Control of Invasive Forest Species through the Creation of a Value Chain: Acacia dealbata Biomass Recovery
Abstract
:1. Introduction
- 1st Stage—laboratory characterization of the raw material;
- 2nd Stage—production of biomass pellets on a laboratory scale;
- 3rd Stage—production of biomass pellets on an industrial scale;
- 4th Stage—combustion tests.
2. Materials and Methods
2.1. Collection and Preparation of the Samples
2.2. Laboratory Analysis
2.2.1. Chlorine Content
2.2.2. Major and Minor Elements
2.2.3. Elemental Analysis
2.2.4. Proximate Analysis
2.2.5. Heating Value
2.2.6. Ash Fusibility Test
2.3. Laboratorial Scale Pellet Production
2.4. Industrial Scale Pellet Production
2.5. Combustion Test
3. Results
3.1. Laboratory Analysis
3.2. Laboratorial Scale Pellet Production
3.3. Industrial Scale Pellet Production
3.4. Combustion Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Boulanger, Y.; Arseneault, D.; Boucher, Y.; Gauthier, S.; Cyr, D.; Taylor, A.R.; Price, D.T.; Dupuis, S. Climate change will affect the ability of forest management to reduce gaps between current and presettlement forest composition in southeastern Canada. Landsc. Ecol. 2019, 34, 159–174. [Google Scholar] [CrossRef]
- Nordström, E.-M.; Nieuwenhuis, M.; Başkent, E.Z.; Biber, P.; Black, K.; Borges, J.G.; Bugalho, M.N.; Corradini, G.; Corrigan, E.; Eriksson, L.O. Forest decision support systems for the analysis of ecosystem services provisioning at the landscape scale under global climate and market change scenarios. Eur. J. For. Res. 2019, 138, 561–581. [Google Scholar] [CrossRef]
- Rathore, P.; Roy, A.; Karnatak, H. Assessing the vulnerability of Oak (Quercus) forest ecosystems under projected climate and land use land cover changes in Western Himalaya. Biodivers. Conserv. 2019, 28, 2275–2294. [Google Scholar] [CrossRef]
- Mostegl, N.M.; Pröbstl-Haider, U.; Jandl, R.; Haider, W. Targeting climate change adaptation strategies to small-scale private forest owners. For. Policy Econ. 2019, 99, 83–99. [Google Scholar] [CrossRef]
- Keith, H.; Vardon, M.; Stein, J.; Lindenmayer, D. Contribution of native forests to climate change mitigation–A common approach to carbon accounting that aligns results from environmental-economic accounting with rules for emissions reduction. Environ. Sci. Policy 2019, 93, 189–199. [Google Scholar] [CrossRef]
- Dorado-Liñán, I.; Piovesan, G.; Martínez-Sancho, E.; Gea-Izquierdo, G.; Zang, C.; Cañellas, I.; Castagneri, D.; Di Filippo, A.; Gutiérrez, E.; Ewald, J. Geographical adaptation prevails over species-specific determinism in trees’ vulnerability to climate change at Mediterranean rear-edge forests. Glob. Chang. Biol. 2019, 25, 1296–1314. [Google Scholar] [CrossRef]
- Biswas, S.R.; Choudhury, J.K.; Nishat, A.; Rahman, M.M. Do invasive plants threaten the Sundarbans mangrove forest of Bangladesh? For. Ecol. Manag. 2007, 245, 1–9. [Google Scholar] [CrossRef]
- Bardsley, D.; Edwards-Jones, G. Stakeholders’ perceptions of the impacts of invasive exotic plant species in the Mediterranean region. GeoJournal 2006, 65, 199–210. [Google Scholar] [CrossRef] [Green Version]
- Bengtsson, J.; Nilsson, S.G.; Franc, A.; Menozzi, P. Biodiversity, disturbances, ecosystem function and management of European forests. For. Ecol. Manag. 2000, 132, 39–50. [Google Scholar] [CrossRef]
- Gallardo, B.; Clavero, M.; Sánchez, M.I.; Vilà, M. Global ecological impacts of invasive species in aquatic ecosystems. Glob. Chang. Biol. 2016, 22, 151–163. [Google Scholar] [CrossRef]
- Sitzia, T.; Campagnaro, T.; Kowarik, I.; Trentanovi, G. Using forest management to control invasive alien species: Helping implement the new European regulation on invasive alien species. Biol. Invasions 2016, 18, 1–7. [Google Scholar] [CrossRef]
- Genovesi, P.; Carboneras, C.; Vila, M.; Walton, P. EU adopts innovative legislation on invasive species: A step towards a global response to biological invasions? Biol. Invasions 2015, 17, 1307–1311. [Google Scholar] [CrossRef]
- Mainali, K.P.; Warren, D.L.; Dhileepan, K.; McConnachie, A.; Strathie, L.; Hassan, G.; Karki, D.; Shrestha, B.B.; Parmesan, C. Projecting future expansion of invasive species: Comparing and improving methodologies for species distribution modeling. Glob. Chang. Biol. 2015, 21, 4464–4480. [Google Scholar] [CrossRef]
- Marean, C.W. The most invasive species of all. Sci. Am. 2015, 313, 32–39. [Google Scholar] [CrossRef]
- Nunes, L.J.; Meireles, C.I.; Pinto Gomes, C.J.; Almeida Ribeiro, N. Forest Contribution to Climate Change Mitigation: Management Oriented to Carbon Capture and Storage. Climate 2020, 8, 21. [Google Scholar] [CrossRef] [Green Version]
- Early, R.; Bradley, B.A.; Dukes, J.S.; Lawler, J.J.; Olden, J.D.; Blumenthal, D.M.; Gonzalez, P.; Grosholz, E.D.; Ibañez, I.; Miller, L.P. Global threats from invasive alien species in the twenty-first century and national response capacities. Nat. Commun. 2016, 7, 12485. [Google Scholar] [CrossRef]
- Denley, D.; Metaxas, A.; Fennel, K. Community composition influences the population growth and ecological impact of invasive species in response to climate change. Oecologia 2019, 189, 537–548. [Google Scholar] [CrossRef]
- Nunes, L.J.; Meireles, C.I.; Pinto Gomes, C.J.; Almeida Ribeiro, N. Historical Development of the Portuguese Forest: The Introduction of Invasive Species. Forests 2019, 10, 974. [Google Scholar] [CrossRef] [Green Version]
- Nentwig, W.; Bacher, S.; Kumschick, S.; Pyšek, P.; Vilà, M. More than “100 worst” alien species in Europe. Biol. Invasions 2018, 20, 1611–1621. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Echeverría, S.; Afonso, C.; Correia, M.; Lorenzo, P.; Roiloa, S.R. The effect of soil legacy on competition and invasion by Acacia dealbata Link. Plant. Ecol. 2013, 214, 1139–1146. [Google Scholar] [CrossRef]
- Le Maitre, D.C.; Gaertner, M.; Marchante, E.; Ens, E.J.; Holmes, P.M.; Pauchard, A.; O’Farrell, P.J.; Rogers, A.M.; Blanchard, R.; Blignaut, J. Impacts of invasive Australian acacias: Implications for management and restoration. Divers. Distrib. 2011, 17, 1015–1029. [Google Scholar] [CrossRef]
- Gibson, M.R.; Richardson, D.M.; Marchante, E.; Marchante, H.; Rodger, J.G.; Stone, G.N.; Byrne, M.; Fuentes-Ramírez, A.; George, N.; Harris, C. Reproductive biology of Australian acacias: Important mediator of invasiveness? Divers. Distrib. 2011, 17, 911–933. [Google Scholar] [CrossRef]
- Marchante, H.; Freitas, H.; Hoffmann, J. Assessing the suitability and safety of a well-known bud-galling wasp, Trichilogaster acaciaelongifoliae, for biological control of Acacia longifolia in Portugal. Biol. Control. 2011, 56, 193–201. [Google Scholar] [CrossRef] [Green Version]
- Lorenzo, P.; González, L.; Reigosa, M.J. The genus Acacia as invader: The characteristic case of Acacia dealbata Link in Europe. Ann. For. Sci. 2010, 67, 101. [Google Scholar] [CrossRef] [Green Version]
- Lorenzo, P.; Rodríguez, J.; González, L.; Rodríguez-Echeverría, S. Changes in microhabitat, but not allelopathy, affect plant establishment after Acacia dealbata invasion. J. Plant. Ecol. 2017, 10, 610–617. [Google Scholar]
- Lazzaro, L.; Giuliani, C.; Fabiani, A.; Agnelli, A.E.; Pastorelli, R.; Lagomarsino, A.; Benesperi, R.; Calamassi, R.; Foggi, B. Soil and plant changing after invasion: The case of Acacia dealbata in a Mediterranean ecosystem. Sci. Total Environ. 2014, 497, 491–498. [Google Scholar] [CrossRef]
- Lorenzo, P.; Pazos-Malvido, E.; Rubido-Bará, M.; Reigosa, M.J.; González, L. Invasion by the leguminous tree Acacia dealbata (Mimosaceae) reduces the native understorey plant species in different communities. Aust. J. Bot. 2012, 60, 669–675. [Google Scholar] [CrossRef] [Green Version]
- Nunes, L.J.R.; Meireles, C.I.R.; Pinto Gomes, C.J.; de Almeida Ribeiro, N.M.C. Socioeconomic Aspects of the Forests in Portugal: Recent Evolution and Perspectives of Sustainability of the Resource. Forests 2019, 10, 361. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, J.; Lorenzo, P.; González, L. Different growth strategies to invade undisturbed plant communities by Acacia dealbata Link. For. Ecol. Manag. 2017, 399, 47–53. [Google Scholar] [CrossRef]
- Lada, H.; Yen, J.D.; Cunningham, S.C.; Selwood, K.E.; Falcke, P.; Hodgson, J.C.; Mac Nally, R. Influence of climate on individual tree growth and carbon sequestration in native-tree plantings. Austral. Ecol. 2019, 44, 859–867. [Google Scholar] [CrossRef]
- Trouvé, R.; Nitschke, C.R.; Andrieux, L.; Willersdorf, T.; Robinson, A.P.; Baker, P.J. Competition drives the decline of a dominant midstorey tree species. Habitat implications for an endangered marsupial. For. Ecol. Manag. 2019, 447, 26–34. [Google Scholar] [CrossRef]
- Aguilera, N.; Sanhueza, C.; Guedes, L.M.; Becerra, J.; Carrasco, S.; Hernández, V. Does A cacia dealbata express shade tolerance in M editerranean forest ecosystems of S outh A merica? Ecol. Evol. 2015, 5, 3338–3351. [Google Scholar] [CrossRef] [PubMed]
- Passos, I.; Marchante, H.; Pinho, R.; Marchante, E. What we don’t seed: The role of long-lived seed banks as hidden legacies of invasive plants. Plant. Ecol. 2017, 218, 1313–1324. [Google Scholar] [CrossRef]
- Nunes, L.; Causer, T.; Ciolkosz, D. Biomass for energy: A review on supply chain management models. Renew. Sustain. Energy Rev. 2020, 120, 109658. [Google Scholar] [CrossRef]
- Mátyás, C.; Berki, I.; Bidló, A.; Csóka, G.; Czimber, K.; Führer, E.; Gálos, B.; Gribovszki, Z.; Illés, G.; Hirka, A. Sustainability of forest cover under climate change on the temperate-continental xeric limits. Forests 2018, 9, 489. [Google Scholar] [CrossRef] [Green Version]
- Scarascia-Mugnozza, G.; Oswald, H.; Piussi, P.; Radoglou, K. Forests of the Mediterranean region: Gaps in knowledge and research needs. For. Ecol. Manag. 2000, 132, 97–109. [Google Scholar] [CrossRef]
- Nunes, L.J.; Meireles, C.I.; Pinto Gomes, C.J.; Almeida Ribeiro, N. The Evolution of Climate Changes in Portugal: Determination of Trend Series and Its Impact on Forest Development. Climate 2019, 7, 78. [Google Scholar] [CrossRef] [Green Version]
- Boyd, I.; Freer-Smith, P.; Gilligan, C.; Godfray, H. The consequence of tree pests and diseases for ecosystem services. Science 2013, 342, 1235773. [Google Scholar] [CrossRef]
- Baker, C.M.; Armsworth, P.R.; Lenhart, S.M. Handling overheads: Optimal multi-method invasive species control. Theor. Ecol. 2017, 10, 493–501. [Google Scholar] [CrossRef] [Green Version]
- Forsyth, D.M.; Ramsey, D.S.; Perry, M.; McKay, M.; Wright, E.F. Control history, longitude and multiple abiotic and biotic variables predict the abundances of invasive brushtail possums in New Zealand forests. Biol. Invasions 2018, 20, 2209–2225. [Google Scholar] [CrossRef]
- Epanchin-Niell, R.S. Economics of invasive species policy and management. Biol. Invasions 2017, 19, 3333–3354. [Google Scholar] [CrossRef] [Green Version]
- Jardine, S.L.; Sanchirico, J.N. Estimating the cost of invasive species control. J. Environ. Econ. Manag. 2018, 87, 242–257. [Google Scholar] [CrossRef]
- Ngorima, A.; Shackleton, C. Livelihood benefits and costs from an invasive alien tree (Acacia dealbata) to rural communities in the Eastern Cape, South Africa. J. Environ. Manag. 2019, 229, 158–165. [Google Scholar] [CrossRef]
- Viana, H.; Aranha, J. Mapping invasive species (Acacia dealbata Link) using ASTER/TERRA and LANDSAT 7 ETM+ imagery. In Proceedings of the IUFRO Landscape Ecology Working Group International Conference, Bragança, Portugal, 21–27 September 2010. [Google Scholar]
- Martins, F.; Alegria, C.; Gil, A. Mapping invasive alien Acacia dealbata Link using ASTER multispectral imagery: A case study in central-eastern of Portugal. For. Syst. 2016, 25, 13. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, A.T.; Gonçalves, J.; Fernandes, R.F.; Alves, S.; Marcos, B.; Lucas, R.; Teodoro, A.C.; Honrado, J.P. Estimating invasion success by non-native trees in a national park combining WorldView-2 very high resolution satellite data and species distribution models. Diversity 2017, 9, 6. [Google Scholar] [CrossRef] [Green Version]
- Große-Stoltenberg, A.; Hellmann, C.; Thiele, J.; Werner, C.; Oldeland, J. Early detection of GPP-related regime shifts after plant invasion by integrating imaging spectroscopy with airborne LiDAR. Remote Sens. Environ. 2018, 209, 780–792. [Google Scholar] [CrossRef]
- Viana, H.; Cohen, W.B.; Lopes, D.; Aranha, J. Assessment of forest biomass for use as energy. GIS-based analysis of geographical availability and locations of wood-fired power plants in Portugal. Appl. Energy 2010, 87, 2551–2560. [Google Scholar] [CrossRef]
- Vaz, A.S.; Kueffer, C.; Kull, C.A.; Richardson, D.M.; Vicente, J.R.; Kühn, I.; Schröter, M.; Hauck, J.; Bonn, A.; Honrado, J.P. Integrating ecosystem services and disservices: Insights from plant invasions. Ecosyst. Serv. 2017, 23, 94–107. [Google Scholar] [CrossRef] [Green Version]
- Rascher, K.G.; Große-Stoltenberg, A.; Máguas, C.; Meira-Neto, J.A.A.; Werner, C. Acacialongifolia invasion impacts vegetation structure and regeneration dynamics in open dunes and pine forests. Biol. Invasions 2011, 13, 1099–1113. [Google Scholar] [CrossRef]
- Große-Stoltenberg, A.; Hellmann, C.; Thiele, J.; Oldeland, J.; Werner, C. Invasive acacias differ from native dune species in the hyperspectral/biochemical trait space. J. Veg. Sci. 2018, 29, 325–335. [Google Scholar] [CrossRef]
- Lisperguer, J.; Saravia, Y.; Vergara, E. Structure and thermal behavior of tannins from Acacia dealbata bark and their reactivity toward formaldehyde. J. Chil. Chem. Soc. 2016, 61, 3188–3190. [Google Scholar] [CrossRef] [Green Version]
- Lorenzo, P.; Souza-Alonso, P.; Guisande-Collazo, A.; Freitas, H. Influence of Acacia dealbata Link bark extracts on the growth of Allium cepa L. plants under high salinity conditions. J. Sci. Food Agric. 2019, 99, 4072–4081. [Google Scholar] [CrossRef] [PubMed]
- Esteves, B.; Gominho, J.; Rodrigues, J.C.; Miranda, I.; Pereira, H. Pulping yield and delignification kinetics of heartwood and sapwood of maritime pine. J. Wood Chem. Technol. 2005, 25, 217–230. [Google Scholar] [CrossRef]
- Gaspar, M.J.; Alves, A.; Louzada, J.L.; Morais, J.; Santos, A.; Fernandes, C.; Almeida, M.H.; Rodrigues, J.C. Genetic variation of chemical and mechanical traits of maritime pine (Pinus pinaster Aiton). Correlations with wood density components. Ann. For. Sci. 2011, 68, 255–265. [Google Scholar] [CrossRef] [Green Version]
- Pot, D.; Rodrigues, J.-C.; Rozenberg, P.; Chantre, G.; Tibbits, J.; Cahalan, C.; Pichavant, F.; Plomion, C. QTLs and candidate genes for wood properties in maritime pine (Pinus pinaster Ait.). Tree Genet. Genomes 2006, 2, 10–24. [Google Scholar] [CrossRef]
- Yao, S.; Wu, G.; Xing, M.; Zhou, S.; Pu, J. Determination of lignin content in Acacia spp using near-infrared reflectance spectroscopy. BioResources 2010, 5, 556–562. [Google Scholar]
- Santos, A.J.; Anjos, O.; Simoes, R. Papermaking potential of Acacia dealbata and Acacia melanoxylon. Appita Technol. Innov. Manuf. Environ. 2006, 59, 58. [Google Scholar]
- Abubacker, M.; Prince, M. Decomposition of lignin and holocellulose of Acacia dealbata Link (Mimosoideae) leaves, twigs and barks by fungal isolates from virgin forest ecosystem of Doddabetta Belt of Nilgiris. Biosci. Biotechnol. Res. Asia 2013, 10, 719–726. [Google Scholar] [CrossRef]
Laboratory Analysis | Parameter | Result |
---|---|---|
Elemental analysis CHN (%, db) (EN 15104) | C | 48.2 |
H | 5.79 | |
N | 0.314 | |
Chlorine content (%, db) | Cl | 0.04 |
Element content (%, db) (Sample digestion for ICP based on EN 15105, EN 15289, EN 15290, and EN 15297) | Al | 3.44 |
Ba | 0.27 | |
Ca | 55.6 | |
Cd | 0.002 | |
Co | 0.003 | |
Cr | 0.02 | |
Cu | 0.04 | |
Fe | 1.44 | |
K | 16.1 | |
Mg | 7.08 | |
Mn | 0.69 | |
Na | 3.90 | |
Ni | 0.01 | |
Pb | 0.03 | |
Zn | 0.49 | |
As * | - | |
Si | 10.9 | |
P * | - | |
S * | - | |
Ti * | ~ | |
Thermogravimetric analysis (%, db) | Ashes (EN 14775) | 0.663 |
Volatiles (EN 15148) | 79.745 | |
Fixed carbon (by calculation) | 19.563 | |
Moisture (EN 14774-3) | 0.646 | |
Heating value (MJ/kg, db) (EN 14918) | High Heating Value (HHV) | 19.297 |
Low Heating Value (LHV) | 18.032 | |
Ash fusibility test (°C) (CEN/TS 15370-1, in reducing atmosphere) | Initial deformation temperature (IDT) | 662 |
Softening temperature (ST) | 1270 | |
Hemisphere temperature (HT) | 1292 | |
Fluid temperature (FT) | 1320 |
Parameter | Result |
---|---|
LHV (MJ/kg, ar) | 16.95 |
Bulk density (kg/m3, ar) | >600 |
Moisture (%, ar) | 8–10 |
Ashes (%, ar) | <1 |
Properties | Units | Enplus-A1 | P. Pinaster | E. Globulus | A. Dealbata |
---|---|---|---|---|---|
Length | mm | 3.15–35 | 3.15–35 | 3.15–35 | 3.15–35 |
Diameter | mm | 6–8 | 6–8 | 6–8 | 6 |
Bulk density | kg/m3 | ≥600 | ≥600 | ≥600 | ≥600 |
Moisture | % | ≤10 | ≤10 | ≤10 | 8–10 |
Durability | % | ≥97.5 | ≥97.5 | ≥97.5 | ≥97.5 |
Ash | % | <0.7 | 0.603 | 1.236 | 0.663 |
Volatile | % (db) | --- | 79.55 | 79.85 | 79.75 |
Fixed carbon | % (db) | --- | 19.85 | 17.41 | 19.56 |
Carbon | % (db) | --- | 56.4 | 52.70 | 48.2 |
Hydrogen | % (db) | --- | 5.85 | 5.82 | 5.79 |
Nitrogen | % (db) | ≥0.3 | 0.138 | 0.166 | 0.314 |
Oxygen | % (db) | --- | 37.61 | 41.31 | 45.70 |
Sulphur | % (db) | ≤0.03 | ≤0.01 | ≤0.01 | ≤0.01 |
Chlorine | % (db) | ≤0.02 | 0.01 | 0.02 | 0.04 |
LHV | MJ/kg (db) | 16.5 ≤ LHV ≤ 19 | 18.36 | 17.56 | 16.95 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nunes, L.J.R.; Raposo, M.A.M.; Meireles, C.I.R.; Pinto Gomes, C.J.; Ribeiro, N.M.C.A. Control of Invasive Forest Species through the Creation of a Value Chain: Acacia dealbata Biomass Recovery. Environments 2020, 7, 39. https://doi.org/10.3390/environments7050039
Nunes LJR, Raposo MAM, Meireles CIR, Pinto Gomes CJ, Ribeiro NMCA. Control of Invasive Forest Species through the Creation of a Value Chain: Acacia dealbata Biomass Recovery. Environments. 2020; 7(5):39. https://doi.org/10.3390/environments7050039
Chicago/Turabian StyleNunes, Leonel J.R., Mauro A.M. Raposo, Catarina I.R. Meireles, Carlos J. Pinto Gomes, and Nuno M.C. Almeida Ribeiro. 2020. "Control of Invasive Forest Species through the Creation of a Value Chain: Acacia dealbata Biomass Recovery" Environments 7, no. 5: 39. https://doi.org/10.3390/environments7050039
APA StyleNunes, L. J. R., Raposo, M. A. M., Meireles, C. I. R., Pinto Gomes, C. J., & Ribeiro, N. M. C. A. (2020). Control of Invasive Forest Species through the Creation of a Value Chain: Acacia dealbata Biomass Recovery. Environments, 7(5), 39. https://doi.org/10.3390/environments7050039