Adsorption/Desorption Patterns of Selenium for Acid and Alkaline Soils of Xerothermic Environments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soils
2.2. Stock Solutions and Reagents
2.3. Batch Experiments
2.4. Isotherm Equations
2.5. Distribution Coefficient (Kd)
2.6. Analytical Determinations
2.7. Statistics
3. Results
3.1. Soil Properties
3.2. Selenium Adsorption
3.3. Selenium Desorption
3.4. Equilibrium Solutions pH
4. Discussion
4.1. Selenium Adsorption
4.2. Selenium Desorption
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cartes, P.; Jara, A.A.; Pinilla, L.; Rosas, A.; Mora, M.L. Selenium improves the antioxidant ability against aluminium-induced oxidative stress in ryegrass roots. Ann. Appl. Biol. 2010, 156, 297–307. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Fujita, M. Selenium Pretreatment Upregulates the Antioxidant Defense and Methylglyoxal Detoxification System and Confers Enhanced Tolerance to Drought Stress in Rapeseed Seedlings. Biol. Trace Elem. Res. 2011, 143, 1758–1776. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Gupta, M. Alleviation of selenium toxicity in Brassica juncea L.: Salicylic acid-mediated modulation in toxicity indicators, stress modulators, and sulfur-related gene transcripts. Protoplasma 2016, 253, 1515–1528. [Google Scholar] [CrossRef]
- Dinh, Q.; Wang, M.; Tran, T.; Zhou, F.; Wang, D.; Zhai, H. Bioavailability of selenium in soil-plant system and a regulatory approach. Crit. Rev. Environ. Sci. Technol. 2018, 49, 443–517. [Google Scholar] [CrossRef]
- Finley, J.W.; Davis, C.D.; Feng, Y. Selenium from high selenium broccoli protects rats from colon cancer. J. Nutr. 2000, 130, 2384–2389. [Google Scholar] [CrossRef]
- Winkel, L.; Vriens, B.; Jones, G.; Schneider, L.; Pilon-Smits, E.; Bañuelos, G. Selenium Cycling across Soil-Plant-Atmosphere Interfaces: A Critical Review. Nutrients 2015, 7, 4199–4239. [Google Scholar] [CrossRef] [Green Version]
- Hartikainen, H. Biogeochemistry of selenium and its impact on food chain quality and human health. J. Trace Elem. Med. Biol. 2005, 18, 309–318. [Google Scholar] [CrossRef]
- Etteieb, S.; Magdouli, S.; Zolfaghari, M.; Brar, S. Monitoring and analysis of selenium as an emerging contaminant in mining industry: A critical review. Sci. Total Environ. 2020, 698, 134339. [Google Scholar] [CrossRef]
- Schiavon, M.; Nardi, S.; dalla Vecchia, F.; Ertani, A. Selenium biofortification in the 21st century: Status and challenges for healthy human nutrition. Plant Soil 2020. [Google Scholar] [CrossRef]
- Natasha Shahid, M.; Niazi, N.K.; Khalid, S.; Murtaza, B.; Bibi, I.; Rashid, M.I. A critical review of selenium biogeochemical behavior in soil-plant system with an inference to human health. Environ. Pollut. 2018, 234, 915–934. [Google Scholar] [CrossRef]
- Winkel, L.H.; Johnson, C.A.; Lenz, M.; Grundl, T.; Leupin, O.X.; Amini, M.; Charlet, L. Environmental selenium research: From microscopic processes to global understanding. Environ. Sci. Technol. 2011, 46, 571–579. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Global Health Risks: Mortality and Burden of Disease Attributable to Selected Major Risks; WHO: Geneva, Switzerland, 2009. [Google Scholar]
- Malagoli, M.; Schiavon, M.; Dall’Acqua, S.; Pilon-Smits, E.A.H. Effects of selenium biofortification on crop nutritional quality. Front. Plant Sci. 2015, 6, 280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Z.L.; Bañuelos, G.S.; Lin, Z.Q.; Liu, Y.; Yuan, L.X.; Yin, X.B.; Li, M. Biofortification and phytoremediation of selenium in China. Front. Plant Sci. 2015, 6, 136. [Google Scholar] [CrossRef] [PubMed]
- Shreenath, A.P.; Ameer, M.A.; Dooley, J. Selenium Deficiency; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- Yamada, H.; Kamada, A.; Usuki, M.; Yanai, J. Total selenium content of agricultural soils in Japan. Soil Sci. Plant Nutr. 2009, 55, 616–622. [Google Scholar] [CrossRef]
- Wan, J.; Zhang, M.; Adhikari, B. Advances in selenium-enriched foods: From the farm to the fork. Trends Food Sci. Technol. 2018, 76, 1–5. [Google Scholar] [CrossRef]
- Trolove, S.; Tan, Y.; Morrison, S.; Feng, L.; Eason, J. Development of a method for producing selenium-enriched radish sprouts. LWT 2018, 95, 187–192. [Google Scholar] [CrossRef]
- Longchamp, M.; Castrec-Rouelle, M.; Biron, P.; Bariac, T. Variations in the accumulation, localization and rate of metabolization of selenium in mature Zea mays plants supplied with selenite or selenate. Food Chem. 2015, 182, 128–135. [Google Scholar] [CrossRef] [Green Version]
- Gupta, M.; Gupta, S. An Overview of Selenium Uptake, Metabolism, and Toxicity in Plants. Front Plant Sci. 2017, 7, 2074. [Google Scholar] [CrossRef] [Green Version]
- Bratakos, M.S.; Ioannou, P.V. The regional distribution of selenium in Greeks cereals. Sci. Total Environ. 1989, 84, 237–247. [Google Scholar] [CrossRef]
- Bouyoucos, G.J. A recalibration of the hydrometer method for making mechanical analysis of soils. Agron. J. 1951, 43, 434–438. [Google Scholar] [CrossRef] [Green Version]
- Page, A.L. (Ed.) Methods of Soil Analysis, Part 2, 2nd ed.; American Society of Agronomy: Madison, WI, USA, 1982. [Google Scholar]
- NF ISO 10693. Détermination de la Teneuren Carbonate—Méthode Volumétrique; Qualité des Sols AFNOR: Paris, France, 1995; pp. 177–186. [Google Scholar]
- Loeppert, R.H.; Suarez, D.L. Carbonate and gypsum. In Methods of Soil Analysis, Part 3, Chemical Methods; Bigham, J.M., Bartels, J.M., Eds.; ASA-SSSA: Madison, WI, USA, 1982; pp. 437–474. [Google Scholar]
- Olsen, S.R.; Cole, C.V.; Watanabe, F.S.; Dean, L.A. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; US Department of Agriculture: Washington, DC, USA, 1954; Volume 939, pp. 1–19.
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon and organic matter. In Methods of Soil Analysis, Part 2, Chemical and Microbiological Properties; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; ASA-SSSA: Madison, WI, USA, 1982. [Google Scholar]
- Schwertmann, U.; Taylor, R.M. Iron oxides. In Minerals in Soil Environments, 2nd ed.; Dixon, J.B., Weed, S.B., Eds.; 1989; pp. 379–438. Available online: http://www.scielo.br/scielo.php?script=sci_nlinks&ref=000101&pid=S0103-8478201300060000900024&lng=pt (accessed on 17 August 2019).
- Mehra, O.P.; Jackson, M.L. Iron oxide removal from soils and clay by a dithionite-citrate system buffered with sodium bicarbonate. Clays Clay Min. 2013, 7, 317–327. [Google Scholar] [CrossRef]
- Hagarová, I.; Žemberyová, M.; Bajčan, D. Sequential and single step extraction procedures used for fractionation of selenium in soil samples. Chem. Pap. 2005, 59, 93–98. [Google Scholar]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1362–1403. [Google Scholar] [CrossRef] [Green Version]
- Freundlich, H. Über die adsorption in lösungen. Z. Phys. Chem. 1906, 57, 385–470. [Google Scholar] [CrossRef]
- Mirlean, N.; Seus-Arrache, E.R.; Vlasova, O. Selenium deficiency in subtropical littoral pampas: Environmental and dietary aspects. Environ. Geochem. Health 2018, 40, 543. [Google Scholar] [CrossRef]
- Balistrieri, L.S.; Chao, T. Adsorption of selenium by amorphous iron oxyhydroxide and manganese dioxide. Geochim. Cosmochim. Acta 1990, 54, 739–751. [Google Scholar] [CrossRef]
- Dhillon, K.S.; Dhillon, S.K. Adsorption-desorption reactions of selenium in some soils of india. Geoderma 1999, 93, 19–31. [Google Scholar] [CrossRef]
- Söderlund, M.; Virkanen, J.; Holgersson, S.; Lehto, J. Sorption and speciation of selenium in boreal forest soil. J. Environ. Radioact. 2016, 164, 220–231. [Google Scholar] [CrossRef]
- Sheppard, S.C. Robust Prediction of Kd from Soil Properties for Environmental Assessment. Hum. Ecol. Risk Assess. Int. J. 2011, 17, 263–279. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, L.; Li, J.; Zhang, D.; Chen, L.; Sheng, D.; Yang, S.; Xiao, C.; Wang, J.; Chai, Z.; et al. Selenium sequestration in a cationic layered rare earth hydroxide: A combined batch experiments and EXAFS investigation. Environ. Sci. Technol. 2017, 51, 8606–8615. [Google Scholar] [CrossRef]
- Ligowe, I.; Phiri, F.; Ander, E.; Bailey, E.; Chilimba, A.; Gashu, D.; Joy, E.; Lark, R.; Kabambe, V.; Kalimbira, A.; et al. Selenium deficiency risks in sub-Saharan African food systems and their geospatial linkages. Proc. Nutr. Soc. 2020, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakamaru, Y.; Altansuvd, J. Speciation and bioavailability of selenium and antimony in non-flooded and wetland soils: A review. Chemosphere 2014, 111, 366–371. [Google Scholar] [CrossRef] [PubMed]
- Rovira, M.; Giménez, J.; Martínez, M.; Martínez-Lladó, X.; de Pablo, J.; Martí, V.; Duro, L. Sorption of selenium(IV) and selenium(VI) onto natural iron oxides: Goethite and hematite. J. Hazard. Mater. 2008, 150, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Coppin, F.; Chabroullet, C.; Martin-Garin, A. Selenite interactions with some particulate organic and mineral fractions isolated from a natural grassland soil. Eur. J. Soil Sci. 2009, 60, 369–376. [Google Scholar] [CrossRef]
- Goldberg, S. Modeling Selenite Adsorption Envelopes on Oxides, Clay Minerals, and Soils using the Triple Layer Model. Soil Sci. Soc. Am. J. 2013, 77, 64–71. [Google Scholar] [CrossRef] [Green Version]
- Kosmulski, M. Evaluation of Points of Zero Charge of Aluminum Oxide Reported in the Literature. Pr. Nauk. Inst. Gor. Politech. Wroc. 2001, 95, 5–14. [Google Scholar]
- Schwertmann, U.; Taylor, R.M. Iron oxides. In Minerals in Soil Environments; Dixon, J.B., Weed, S.B., Eds.; Soil Science Society of America: Madison, WI, USA, 1977; pp. 145–179. [Google Scholar]
- Miyittah, M.K.; Tsyawo, F.W.; Kumah, K.K.; Stanley, C.D.; Rechcigl, J.E. Suitability of two methods for determination of point of zero charge (PZC) of adsorbents in soils Comm. Soil Sci. Plant Anal. 2016, 47, 101–111. [Google Scholar] [CrossRef]
- Tan, W.; Lu, S.; Liu, F.; Feng, X.; He, J.; Koopal, L. Determination of the point-of-zero charge of manganese oxides with different methods including an improved salt titration method. Soil Sci. 2008, 173, 277–286. [Google Scholar] [CrossRef]
- Nakamaru, Y.; Tagami, K.; Uchida, S. Distribution coefficient of selenium in Japanese agricultural soils. Chemosphere 2005, 58, 1347–1354. [Google Scholar] [CrossRef]
- Premarathna, H.; McLaughlin, M.; Kirby, J.; Hettiarachchi, G.; Beak, D.; Stacey, S.; Chittleborough, D. Potential Availability of Fertilizer Selenium in Field Capacity and Submerged Soils. Soil Sci. Soc. Am. J. 2010, 74, 1589–1596. [Google Scholar] [CrossRef]
- Liang, D.; Li, Z. Response to the comment by Sabine Goldberg on: Selenite adsorption and desorption in main Chinese soils with their characteristics and physicochemical properties. J. Soils Sediments 2015, 15, 1150–1158, doi:10.1007/s11368-015-1085-7. J. Soils Sediments 2016, 16, 325. [Google Scholar] [CrossRef]
- Antoniadis, V.; Levizou, E.; Shaheen, S.; Ok, Y.; Sebastian, A.; Baum, C. Trace elements in the soil-plant interface: Phytoavailability, translocation, and phytoremediation–A review. Earth-Sci. Rev. 2017, 171, 621–645. [Google Scholar] [CrossRef]
- Loffredo, N.; Mounier, S.; Thiry, Y.; Coppin, F. Sorption of selenate on soils and pure phases: Kinetic parameters and stabilisation. J. Environ. Radioact. 2011, 102, 843–851. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Sanchez, L.; Loffredo, N.; Mounier, S.; Martin-Garin, A.; Coppin, F. Kinetics of selenate sorption in soil as influenced by biotic and abiotic conditions: A stirred flow-through reactor study. J. Environ. Radioact. 2014, 138, 38–49. [Google Scholar] [CrossRef] [PubMed]
Alkaline Soils | Acid Soils | |||||||
---|---|---|---|---|---|---|---|---|
Soil properties | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
Clay (%) | 37.6 | 23.6 | 17 | 28.7 | 24.7 | 32.4 | 16.4 | 30.1 |
Silt (%) | 25.7 | 32 | 18 | 30.3 | 26.3 | 24.3 | 20.3 | 20.3 |
Sand (%) | 36.7 | 44.4 | 65 | 41 | 49 | 43.3 | 63.3 | 49.6 |
Texture | CL | CL | SL | CL | SCL | CL | SL | SCL |
pH (1:1) | 7.45 | 7.42 | 7.44 | 7.76 | 5.49 | 5.88 | 6.01 | 5.8 |
CaCO3 eq. (%) | 4.5 | 4.55 | 18.7 | 16.3 | <D.L. * | <D.L. | <D.L. | <D.L. |
Act. CaCO3 (%) | 3.13 | 2.63 | 0.5 | 4.86 | <D.L. | <D.L. | <D.L. | <D.L. |
EC (μS/cm) | 1900 | 1365 | 1545 | 1750 | 960 | 625 | 475 | 400 |
Organic Carbon % | 1.05 | 0.95 | 1.50 | 0.70 | 1.55 | 0.80 | 0.75 | 0.85 |
Fed (%) | 1.8 | 0.73 | 6.32 | 1.57 | 2.26 | 3.22 | 2.33 | 1.28 |
Feo (%) | 0.2 | 0.13 | 0.13 | 0.08 | 0.17 | 0.4 | 0.31 | 0.35 |
Ald (%) | 0.12 | 0.06 | 0.06 | 0.12 | 0.13 | 0.26 | 0.16 | 0.22 |
Feo/Fed | 0.11 | 0.18 | 0.02 | 0.05 | 0.08 | 0.12 | 0.13 | 0.27 |
Alo (%) | 0.9 | 0.64 | 0.55 | 0.66 | 0.9 | 1.02 | 0.46 | 1.03 |
Mnd (%) | 0.05 | 0.04 | 0.03 | 0.02 | 0.09 | 0.1 | 0.07 | 0.15 |
Mno (%) | 0.04 | 0.04 | 0.02 | 0.02 | 0.08 | 0.1 | 0.05 | 0.06 |
Se total (mg kg−1) | 0.21 | 0.28 | 0.07 | 0.06 | 0.16 | 0.08 | 0.18 | 0.05 |
p Olsen. (mg kg−1) | 4 | 18.8 | 8.8 | 6.3 | 11.7 | 10.6 | 27.6 | 6.4 |
Langmuir Constants | Freundlich Constants | |||||||
---|---|---|---|---|---|---|---|---|
Soil | qm (mg/g) | bL (L/mg) | R2 | p-Value | KF (mg/g) (L/mg)1/n | 1/n | R2 | p-Value |
1 | 0.26 | 0.085 | 0.9 | <0.01 | 4.16 | 0.578 | 0.987 | <0.001 |
2 | 0.15 | 0.076 | 0.996 | <0.001 | 2.93 | 0.648 | 0.980 | <0.001 |
3 | 0.15 | 0.203 | 0.979 | <0.001 | 3.90 | 0.514 | 0.939 | <0.01 |
4 | 0.18 | 0.152 | 0.939 | <0.01 | 4.29 | 0.492 | 0.935 | <0.01 |
5 | 0.18 | 0.140 | 0.973 | <0.001 | 4.26 | 0.458 | 0.991 | <0.001 |
6 | 0.46 | 0.157 | 0.894 | <0.01 | 7.33 | 0.394 | 0.993 | <0.001 |
7 | 0.61 | 0.176 | 0.969 | <0.001 | 6.95 | 0.571 | 0.979 | <0.001 |
8 | 0.42 | 0.246 | 0.921 | <0.01 | 7.83 | 0.355 | 0.973 | <0.001 |
Variables | Feo | Ald | Mnd | Feo/Fed | EC | eqCaCO3% |
---|---|---|---|---|---|---|
KF | 0.91 | 0.91 | 0.80 | −0.83 | ||
qm | 0.86 | 0.75 | 0.59 | −0.77 | ||
bL | 0.99 (n = 4) | −0.57 | 0.96 (n = 4) | |||
Mean Kd | 0.79 | 0.85 | 0.89 | 0.75 | ||
Mean Se desorption % | −0.86 | −0.88 | −0.80 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zafeiriou, I.; Gasparatos, D.; Massas, I. Adsorption/Desorption Patterns of Selenium for Acid and Alkaline Soils of Xerothermic Environments. Environments 2020, 7, 72. https://doi.org/10.3390/environments7100072
Zafeiriou I, Gasparatos D, Massas I. Adsorption/Desorption Patterns of Selenium for Acid and Alkaline Soils of Xerothermic Environments. Environments. 2020; 7(10):72. https://doi.org/10.3390/environments7100072
Chicago/Turabian StyleZafeiriou, Ioannis, Dionisios Gasparatos, and Ioannis Massas. 2020. "Adsorption/Desorption Patterns of Selenium for Acid and Alkaline Soils of Xerothermic Environments" Environments 7, no. 10: 72. https://doi.org/10.3390/environments7100072
APA StyleZafeiriou, I., Gasparatos, D., & Massas, I. (2020). Adsorption/Desorption Patterns of Selenium for Acid and Alkaline Soils of Xerothermic Environments. Environments, 7(10), 72. https://doi.org/10.3390/environments7100072