Tall Wheatgrass (Thinopyrum ponticum): Flood Resilience, Growth Response to Sea Water Immersion, and Its Capacity for Erosion and Flooding Control of Coastal Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Flood Resilience Experiment
2.2. Post-Immersion Growth Experiment
3. Results
3.1. Critical Decomposition Time
3.2. Viability
3.3. Growth Response
4. Discussion
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Temmerman, S.; Meire, P.; Bouma, T.J.; Herman, P.M.; Ysebaert, T.; De Vriend, H.J. Ecosystem-based coastal defence in the face of global change. Nature 2013, 504, 79–83. [Google Scholar] [CrossRef]
- Durant, D.; Kernéïs, E.; Meynard, J.M.; Choisis, J.P.; Chataigner, C.; Hillaireau, J.M.; Rossignol, C. Impact of storm Xynthia in 2010 on coastal agricultural areas: The Saint Laurent de la Prée research farm’s experience. J. Coast. Conserv. 2018, 22, 1177–1190. [Google Scholar] [CrossRef]
- Hoggart, S.; Hanley, M.; Parker, D.; Simmonds, D.; Bilton, D.; Filipova-Marinova, M.; Franklin, E.; Kotsev, I.; Penning-Rowsell, E.; Rundle, S.; et al. The consequences of doing nothing: The effects of seawater flooding on coastal zones. Coast. Eng. 2014, 87, 169–182. [Google Scholar] [CrossRef]
- Castelle, B.; Marieu, V.; Bujan, S.; Splinter, K.D.; Robinet, A.; Sénéchal, N.; Ferreira, S. Impact of the winter 2013–2014 series of severe Western Europe storms on a double-barred sandy coast: Beach and dune erosion and megacusp embayments. Geomorphology 2015, 238, 135–148. [Google Scholar] [CrossRef]
- Wahl, T.; Brown, S.; Haigh, I.D.; Nilsen, J.E.Ø. Coastal Sea Levels, Impacts, and Adaptation. J. Mar. Sci. Eng. 2018, 6, 19. [Google Scholar] [CrossRef]
- Weisse, R.; Bellafiore, D.; Menéndez, M.; Méndez, F.; Nicholls, R.J.; Umgiesser, G.; Willems, P. Changing extreme sea levels along European coasts. Coast. Eng. 2014, 87, 4–14. [Google Scholar] [CrossRef]
- Nicholls, R.J.; Cazenave, A. Sea-level rise and its impact on coastal zones. Science 2010, 328, 1517–1520. [Google Scholar] [CrossRef]
- Vergiev, S. The impact of sea water immersion on the viability of psammophilous species Carex colchica and its capacity as dune stabilizer. C. R. Acad. Bulg. Sci. 2018, 71, 648–654. [Google Scholar] [CrossRef]
- Nordstrom, K.; Jackson, N.L.; Bruno, M.S.; de Butts, H.A. Municipal initiatives for managing dunes in coastal residential areas: A case study of Avalon, New Jersey, USA. Geomorphology 2002, 47, 137–152. [Google Scholar] [CrossRef]
- Donker, J.; Van Maarseveen, M.; Ruessink, G. Spatio-Temporal Variations in Foredune Dynamics Determined with Mobile Laser Scanning. J. Mar. Sci. Eng. 2018, 6, 126. [Google Scholar] [CrossRef]
- Everard, M.; Jones, L.; Watts, B. Have we neglected the societal importance of sand dunes? An ecosystem services perspective. Aquat. Conserv. Mar. Freshw. Ecosyst. 2010, 20, 476–487. [Google Scholar] [CrossRef]
- Vergiev, S. The growth response of Galilea mucronata (L.) Parl. to sea water immersion. GSC Biol. Pharm. Sci. 2018, 5, 103–108. [Google Scholar] [CrossRef]
- Vergiev, S. The response of Galilea mucronata (L.) Parl. to simulated flooding experiments and its capacity as dune stabilizer. Am. J. Environ. Sci. Eng. 2017, 1, 34–39. [Google Scholar]
- Schoutens, K.; Heuner, M.; Minden, V.; Schulte Ostermann, T.; Silinski, A.; Belliard, J.; Temmerman, S. How effective are tidal marshes as nature-based shoreline protection throughout seasons? Limnol. Oceanogr. 2019. [Google Scholar] [CrossRef]
- Narayan, S.; Nicholls, R.; Trifonova, E.; Filipova-Marinova, M.; Kotsev, I.; Vergiev, S.; Hanson, S.; Clarke, D. Coastal habitats within flood risk assessments: Role of the 2D SPR approach. Coast. Eng. Proc. 2012, 1, 12. [Google Scholar] [CrossRef]
- Ogura, A.; Yura, H. Effects of sandblasting and salt spray on inland plants transplanted to coastal sand dunes. Ecol. Res. 2008, 23, 107–112. [Google Scholar] [CrossRef]
- Maun, M.A. The Biology of Coastal Sand Dunes, 1st ed.; Oxford University Press: New York, NY, USA, 2009. [Google Scholar]
- Clark, J.R. Coastal Zone Management Handbook, 1st ed.; CRC Press/Lewis Publishers: New York, NY, USA, 1995. [Google Scholar] [CrossRef]
- Borsjea, B.W.; van Wesenbeeck, B.K.; Dekker, F.; Paalvast, P.; Bouma, T.J.; van Katwijk, M.M.; de Vries, M.B. How ecological engineering can serve in coastal protection. Ecol. Eng. 2011, 37, 113–122. [Google Scholar] [CrossRef]
- Hart, A.T.; Hilton, M.J.; Wakes, S.J.; Dickinson, K.J.M. The impact of Ammophila arenaria foredune development on downwind aerodynamics and parabolic dune development. J. Coast. Res. 2012, 28, 112–122. [Google Scholar] [CrossRef]
- Hilton, M.; Harvey, N.; Hart, A.; James, K.; Arbuckle, C. The impact of exotic dune grass species on foredune development in Australia and New Zealand: A case study of Ammophila arenaria and Thinopyrum junceiforme. Aust. Geogr. 2006, 37, 313–334. [Google Scholar] [CrossRef]
- Weintraub, F.C. Grasses Introduced into the United States; USDA Agric. Handb. 58; U.S. Gov. Print. Office: Washington, DC, USA, 1953.
- Barkworth, M.E.; Anderton, L.K.; Capels, K.C.; Long, S.; Piep, M.B. Manual of Grasses for North America; Intermountain Herbarium and Utah State University Press: Logan, UT, USA, 2007. [Google Scholar]
- Kozhuharov, S. Poaceae. In Field Guide to the Vascular Plants in Bulgaria, 1st ed.; Kozhuharov, S., Ed.; BAS Press: Sofia, Bulgaria, 1992. [Google Scholar]
- Vergiev, S.; Filipova-Marinova, M.; Trifonova, E.; Kotsev, I.; Pavlov, D. The impact of sea water immersion on the viability of psammophilous species Leymus racemosus subsp. sabulosus and Ammophila arenaria. C. R. Acad. Bulg. Sci. 2013, 66, 211–216. [Google Scholar] [CrossRef]
- Vergiev, S. GIS mapping of plant biodiversity hotspots in the Bulgarian floristic region Black Sea Coast. SocioBrains 2018, 52, 171–178. [Google Scholar]
- Vergiev, S. GIS mapping of plant biodiversity hotspots in the Bulgarian floristic region Northern Black Sea Coast for 2018. SocioBrains 2019, 54, 196–201. [Google Scholar]
- Vergiev, S. Comparative study of the response of four native to the Bulgarian Black Sea Coast psammophytes to simulated flooding experiments. Annu. Res. Rev. Biol. 2017, 16, 1–8. [Google Scholar] [CrossRef]
- Trifonova, E.; Valchev, N.; Keremedchiev, S.; Kotsev, I.; Eftimova, P.; Todorova, V.; Konsulova, T.; Doncheva, V.; Filipova-Marinova, M.; Vergiev, S.; et al. Case studies world-wide: Mitigating flood and erosion risk using sediment management for a tourist City: Varna, Bulgaria. In Coastal Risk Management in a Changing Climate, 1st ed.; Zanuttigh, B., Nicholls, R., Vanderlinden, J., Burcharth, H., Thompson, R., Eds.; Butterworth-Heinemann: Oxford, UK, 2014; pp. 358–383. [Google Scholar] [CrossRef]
- Vergiev, S.; Filipova-Marinova, M.; Trifonova, E.; Kotsev, I. A rapid method for vulnerability assessment of coastal plant communities from flooding caused by unusual storms. In Proceedings of Seminar of Ecology with International Participation 2017, 1st ed.; Chankova, S., Ed.; Farago: Sofia, Bulgaria, 2018; pp. 146–152. [Google Scholar]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef]
- Van Eck, W.H.J.M.; Lenssen, J.P.M.; van de Steeg, H.M.; Blom, C.W.P.M.; de Kroon, H. Seasonal Dependent Effects of Flooding on Plant Species Survival and Zonation: A Comparative Study of 10 Terrestrial Grassland Species. Hydrobiologia 2006, 565, 59–69. [Google Scholar] [CrossRef]
- Konlechner, T.M.; Hilton, M.J. The potential for marine dispersal of Ammophila arenaria (marram grass) rhizome. J. Coast. Res. 2009, 56, 434–437. [Google Scholar]
- Sykes, M.T.; Wilson, J.B. The effect of salinity on the growth of some New Zealand sand dune species. Acta Bot. Neerl. 1989, 38, 173–182. [Google Scholar] [CrossRef]
- Konlechner, T.M.; Orlovich, D.A.; Hilton, M.J. Restrictions in the sprouting ability of an invasive coastal plant, Ammophila arenaria, from fragmented rhizomes. Plant Ecol. 2016, 217, 521–532. [Google Scholar] [CrossRef]
- Rachel, A.; Marcel, R. The effect of sea-water submergence on rhizome bud viability of the introduced Ammophila arenaria and the native Leymus mollis in California. J. Coast. Conserv. 2000, 6, 107–111. [Google Scholar] [CrossRef]
- Blunk, S.L.; Jenkins, B.M.; Aldas, R.E.; Zhang, R.; Zhongli, P.; Yu, C.W.; Skar, N.R.; Zheng, Y. Fuel Properties and Characteristics of Saline Biomass; Paper Number 056132; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2005. [Google Scholar]
- Zheng, Y.; Zhongli, P.; Zhang, R.; Jenkins, B.M.; Blunk, S. Medium-Density Particle Board from Saline ’Jose’ Tall Wheatgrass; Paper Number 056127; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2005. [Google Scholar]
- Roundy, B.A. Emergence and establishment of basin wild rye and tall wheatgrass in relation to moisture and salinity. J. Range Mgmt. 1995, 38, 126–131. [Google Scholar] [CrossRef]
- Retana, J.; Parker, D.R.; Amrhein, C.; Page, A.L. Growth and trace element concentrations of five plant species grown in a highly saline soil. J. Environ. Qual. 1993, 22, 805–811. [Google Scholar] [CrossRef]
- White, A.C.; Colmer, T.D.; Cawthray, G.R.; Hanley, M.E. Variable response of three Trifolium repens ecotypes to soil flooding by seawater. Ann. Bot. 2014, 114, 347–355. [Google Scholar] [CrossRef]
- Liew, J.; Andersson, L.; Boström, U.; Forkman, J.; Hakman, I.; Magnuski, E. Regeneration capacity from buds on roots and rhizomes in five herbaceous perennials as affected by time of fragmentation. Plant Ecol. 2013, 214, 1199–1209. [Google Scholar] [CrossRef]
- Hanley, M.E.; Yip, P.Y.S.; Hoggart, S.; Bilton, D.T.; Rundle, S.D.; Thompson, R.C. Riding the storm: The response of Plantago lanceolata to simulated tidal flooding. J. Coast. Conserv. 2013, 17, 799–803. [Google Scholar] [CrossRef]
- Obeso, J.R. The costs of reproduction in plants. New Phytol. 2002, 155, 321–348. [Google Scholar] [CrossRef]
- Hanley, M.E.; Gove, T.L.; Cawthray, G.R.; Colmer, T.D. Differential responses of three coastal grassland species to seawater flooding. J. Plant Ecol. 2017, 10, 322–330. [Google Scholar] [CrossRef]
- Harris, D.; Davy, A.J. Regenerative potential of Elymus farctus from rhizome fragments and seed. J. Ecol. 1986, 74, 1057–1067. [Google Scholar] [CrossRef]
- Hack, J.T. Dunes of the western Navajo Country. Geogr. Rev. 1941, 31, 240–263. [Google Scholar] [CrossRef]
- Valkanov, A.; Marinov, H.; Danov, H.; Vladev, P. The Black Sea, 1st ed.; Georgi Bakalov Publishing House: Varna, Bulgaria, 1978. [Google Scholar]
- Vergiev, S.; Filipova-Marinova, M.; Giosan, L.; Pavlov, D.; Slavchev, V. Pollen-based quantitative reconstruction of holocene vegetation in Varna Lake area (Northeastern Bulgaria) using modelling and simulation approach. C. R. Acad. Bulg. Sci. 2014, 71, 648–654. [Google Scholar]
- Tewari, P.; Saxena, A.K.; Rao, O.P. Effect of sodicity and salinity on seedling growth of two early successional agroforestry tree species. Trop. Ecol. 2006, 47, 125–132. [Google Scholar]
- Upreti, K.K.; Murti, G.S.R. Response of grape rootstocks to salinity: Changes in root growth, polyamines and abscisic acid. Biol. Plant. 2010, 54, 730–734. [Google Scholar] [CrossRef]
Parameter | 4 °C | 13 °C | 23 °C |
---|---|---|---|
Beginning of decomposition of | |||
leaves | 168 | 168 | 168 |
stems | n/a | n/a | n/a |
roots | n/a | n/a | n/a |
Complete decomposition of | |||
leaves | 450 | 450 | 450 |
stems | n/a | n/a | n/a |
roots | n/a | n/a | n/a |
Growth of | |||
stems | 168 | 168 | 168 |
root sprouts | 168 | 168 | 168 |
Beginning of decomposition of newly grown | |||
stems | n/a | n/a | n/a |
roots | n/a | n/a | n/a |
Complete decomposition of newly grown | |||
stems | n/a | n/a | n/a |
roots | n/a | n/a | n/a |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vergiev, S. Tall Wheatgrass (Thinopyrum ponticum): Flood Resilience, Growth Response to Sea Water Immersion, and Its Capacity for Erosion and Flooding Control of Coastal Areas. Environments 2019, 6, 103. https://doi.org/10.3390/environments6090103
Vergiev S. Tall Wheatgrass (Thinopyrum ponticum): Flood Resilience, Growth Response to Sea Water Immersion, and Its Capacity for Erosion and Flooding Control of Coastal Areas. Environments. 2019; 6(9):103. https://doi.org/10.3390/environments6090103
Chicago/Turabian StyleVergiev, Stoyan. 2019. "Tall Wheatgrass (Thinopyrum ponticum): Flood Resilience, Growth Response to Sea Water Immersion, and Its Capacity for Erosion and Flooding Control of Coastal Areas" Environments 6, no. 9: 103. https://doi.org/10.3390/environments6090103
APA StyleVergiev, S. (2019). Tall Wheatgrass (Thinopyrum ponticum): Flood Resilience, Growth Response to Sea Water Immersion, and Its Capacity for Erosion and Flooding Control of Coastal Areas. Environments, 6(9), 103. https://doi.org/10.3390/environments6090103