 | 3 | 8% | 48–55 | 42–48 |
South | 132 | 5 | 20% | 54–57 | 48–51 |
West | 140 | 8 | 5% | 49–58 | 45–57 |
North | 120 | 6 | 43% | 38–61 | 43–61 |
Ld (dBA) | Le (dBA) | Ln (dBA) | Lden (dBA) | ||
---|---|---|---|---|---|
Receiver 1 (south) | |||||
1 | Initial situation | 56.4 | 57.4 | 51.4 | 59.9 |
2 | Speed reduction from 50 km/h to 30 km/h | 56.4 | 57.4 | 51.4 | 59.8 |
3 | Use of porous asphalt | 55.5 | 56.5 | 50.5 | 59.0 |
4 | 20 dB noise reduction for cooling towers | 56.4 | 57.4 | 51.4 | 59.8 |
5 | All corrective measures together | 55.5 | 56.5 | 50.5 | 58.9 |
Receiver 2 (east) | |||||
1 | Initial situation | 58.7 | 59.9 | 52.8 | 61.8 |
2 | Speed reduction from 50 km/h to 30 km/h | 58.6 | 59.9 | 52.8 | 61.8 |
3 | Use of porous asphalt | 57.7 | 59.1 | 52.0 | 61.0 |
4 | 20 dB noise reduction for cooling towers | 58.7 | 59.9 | 52.8 | 61.8 |
5 | All corrective measures together | 57.7 | 59.1 | 52.1 | 61.0 |
Receiver 3 (north) | |||||
1 | Initial situation | 58.9 | 60.2 | 55.5 | 63.2 |
2 | Speed reduction from 50 km/h to 30 km/h | 58.9 | 60.2 | 55.4 | 63.2 |
3 | Use of porous asphalt | 58.5 | 59.9 | 55.3 | 63.0 |
4 | 20 dB noise reduction for cooling towers | 56.2 | 58.2 | 50.6 | 59.7 |
5 | All corrective measures together | 55.3 | 57.7 | 49.9 | 59.0 |
Receiver 4 (west) | |||||
1 | Initial situation | 55.7 | 56.2 | 51.7 | 59.5 |
2 | Speed reduction from 50 km/h to 30 km/h | 55.6 | 56.2 | 51.6 | 59.5 |
3 | Use of porous asphalt | 55.1 | 55.6 | 51.3 | 59.0 |
4 | 20 dB noise reduction for cooling towers | 54.0 | 54.5 | 48.4 | 57.0 |
5 | All corrective measures together | 52.9 | 53.5 | 47.3 | 55.9 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montes-González, D.; Barrigón-Morillas, J.M.; Gómez Escobar, V.; Vílchez-Gómez, R.; Rey-Gozalo, G.; Atanasio-Moraga, P.; Méndez-Sierra, J.A. Environmental Noise around Hospital Areas: A Case Study. Environments 2019, 6, 41. https://doi.org/10.3390/environments6040041
Montes-González D, Barrigón-Morillas JM, Gómez Escobar V, Vílchez-Gómez R, Rey-Gozalo G, Atanasio-Moraga P, Méndez-Sierra JA. Environmental Noise around Hospital Areas: A Case Study. Environments. 2019; 6(4):41. https://doi.org/10.3390/environments6040041
Chicago/Turabian StyleMontes-González, David, Juan Miguel Barrigón-Morillas, Valentín Gómez Escobar, Rosendo Vílchez-Gómez, Guillermo Rey-Gozalo, Pedro Atanasio-Moraga, and Juan Antonio Méndez-Sierra. 2019. "Environmental Noise around Hospital Areas: A Case Study" Environments 6, no. 4: 41. https://doi.org/10.3390/environments6040041
APA StyleMontes-González, D., Barrigón-Morillas, J. M., Gómez Escobar, V., Vílchez-Gómez, R., Rey-Gozalo, G., Atanasio-Moraga, P., & Méndez-Sierra, J. A. (2019). Environmental Noise around Hospital Areas: A Case Study. Environments, 6(4), 41. https://doi.org/10.3390/environments6040041