Study of the Urban Heat Island (UHI) Using Remote Sensing Data/Techniques: A Systematic Review
Abstract
:1. Introduction
1.1. Satellites More Used to Estimate Land Surface Temperature
1.1.1. Thermal Sensors
- Landsat mission
- MODIS
- ASTER
- Polar and geostationary satellites
1.1.2. Passive Microwave Sensors
1.2. SUHI and LST Studies Applying Different Techniques
1.3. Study Objectives
2. Materials and Methods
2.1. Bibliographic Database
2.2. Search Strategy and Validity
3. Results
3.1. Publication Period
3.2. Geographic Location and Climate Zone of the Study Areas
3.3. Keywords
3.4. General Objectives and Application Areas
3.5. Equipment/Sensor Used to Obtain Information about the Thermal Data
3.6. Information Sources Used to Obtain LULC and Extra Data
3.7. Software Employed
3.8. Vegetation Index and Extra Data
3.9. Applied Statistical Methods
3.10. Authors’ Main Conclusions
3.10.1. Quantitative Analysis
3.10.2. Qualitative Analysis
3.11. Bibliographical References
3.12. Authors
3.13. Citations
4. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Oke, T.R. The energetic basis of the urban heat island (Symons Memorial Lecture, 20 May 1980). Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Imhoff, M.L.; Zhang, P.; Wolfe, R.E.; Bounoua, L. Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sens. Environ. 2010, 114, 504–513. [Google Scholar] [CrossRef] [Green Version]
- US Geological Survey Urban Heat Islands. Available online: https://www.usgs.gov/media/images/urban-heat-islands (accessed on 1 March 2020).
- Oke, T.R.; Mills, G.; Christen, A.; Voogt, J.A. Urban Climate; Cambridge University Press: Cambridge, MA, USA, 2017; ISBN 978-113-901-64-76. [Google Scholar] [CrossRef] [Green Version]
- Romero, M.A.B. Arquitetura do Lugar. Uma Visão Bioclimática da Sustentabilidade em Brasília; Técnica: São Paulo, Brazil, 2011; ISBN 9788562889035. [Google Scholar]
- Gartland, L.; Gonçalves, S.H. (translation); Ilhas de Calor: Como mitigar zonas de calor em áreas urbanas; Oficina de Textos: São Paulo, Brazil, 2010. [Google Scholar]
- Santamouris, M. Environmental Design of Urban Buildings—An Integrated Approach; Routledge: London, UK, 2006. [Google Scholar]
- Arnfield, A.J. Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol. 2003, 23, 1–26. [Google Scholar] [CrossRef]
- Grimmond, C.S.B. Progress in measuring and observing the urban atmosphere. Theor. Appl. Climatol. 2006, 84, 3–22. [Google Scholar] [CrossRef]
- Stewart, I.D.; Oke, T.R. Local climate zones for urban temperature studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Gawu, L. Relationship between Surface Urban Heat Island intensity and sensible heat flux retrieved from meteorological parameters observed by road weather stations in urban area. EGU Gen. Assem. Conf. Abstr. 2017, 19, 16820. [Google Scholar]
- Voogt, J.A.; Oke, T.R. Thermal remote sensing of urban climates. Remote Sens. Environ. 2003, 86, 370–384. [Google Scholar] [CrossRef]
- Weng, Q.; Fu, P. Modeling annual parameters of clear-sky land surface temperature variations and evaluating the impact of cloud cover using time series of Landsat TIR data. Remote Sens. Environ. 2014, 140, 267–278. [Google Scholar] [CrossRef]
- Li, D.; Bou-Zeid, E. Synergistic interactions between urban heat islands and heat waves: The impact in cities is larger than the sum of its parts. J. Appl. Meteorol. Climatol. 2013, 52, 2051–2064. [Google Scholar] [CrossRef] [Green Version]
- Leal Filho, W.; Echevarria Icaza, L.; Neht, A.; Klavins, M.; Morgan, E.A. Coping with the impacts of urban heat islands. A literature based study on understanding urban heat vulnerability and the need for resilience in cities in a global climate change context. J. Clean. Prod. 2018, 171, 1140–1149. [Google Scholar] [CrossRef] [Green Version]
- Kershaw, T.; Sanderson, M.; Coley, D.; Eames, M. Estimation of the urban heat island for UK climate change projections. Build. Serv. Eng. Res. Technol. 2010, 31, 251–263. [Google Scholar] [CrossRef] [Green Version]
- Chapman, S.; Thatcher, M.; Salazar, A.; Watson, J.E.M.; McAlpine, C.A. The impact of climate change and urban growth on urban climate and heat stress in a subtropical city. Int. J. Climatol. 2019, 39, 3013–3030. [Google Scholar] [CrossRef] [Green Version]
- Sachindra, D.A.; Ng, A.W.M.; Muthukumaran, S.; Perera, B.J.C. Impact of climate change on urban heat island effect and extreme temperatures: A case-study. Q. J. R. Meteorol. Soc. 2015, 142, 172–186. [Google Scholar] [CrossRef]
- Santamouris, M.; Cartalis, C.; Synnefa, A. Local urban warming, possible impacts and a resilience plan to climate change for the historical center of Athens, Greece. Sustain. Cities Soc. 2015, 19, 281–291. [Google Scholar] [CrossRef]
- Santamouris, M. On the energy impact of urban heat island and global warming on buildings. Energy Build. 2014, 82, 100–113. [Google Scholar] [CrossRef]
- Tan, J.; Zheng, Y.; Tang, X.; Guo, C.; Li, L.; Song, G.; Zhen, X.; Yuan, D.; Kalkstein, A.J.; Li, F.; et al. The urban heat island and its impact on heat waves and human health in Shanghai. Int. J. Biometeorol. 2010, 54, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Keikhosravi, Q. The effect of heat waves on the intensification of the heat island of Iran’s metropolises (Tehran, Mashhad, Tabriz, Ahvaz). Urban Clim. 2019, 28, 100453. [Google Scholar] [CrossRef]
- Weng, Q.; Lu, D.; Schubring, J. Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies. Remote Sens. Environ. 2004, 89, 467–483. [Google Scholar] [CrossRef]
- De Almeida, C.M. Aplicação dos sistemas de sensoriamento remoto por imagens e o planejamento urbano regional. Rev. Eletrôn. Arquit. Urban. 2010, 3, 98–123. [Google Scholar]
- Hulley, G.C.; Ghent, D.; Göttsche, F.M.; Guillevic, P.C.; Mildrexler, D.J.; Coll, C. Land Surface Temperature. In Taking the Temperature of the Earth, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar] [CrossRef]
- Sousa, A.; Silva, J. Fundamentos Teóricos de Deteção Remota. Univ. Évora—Dep. Eng. Rural 2011, 1–57. Available online: http://www.rdpc.uevora.pt/bitstream/10174/4822/1/Sebenta_DR_fundamentosTericos_2011.pdf (accessed on 12 September 2020).
- Guillevic, P.; Göttsche, F.; Nickeson, J.; Hulley, G.; Ghent, D.; Yu, Y.; Trigo, I.; Hook, S.; Sobrino, J.A.; Remedios, J.; et al. Land Surface Temperature Product Validation Best Practice Protocol Version 1.1. 2018. Available online: https://lpvs.gsfc.nasa.gov/PDF/CEOS_LST_PROTOCOL_Feb2018_v1.1.0_light.pdf (accessed on 20 August 2021). [CrossRef]
- Kustas, W.; Anderson, M. Advances in thermal infrared remote sensing for land surface modeling. Agric. For. Meteorol. 2009, 149, 2071–2081. [Google Scholar] [CrossRef]
- Agam, N.; Kustas, W.P.; Anderson, M.C.; Li, F.; Colaizzi, P.D. Utility of thermal image sharpening for monitoring field-scale evapotranspiration over rainfed and irrigated agricultural regions. Geophys. Res. Lett. 2008, 35, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Dousset, B.; Gourmelon, F. Satellite multi-sensor data analysis of urban surface temperatures and landcover. ISPRS J. Photogramm. Remote Sens. 2003, 58, 43–54. [Google Scholar] [CrossRef]
- Luvall, J.C.; Quattrochi, D.A.; Rickman, D.L.; Estes, M.G. Boundary Layer (Atmospheric) and Air Pollution: Urban Heat Islands, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 310–318. [Google Scholar] [CrossRef]
- Hall, D.K.; Comiso, J.C.; Digirolamo, N.E.; Shuman, C.A.; Key, J.R.; Koenig, L.S. A satellite-derived climate-quality data record of the clear-sky surface temperature of the greenland ice sheet. J. Clim. 2012, 25, 4785–4798. [Google Scholar] [CrossRef]
- Schneider, P.; Hook, S.J. Space observations of inland water bodies show rapid surface warming since 1985. Geophys. Res. Lett. 2010, 37, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Pasotti, L.; Maroli, M.; Giannetto, S.; Brianti, E. Agrometeorology and models for the parasite cycle forecast. Parassitologia 2006, 48, 81–83. [Google Scholar] [PubMed]
- Neteler, M.; Roiz, D.; Rocchini, D.; Castellani, C.; Rizzoli, A. Terra and Aqua satellites track tiger mosquito invasion: Modelling the potential distribution of Aedes albopictus in north-eastern Italy. Int. J. Health Geogr. 2011, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, L.H.; Henebry, G.M. Urban heat islands as viewed by microwave radiometers and thermal time indices. Remote Sens. 2016, 8, 831. [Google Scholar] [CrossRef] [Green Version]
- Tomlinson, C.J.; Chapman, L.; Thornes, J.E.; Baker, C. Remote sensing land surface temperature for meteorology and climatology: A review. Meteorol. Appl. 2011, 18, 296–306. [Google Scholar] [CrossRef] [Green Version]
- Khaikine, M.N.; Kuznetsova, I.N.; Kadygrov, E.N.; Miller, E.A. Investigation of temporal-spatial parameters of an urban heat island on the basis of passive microwave remote sensing. Theor. Appl. Climatol. 2006, 84, 161–169. [Google Scholar] [CrossRef]
- Stathopoulou, M.; Cartalis, C. Daytime urban heat islands from Landsat ETM+ and Corine land cover data: An application to major cities in Greece. Sol. Energy 2007, 81, 358–368. [Google Scholar] [CrossRef]
- Freitas, S.C.; Trigo, I.F.; Macedo, J.; Barroso, C.; Silva, R.; Perdigão, R. Land surface temperature from multiple geostationary satellites. Int. J. Remote Sens. 2013, 34, 3051–3068. [Google Scholar] [CrossRef]
- WMO. OSCAR. Available online: https://space.oscar.wmo.int/gapanalyses (accessed on 13 September 2021).
- US Geological Survey Landsat Missions. Available online: https://www.usgs.gov/core-science-systems/nli/landsat/landsat-4?qt-science_support_page_related_con=0#qt-science_support_page_related_con (accessed on 12 September 2020).
- US Geological Survey Landsat Missions. Available online: https://www.usgs.gov/core-science-systems/nli/landsat/landsat-5?qt-science_support_page_related_con=0#qt-science_support_page_related_con (accessed on 12 September 2021).
- US Geological Survey Landsat Missions. Available online: https://www.usgs.gov/core-science-systems/nli/landsat/landsat-7?qt-science_support_page_related_con=0#qt-science_support_page_related_con (accessed on 12 September 2020).
- US Geological Survey Landsat Missions. Available online: https://www.usgs.gov/core-science-systems/nli/landsat/landsat-8?qt-science_support_page_related_con=0#qt-science_support_page_related_con (accessed on 12 September 2020).
- Masek, J.G.; Wulder, M.A.; Markham, B.; McCorkel, J.; Crawford, C.J.; Storey, J.; Jenstrom, D.T. Landsat 9: Empowering open science and applications through continuity. Remote Sens. Environ. 2020, 248, 111968. [Google Scholar] [CrossRef]
- Wulder, M.A.; White, J.C.; Loveland, T.R.; Woodcock, C.E.; Belward, A.S.; Cohen, W.B.; Fosnight, E.A.; Shaw, J.; Masek, J.G.; Roy, D.P. The global Landsat archive: Status, consolidation, and direction. Remote Sens. Environ. 2016, 185, 271–283. [Google Scholar] [CrossRef] [Green Version]
- US Geological Survey. Available online: https://earthexplorer.usgs.gov/ (accessed on 1 July 2020).
- Avdan, U.; Jovanovska, G. Algorithm for automated mapping of land surface temperature using LANDSAT 8 satellite data. J. Sensors 2016, 2016, 1480307. [Google Scholar] [CrossRef] [Green Version]
- US Geological Survey Using the USGS Landsat Level-1 Data Product. Available online: https://www.usgs.gov/core-science-systems/nli/landsat/using-usgs-landsat-level-1-data-product (accessed on 25 July 2021).
- Xu, H.Q.; Chen, B.Q. Remote sensing of the urban heat island and its changes in Xiamen City of SE China. J. Environ. Sci. 2004, 16, 276–281. [Google Scholar] [PubMed]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS; NASA: Washington, DC, USA, 1974; pp. 309–317. [Google Scholar]
- Sobrino, J.A.; Jiménez-Muñoz, J.C.; Paolini, L. Land surface temperature retrieval from LANDSAT TM 5. Remote Sens. Environ. 2004, 90, 434–440. [Google Scholar] [CrossRef]
- Carlson, T.N.; Ripley, D.A. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens. Environ. 1997, 62, 241–252. [Google Scholar] [CrossRef]
- Hulley, G.; Veraverbeke, S.; Hook, S. Thermal-based techniques for land cover change detection using a new dynamic MODIS multispectral emissivity product (MOD21). Remote Sens. Environ. 2014, 140, 755–765. [Google Scholar] [CrossRef]
- NASA Aqua Earth-Observing Satellite Mission. Available online: https://aqua.nasa.gov/ (accessed on 6 September 2021).
- Zhang, Y.Z.; Jiang, X.G.; Wu, H. A generalized split-window algorithm for retrieving land surface temperature from GF-5 thermal infrared data. Prog. Electromagn. Res. Symp. 2017, 2766–2771. [Google Scholar] [CrossRef]
- Zhou, D.; Xiao, J.; Bonafoni, S.; Berger, C.; Deilami, K.; Zhou, Y.; Frolking, S.; Yao, R.; Qiao, Z.; Sobrino, J.A. Satellite remote sensing of surface urban heat islands: Progress, challenges, and perspectives. Remote Sens. 2019, 11, 48. [Google Scholar] [CrossRef] [Green Version]
- Hulley, G.; Freepartner, R.; Malakar, N.; Sarkar, S. Moderate Resolution Imaging Spectroradiometer (MODIS) MOD21 Land Surface Temperature and Emissivity Product (MOD21) Users’ Guide—Collection 6; NASA: Washington, DC, USA, 2016; pp. 1–29. [Google Scholar]
- Retalis, A.; Paronis, D.; Michaelides, S.; Tymvios, F.; Charalambous, D.; Hadjimitsis, D.; Agapiou, A. Urban Heat Island and Heat Events in Cyprus. In Proceedings of the 10th International Conference on Meteorology, Climatology and Atmospheric Physics, Patras, Greece, 25–28 March 2010. [Google Scholar]
- Wan, Z.; Zhang, Y.; Zhang, Q.; Li, Z.-L. Quality assessment and validation of the MODIS global land surface temperature. Int. J. Remote Sens. 2004, 25, 261–274. [Google Scholar] [CrossRef]
- US Geological Survey ASTER. Available online: https://asterweb.jpl.nasa.gov/content/06_links/default.htm (accessed on 20 January 2021).
- US Geological Survey ASTER and MODIS Data Now Available through The LP DAAC On-Line Data Pool. Available online: https://lpdaac.usgs.gov/news/aster-and-modis-data-now-available-through-the-lp-daac-on-line-data-pool/ (accessed on 20 January 2021).
- US Geological Survey Earth Resources Observation and Science (EROS) Center. Available online: https://www.usgs.gov/centers/eros (accessed on 20 January 2021).
- US Geological Survey GloVis. Available online: https://glovis.usgs.gov/ (accessed on 20 January 2021).
- Abrams, M.; Hook, S. ASTER User Handbook.Version 2. Jet Propulsion Laboratory. Available online: https://lpdaac.usgs.gov/documents/262/ASTER_User_Handbook_v2.pdf (accessed on 12 September 2020).
- Weng, Q.; Fu, P. Modeling diurnal land temperature cycles over Los Angeles using downscaled GOES imagery. ISPRS J. Photogramm. Remote Sens. 2014, 97, 78–88. [Google Scholar] [CrossRef]
- Zakšek, K.; Oštir, K. Downscaling land surface temperature for urban heat island diurnal cycle analysis. Remote Sens. Environ. 2012, 117, 114–124. [Google Scholar] [CrossRef]
- Bechtel, B.; Bohner, J.; Zaksek, K.; Wiesner, S. Downscaling of diumal land surface temperature cycles for urban heat island monitoring. Jt. Urban Remote Sens. Event 2013, 91–94. [Google Scholar] [CrossRef]
- NASA Suomi National Polar-Orbiting Partnership (Suomi NPP). Available online: https://eospso.nasa.gov/missions/suomi-national-polar-orbiting-partnership (accessed on 9 September 2021).
- SEVIRI. Available online: https://www.eumetsat.int/seviri (accessed on 9 September 2021).
- NOAA GOES Land Surface Temperature. Available online: https://www.ospo.noaa.gov/Products/land/glst/ (accessed on 18 September 2021).
- NASA What Are Passive and Active Sensors? Available online: https://www.nasa.gov/directorates/heo/scan/communications/outreach/funfacts/txt_passive_active.html (accessed on 9 September 2021).
- NASA Daily Global Land Surface Parameters Derived from AMSR-E, Version 1. Available online: https://nsidc.org/data/NSIDC-0451 (accessed on 9 September 2021).
- Duan, S.B.; Han, X.J.; Huang, C.; Li, Z.L.; Wu, H.; Qian, Y.; Gao, M.; Leng, P. Land surface temperature retrieval from passive microwave satellite observations: State-of-the-art and future directions. Remote Sens. 2020, 12, 2573. [Google Scholar] [CrossRef]
- McFarland, M.J.; Miller, R.L.; Neale, C.M.U. Land surface temperature derived from the SSM/I passive microwave brightness temperatures. IEEE Trans. Geosci. Remote Sens. 1990, 28, 839–845. [Google Scholar] [CrossRef]
- Mohamadi, B.; Chen, S.; Balz, T.; Gulshad, K.; McClure, S.C. Normalized Method for Land Surface Temperature Monitoring on Coastal Reclaimed Areas. Sensors 2019, 19, 4836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fily, M.; Royer, A.; Goita, K.; Prigent, C. A simple retrieval method for land surface temperature and fraction of water surface determination from satellite microwave brightness temperatures in sub-arctic areas. Remote Sens. Environ. 2003, 85, 328–338. [Google Scholar] [CrossRef]
- Du, J.; Kimball, J.S.; Jones, L.A. Satellite Microwave Retrieval of Total Precipitable Water Vapor and Surface Air Temperature Over Land From AMSR2. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2520–2531. [Google Scholar] [CrossRef]
- Hongyu, D.; Xuejun, S.; Hong, J.; Zenghui, K.; Zhibao, W.; Yongli, C. Research on the cooling island effects of water body: A case study of Shanghai, China. Ecol. Indic. 2016, 67, 31–38. [Google Scholar] [CrossRef]
- Yu, R.; Lyu, M.; Lu, J.; Yang, Y.; Shen, G.; Li, F. Spatial coordinates correction based on multi-sensor low-altitude remote sensing image registration for monitoring forest dynamics. IEEE Access 2020, 8, 18483–18496. [Google Scholar] [CrossRef]
- Mia, M.B.; Nishijima, J.; Fujimitsu, Y. Exploration and monitoring geothermal activity using Landsat ETM+images. A case study at Aso volcanic area in Japan. J. Volcanol. Geotherm. Res. 2014, 275, 14–21. [Google Scholar] [CrossRef]
- Feizizadeh, B.; Blaschke, T. Examining Urban heat Island relations to land use and air pollution: Multiple endmember spectral mixture analysis for thermal remote sensing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 1749–1756. [Google Scholar] [CrossRef]
- Xu, L.Y.; Xie, X.D.; Li, S. Correlation analysis of the urban heat island effect and the spatial and temporal distribution of atmospheric particulates using TM images in Beijing. Environ. Pollut. 2013, 178, 102–114. [Google Scholar] [CrossRef]
- Zhou, J.; Hu, D.; Qihao, W. Analysis of surface radiation budget during the summer and winter in the metropolitan area of Beijing, China. J. Appl. Remote Sens. 2010, 4, 043513. [Google Scholar] [CrossRef]
- Bande, L.; Manadhar, P.; Marpu, P. Definition of local climate zones in relation to envi-met and site data in the city of Al Ain, UAE. WIT Trans. Ecol. Environ. 2019, 238, 209–220. [Google Scholar] [CrossRef]
- Zaki, S.A.; Azid, N.S.; Shahidan, M.F.; Hassan, M.Z.; Md Daud, M.Y.; Abu Bakar, N.A.; Ali, M.S.M.; Yakub, F. Analysis of urban morphological effect on the microclimate of the urban residential area of Kampung Baru in Kuala Lumpur using a geospatial approach. Sustainability 2020, 12, 7301. [Google Scholar] [CrossRef]
- Wong, M.S.; Lee, K.H.; Shaker, A. Integrating Biophysical and Socioeconomic Data to Support Land Surface Temperature Analysis: An Example in Hong Kong. Int. J. Geoinf. 2010, 6, 1–10. [Google Scholar]
- Tang, J.; Di, L.; Xiao, J.; Lu, D.; Zhou, Y. Impacts of land use and socioeconomic patterns on urban heat island. Int. J. Remote Sens. 2017, 38, 3445–3465. [Google Scholar] [CrossRef]
- Rajasekar, U.; Weng, Q. Application of Association Rule Mining for Exploring the Relationship between Urban Land Surface Temperature and Biophysical/Social Parameters. Photogramm. Eng. Remote Sens. 2009, 75, 385–396. [Google Scholar] [CrossRef]
- Cai, G.; Liu, Y.; Du, M. Impact of the 2008 Olympic Games on urban thermal environment in Beijing, China from satellite images. Sustain. Cities Soc. 2017, 32, 212–225. [Google Scholar] [CrossRef]
- Zemtsov, S.; Shartova, N.; Varentsov, M.; Konstantinov, P.; Kidyaeva, V.; Shchur, A.; Timonin, S.; Grischchenko, M. Intraurban social risk and mortality patterns during extreme heat events: A case study of Moscow, 2010–2017. Health Place 2020, 66, 102429. [Google Scholar] [CrossRef]
- Elsevier Content Coverage Guide; Elsevier: Amsterdam, The Netherlands, 2010; pp. 1–24.
- Web of Science Platform: Web of Science: Summary of Coverage. Available online: https://clarivate.libguides.com/webofscienceplatform/coverage (accessed on 5 January 2021).
- Guzzo, R.A.; Jackson, S.E.; Katzell, R.A. Meta-Analysis Analysis. Res. Organ. Behav. 1987, 9, 407–442. [Google Scholar]
- Lovatto, P.A.; Lehnen, C.R.; Andretta, I.; Carvalho, A.D.; Hauschild, L. Meta-análise em pesquisas científicas: Enfoque em metodologias. Rev. Bras. Zootec. 2007, 36, 285–294. [Google Scholar] [CrossRef] [Green Version]
- Viana, J.; Santos, J.V.; Neiva, R.M.; Souza, J.; Duarte, L.; Teodoro, A.C.; Freitas, A. Remote Sensing in Human Health: A 10-Year Bibliometric Analysis. Remote Sens. 2017, 9, 1225. [Google Scholar] [CrossRef] [Green Version]
- Leiden University. VOSviewer. Available online: https://www.vosviewer.com (accessed on 5 March 2021).
- Esri. ArcMap. Available online: https://www.esri.com/en-us/arcgis/products/arcgis-desktop/resources (accessed on 5 March 2021).
- Köppen, W. Versuch einer Klassifikation der Klimate, vorzugsweise nach ihren Beziehungen zur Pflanzenwelt. Geogr. Z. 1900, 6, 593–611. Available online: http://www.jstor.org/stable/27803924 (accessed on 5 September 2021).
- Chen, D.; Chen, H.W. Using the Köppen classification to quantify climate variation and change: An example for 1901–2010. Environ. Dev. 2013, 6, 69–79. [Google Scholar] [CrossRef]
- Padmanaban, R.; Bhowmik, A.K.; Cabral, P. Satellite image fusion to detect changing surface permeability and emerging urban heat islands in a fast-growing city. PLoS ONE 2019, 14, e208949. [Google Scholar] [CrossRef] [PubMed]
- Zha, Y.; Gao, J.; Ni, S. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int. J. Remote Sens. 2003, 24, 583–594. [Google Scholar] [CrossRef]
- Feng, Y.; Du, S.; Myint, S.W.; Shu, M. Do urban functional zones affect land surface temperature differently? A case study of Beijing, China. Remote Sens. 2019, 11, 1802. [Google Scholar] [CrossRef] [Green Version]
- Bokaie, M.; Shamsipour, A.; Khatibi, P.; Hosseini, A. Seasonal monitoring of urban heat island using multi-temporal Landsat and MODIS images in Tehran. Int. J. Urban Sci. 2019, 23, 269–285. [Google Scholar] [CrossRef]
- Cai, M.; Ren, C.; Xu, Y.; Lau, K.K.L.; Wang, R. Investigating the relationship between local climate zone and land surface temperature using an improved WUDAPT methodology—A case study of Yangtze River Delta, China. Urban Clim. 2017, 24, 485–502. [Google Scholar] [CrossRef]
- Connors, J.P.; Galletti, C.S.; Chow, W.T.L. Landscape configuration and urban heat island effects: Assessing the relationship between landscape characteristics and land surface temperature in Phoenix, Arizona. Landsc. Ecol. 2013, 28, 271–283. [Google Scholar] [CrossRef]
- Van Nguyen, O.; Kawamura, K.; Trong, D.P.; Gong, Z.; Suwandana, E. Temporal change and its spatial variety on land surface temperature and land use changes in the Red River Delta, Vietnam, using MODIS time-series imagery. Environ. Monit. Assess. 2015, 187, 464. [Google Scholar] [CrossRef]
- Weng, Q. Fractal analysis of satellite-detected urban heat island effect. Photogramm. Eng. Remote Sens. 2003, 69, 555–566. [Google Scholar] [CrossRef] [Green Version]
- Peres, L.d.F.; Lucena, A.J.d.; Rotunno Filho, O.C.; França, J.R.d.A. The urban heat island in Rio de Janeiro, Brazil, in the last 30 years using remote sensing data. Int. J. Appl. Earth Obs. Geoinf. 2018, 64, 104–116. [Google Scholar] [CrossRef]
- Karakuş, C.B. The Impact of Land Use/Land Cover (LULC) Changes on Land Surface Temperature in Sivas City Center and Its Surroundings and Assessment of Urban Heat Island. Asia-Pac. J. Atmos. Sci. 2019, 55, 669–684. [Google Scholar] [CrossRef]
- Tomaszewska, M.; Henebry, G.M. Urban-rural contrasts in Central-Eastern European cities using a MODIS 4 micron time series. Remote Sens. 2016, 8, 924. [Google Scholar] [CrossRef] [Green Version]
- Du, H.; Ai, J.; Cai, Y.; Jiang, H.; Liu, P. Combined effects of the surface urban heat Island with landscape composition and configuration based on remote sensing: A case study of Shanghai, China. Sustainability 2019, 11, 2890. [Google Scholar] [CrossRef] [Green Version]
- Alavipanah, S.; Schreyer, J.; Haase, D.; Lakes, T.; Qureshi, S. The effect of multi-dimensional indicators on urban thermal conditions. J. Clean. Prod. 2018, 177, 115–123. [Google Scholar] [CrossRef]
- Zhao, C.; Jensen, J.L.R.; Weng, Q.; Currit, N.; Weaver, R. Use of Local Climate Zones to investigate surface urban heat islands in Texas. GISci. Remote Sens. 2020, 57, 1083–1101. [Google Scholar] [CrossRef]
- Hereher, M.E. Effects of land use/cover change on regional land surface temperatures: Severe warming from drying Toshka lakes, the Western Desert of Egypt. Nat. Hazards 2017, 88, 1789–1803. [Google Scholar] [CrossRef]
- Li, M.; Song, Y.; Huang, X.; Li, J.; Mao, Y.; Zhu, T.; Cai, X.; Liu, B. Improving mesoscale modeling using satellite-derived land surface parameters in the Pearl River Delta region, China. J. Geophys. Res. Atmos. 2014, 119, 6325–6346. [Google Scholar] [CrossRef]
- Mpakairi, K.S.; Muvengwi, J. Night-time lights and their influence on summer night land surface temperature in two urban cities of Zimbabwe: A geospatial perspective. Urban Clim. 2019, 29, 100468. [Google Scholar] [CrossRef]
- Pan, J. Analysis of human factors on urban heat island and simulation of urban thermal environment in Lanzhou city, China. J. Appl. Remote Sens. 2015, 9, 095999. [Google Scholar] [CrossRef]
- Varentsov, M.; Konstantinov, P.; Baklanov, A.; Esau, I.; Miles, V.; Davy, R. Anthropogenic and natural drivers of a strong winter urban heat island in a typical Arctic city. Atmos. Chem. Phys. 2018, 18, 17573–17587. [Google Scholar] [CrossRef] [Green Version]
- Min, M.; Lin, C.; Duan, X.; Jin, Z.; Zhang, L. Spatial distribution and driving force analysis of urban heat island effect based on raster data: A case study of the Nanjing metropolitan area, China. Sustain. Cities Soc. 2019, 50, 101637. [Google Scholar] [CrossRef]
- Wang, J.; Huang, B.; Fu, D.; Atkinson, P.M. Spatiotemporal variation in surface urban heat island intensity and associated Determinants across major Chinese cities. Remote Sens. 2015, 7, 3670–3689. [Google Scholar] [CrossRef] [Green Version]
- Amanollahi, J.; Tzanis, C.; Ramli, M.F.; Abdullah, A.M. Urban heat evolution in a tropical area utilizing Landsat imagery. Atmos. Res. 2016, 167, 175–182. [Google Scholar] [CrossRef]
- Wang, W.; Yao, X.; Shu, J. Air advection induced differences between canopy and surface heat islands. Sci. Total Environ. 2020, 725, 138120. [Google Scholar] [CrossRef]
- Sussman, H.S.; Raghavendra, A.; Zhou, L. Impacts of increased urbanization on surface temperature, vegetation, and aerosols over Bengaluru, India. Remote Sens. Appl. Soc. Environ. 2019, 16, 100261. [Google Scholar] [CrossRef]
- Zeng, Y.; Huang, W.; Zhan, F.; Zhang, H.; Liu, H. Study on the urban heat island effects and its relationship with surface biophysical characteristics using MODIS imageries. Geo-Spat. Inf. Sci. 2010, 13, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Sabrin, S.; Karimi, M.; Fahad, M.G.R.; Nazari, R. Quantifying environmental and social vulnerability: Role of urban Heat Island and air quality, a case study of Camden, NJ. Urban Clim. 2020, 34, 100699. [Google Scholar] [CrossRef]
- Bhang, K.J.; Lee, J.D. Identification of the anthropogenic land surface temperature distribution by land use using satellite images: A case study for Seoul, Korea. J. Korean Soc. Surv. Geod. Photogramm. Cartogr. 2017, 35, 249–260. [Google Scholar] [CrossRef]
- Tang, Y. Effect analysis of land-use pattern with landscape metrics on an urban heat island. J. Appl. Remote Sens. 2018, 12, 026004. [Google Scholar] [CrossRef]
- Echevarria Icaza, L.; Van der Hoeven, F.; Van den Dobbelsteen, A. Surface thermal analysis of North Brabant cities and neighbourhoods during heat waves. Tema 2016, 9, 63–87. [Google Scholar] [CrossRef]
- Mathew, A.; Khandelwal, S.; Kaul, N. Investigating spatial and seasonal variations of urban heat island effect over Jaipur city and its relationship with vegetation, urbanization and elevation parameters. Sustain. Cities Soc. 2017, 35, 157–177. [Google Scholar] [CrossRef]
- Uddin, S.; Al Ghadban, A.N.; Al Dousari, A.; Al Murad, M.; Al Shamroukh, D. A remote sensing classification for land-cover changes and micro-climate in Kuwait. Int. J. Sustain. Dev. Plan. 2010, 5, 367–377. [Google Scholar] [CrossRef] [Green Version]
- Miles, V.; Esau, I. Surface urban heat islands in 57 cities across different climates in northern Fennoscandia. Urban Clim. 2020, 31, 100575. [Google Scholar] [CrossRef]
- Rosenzweig, C.; Solecki, W.D.; Parshall, L.; Chopping, M.; Pope, G.; Goldberg, R. Characterizing the urban heat island in current and future climates in New Jersey. Environ. Hazards 2005, 6, 51–62. [Google Scholar] [CrossRef]
- Jiang, X.; Weidong, L. Numerical simulations of impacts of urbanization on heavy rainfall in Beijing using different land-use data. Acta Meteorol. Sin. 2007, 21, 245–255. [Google Scholar]
- Jin, M.; Shepherd, J.M.; Peters-Lidard, C. Development of a parameterization for simulating the urban temperature hazard using satellite observations in climate model. Nat. Hazards 2007, 43, 257–271. [Google Scholar] [CrossRef]
- Kamruzzaman, M.; Deilami, K.; Yigitcanlar, T. Investigating the urban heat island effect of transit oriented development in Brisbane. J. Transp. Geogr. 2018, 66, 116–124. [Google Scholar] [CrossRef]
- Sagris, V.; Sepp, M. Landsat-8 TIRS Data for Assessing Urban Heat Island Effect and Its Impact on Human Health. IEEE Geosci. Remote Sens. Lett. 2017, 14, 2385–2389. [Google Scholar] [CrossRef]
- Pearsall, H. Staying cool in the compact city: Vacant land and urban heating in Philadelphia, Pennsylvania. Appl. Geogr. 2017, 79, 84–92. [Google Scholar] [CrossRef]
- Liu, Y.; Fang, X.; Xu, Y.; Zhang, S.; Luan, Q. Assessment of surface urban heat island across China’s three main urban agglomerations. Theor. Appl. Climatol. 2018, 133, 473–488. [Google Scholar] [CrossRef]
- Martin, P.; Baudouin, Y.; Gachon, P. An alternative method to characterize the surface urban heat island. Int. J. Biometeorol. 2015, 59, 849–861. [Google Scholar] [CrossRef]
- Mirzaei, M.; Verrelst, J.; Arbabi, M.; Shaklabadi, Z.; Lotfizadeh, M. Urban heat island monitoring and impacts on citizen’s general health status in Isfahan metropolis: A remote sensing and field survey approach. Remote Sens. 2020, 12, 1350. [Google Scholar] [CrossRef]
- Wang, W.; Zhou, W.; Ng, E.Y.Y.; Xu, Y. Urban heat islands in Hong Kong: Statistical modeling and trend detection. Nat. Hazards 2016, 83, 885–907. [Google Scholar] [CrossRef]
- Dong, W.; Liu, Z.; Zhang, L.; Tang, Q.; Liao, H.; Li, X. Assessing heat health risk for sustainability in Beijing’s urban heat island. Sustainability 2014, 6, 7334–7357. [Google Scholar] [CrossRef] [Green Version]
- Maithani, S.; Nautiyal, G.; Sharma, A. Investigating the Effect of Lockdown During COVID-19 on Land Surface Temperature: Study of Dehradun City, India. J. Indian Soc. Remote Sens. 2020, 48, 1297–1311. [Google Scholar] [CrossRef]
- Li, S.; Zhao, Z.; Miaomiao, X.; Wang, Y. Investigating spatial non-stationary and scale-dependent relationships between urban surface temperature and environmental factors using geographically weighted regression. Environ. Model. Softw. 2010, 25, 1789–1800. [Google Scholar] [CrossRef]
- Guo, J.; Han, G.; Xie, Y.; Cai, Z.; Zhao, Y. Exploring the relationships between urban spatial form factors and land surface temperature in mountainous area: A case study in Chongqing city, China. Sustain. Cities Soc. 2020, 61, 102286. [Google Scholar] [CrossRef]
- Brunsdon, C.; Fotheringham, A.S.; Charlton, M.E. Geographically Weighted Regression: A Method for Exploring Spatial Nonstationarity. Int. Encycl. Hum. Geogr. 1996, 28, 281–298. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Brunsdon, C.; Charlton, M. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships; John Wiley: Chichester, UK, 2002; ISBN 0-471-49616-2. [Google Scholar]
- Kumari, M.; Singh, C.K.; Bakimchandra, O.; Basistha, A. Geographically weighted regression based quantification of rainfall–topography relationship and rainfall gradient in Central Himalayas. Int. J. Climatol. 2017, 37, 1299–1309. [Google Scholar] [CrossRef]
- Leong, Y.Y.; Yue, J.C. A modification to geographically weighted regression. Int. J. Health Geogr. 2017, 16, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borthakur, M.; Saikia, A.; Sharma, K. Swelter in the city: Urban greenery and its effects on temperature in Guwahati, India. Singap. J. Trop. Geogr. 2020, 41, 341–366. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, T.; Tao, F.; Zang, F. Correlation Analysis between UBD and LST in Hefei, China, Using Luojia1-01 Night-Time Light Imagery. Appl. Sci. 2019, 9, 5224. [Google Scholar] [CrossRef] [Green Version]
- Jia, S.Q.; Wang, Y.H. Effects of land use and land cover pattern on urban temperature variations: A case study in Hong Kong. Urban Clim. 2020, 34, 100693. [Google Scholar] [CrossRef]
- Li, C.; Zhao, J.; Thinh, N.X.; Yang, W.; Li, Z. Analysis of the spatiotemporally varying effects of urban spatial patterns on land surface temperatures. J. Environ. Eng. Landsc. Manag. 2018, 26, 216–231. [Google Scholar] [CrossRef] [Green Version]
- Buyantuyev, A.; Wu, J. Urban heat islands and landscape heterogeneity: Linking spatiotemporal variations in surface temperatures to land-cover and socioeconomic patterns. Landsc. Ecol. 2010, 25, 17–33. [Google Scholar] [CrossRef]
- Luo, X.; Peng, Y. Scale effects of the relationships between urban heat islands and impact factors based on a geographically-weighted regression model. Remote Sens. 2016, 8, 760. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Ren, Z.; Tan, J. The spatial patterns of land surface temperature and its impact factors: Spatial non-stationarity and scale effects based on a Geographically-Weighted regression model. Sustainability 2018, 10, 2242. [Google Scholar] [CrossRef] [Green Version]
- Majkowska, A.; Kolendowicz, L.; Półrolniczak, M.; Hauke, J.; Czernecki, B. The urban heat island in the city of Poznań as derived from Landsat 5 TM. Theor. Appl. Climatol. 2017, 128, 769–783. [Google Scholar] [CrossRef] [Green Version]
- Sarkar Chaudhuri, A.; Singh, P.; Rai, S.C. Assessment of impervious surface growth in urban environment through remote sensing estimates. Environ. Earth Sci. 2017, 76, 541. [Google Scholar] [CrossRef]
- Mohan, M.; Kikegawa, Y.; Gurjar, B.R.; Bhati, S.; Kolli, N.R. Assessment of urban heat island effect for different land use-land cover from micrometeorological measurements and remote sensing data for megacity Delhi. Theor. Appl. Climatol. 2013, 112, 647–658. [Google Scholar] [CrossRef]
- Chen, X.; Xu, Y.; Yang, J.; Wu, Z.; Zhu, H. Remote sensing of urban thermal environments within local climate zones: A case study of two high-density subtropical Chinese cities. Urban Clim. 2020, 31, 100568. [Google Scholar] [CrossRef]
- Konstantinov, P.I.; Grishchenko, M.Y.; Varentsov, M.I. Mapping urban heat islands of arctic cities using combined data on field measurements and satellite images based on the example of the city of Apatity (Murmansk Oblast). Izv.—Atmos. Ocean Phys. 2015, 51, 992–998. [Google Scholar] [CrossRef]
- Zhang, P.; Bounoua, L.; Imhoff, M.L.; Wolfe, R.E.; Thome, K. Comparison of MODIS Land Surface Temperature and Air Temperature over the Continental USA Meteorological Stations. Can. J. Remote Sens. 2014, 40, 110–122. [Google Scholar] [CrossRef]
- Hu, L.; Brunsell, N.A. A new perspective to assess the urban heat island through remotely sensed atmospheric profiles. Remote Sens. Environ. 2015, 158, 393–406. [Google Scholar] [CrossRef]
- Geletič, J.; Lehnert, M.; Dobrovolný, P. Land surface temperature differences within local climate zones, Based on two central European cities. Remote Sens. 2016, 8, 788. [Google Scholar] [CrossRef] [Green Version]
- Tomlinson, C.J.; Chapman, L.; Thornes, J.E.; Baker, C.J. Derivation of Birmingham’s summer surface urban heat island from MODIS satellite images. Int. J. Climatol. 2012, 32, 214–224. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Wang, T.; Xie, M.; Zhuang, B.; Li, S.; Han, Y.; Cheng, N. Modeling of urban heat island and its impacts on thermal circulations in the Beijing–Tianjin–Hebei region, China. Theor. Appl. Climatol. 2017, 128, 999–1013. [Google Scholar] [CrossRef]
- Bounoua, L.; Zhang, P.; Nigro, J.; Lachir, A.; Thome, K. Regional Impacts of Urbanization in the United States. Can. J. Remote Sens. 2017, 43, 256–268. [Google Scholar] [CrossRef]
- Barat, A.; Kumar, S.; Kumar, P.; Parth Sarthi, P. Characteristics of Surface Urban Heat Island (SUHI) over the Gangetic Plain of Bihar, India. Asia-Pac. J. Atmos. Sci. 2018, 54, 205–214. [Google Scholar] [CrossRef]
- Huang, H.; Deng, X.; Yang, H.; Li, S.; Li, M. Spatial evolution of the effects of urban heat island on residents’ health. Teh. Vjesn. 2020, 27, 1427–1435. [Google Scholar] [CrossRef]
- Mitchell, B.C.; Chakraborty, J. Exploring the relationship between residential segregation and thermal inequity in 20 U.S. cities. Local Environ. 2018, 23, 796–813. [Google Scholar] [CrossRef]
- Mushore, T.D.; Odindi, J.; Dube, T.; Mutanga, O. Understanding the relationship between urban outdoor temperatures and indoor air-conditioning energy demand in Zimbabwe. Sustain. Cities Soc. 2017, 34, 97–108. [Google Scholar] [CrossRef]
- Kim, J.P.; Guldmann, J.M. Land-Use planning and the urban heat island. Environ. Plan. B Plan. Des. 2014, 41, 1077–1099. [Google Scholar] [CrossRef]
- Kumari, P.; Kapur, S.; Garg, V.; Kumar, K. Effect of surface temperature on energy consumption in a calibrated building: A case study of Delhi. Climate 2020, 8, 71. [Google Scholar] [CrossRef]
- Ullah, S.; Tahir, A.A.; Akbar, T.A.; Hassan, Q.K.; Dewan, A.; Khan, A.J.; Khan, M. Remote sensing-based quantification of the relationships between land use land cover changes and surface temperature over the lower Himalayan region. Sustainability 2019, 11, 5492. [Google Scholar] [CrossRef] [Green Version]
- Lee, T.W.; Ho, A. Scaling of the urban heat island effect based on the energy balance: Nighttime minimum temperature increase vs. urban area length scale. Clim. Res. 2010, 42, 209–216. [Google Scholar] [CrossRef] [Green Version]
- Fan, C.; Wang, Z. Spatiotemporal characterization of land cover impacts on urban warming: A spatial autocorrelation approach. Remote Sens. 2020, 12, 1631. [Google Scholar] [CrossRef]
- Wu, Z.; Yao, L.; Ren, Y. Characterizing the spatial heterogeneity and controlling factors of land surface temperature clusters: A case study in Beijing. Build. Environ. 2020, 169, 106598. [Google Scholar] [CrossRef]
- Pan, Z.; Wang, G.; Hu, Y.; Cao, B. Characterizing urban redevelopment process by quantifying thermal dynamic and landscape analysis. Habitat Int. 2019, 86, 61–70. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhan, Y.; Yu, T.; Ren, X. Urban green effects on land surface temperature caused by surface characteristics: A case study of summer Beijing metropolitan region. Infrared Phys. Technol. 2017, 86, 35–43. [Google Scholar] [CrossRef]
- Zhao, M.; Cai, H.; Qiao, Z.; Xu, X. Influence of urban expansion on the urban heat island effect in Shanghai. Int. J. Geogr. Inf. Sci. 2016, 30, 2421–2441. [Google Scholar] [CrossRef]
- Deilami, K.; Kamruzzaman, M.; Hayes, J.F. Correlation or causality between land cover patterns and the urban heat island effect? Evidence from Brisbane, Australia. Remote Sens. 2016, 8, 716. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Jing, X.M.; Chen, J.Y.; Li, J.J.; Schwegler, B. Characterizing urban fabric properties and their thermal effect using QuickBird image and Landsat 8 thermal infrared (tir) data: The case of downtown Shanghai, China. Remote Sens. 2016, 8, 541. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Li, J.; Wang, C.; Song, C.; Chen, Y.; Finka, M.; La Rosa, D. Understanding the relationship between urban blue infrastructure and land surface temperature. Sci. Total Environ. 2019, 694, 133742. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Han, G.; Chen, M. Do water bodies play an important role in the relationship between urban form and land surface temperature? Sustain. Cities Soc. 2018, 39, 487–498. [Google Scholar] [CrossRef]
- Xue, Z.; Hou, G.; Zhang, Z.; Lyu, X.; Jiang, M.; Zou, Y.; Shen, X.; Wang, J.; Liu, X. Quantifying the cooling-effects of urban and peri-urban wetlands using remote sensing data: Case study of cities of Northeast China. Landsc. Urban Plan. 2019, 182, 92–100. [Google Scholar] [CrossRef]
- Rasul, A.; Balzter, H.; Smith, C. Spatial variation of the daytime Surface Urban Cool Island during the dry season in Erbil, Iraqi Kurdistan, from Landsat 8. Urban Clim. 2015, 14, 176–186. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Ghosh, S.; Hooda, R.S.; Singh, S. Monitoring and prediction of land use land cover changes and its impact on land surface temperature in the central part of hisar district, Haryana under semi-arid zone of India. J. Landsc. Ecol. 2019, 12, 117–140. [Google Scholar] [CrossRef] [Green Version]
- Dai, Z.; Guldmann, J.M.; Hu, Y. Thermal impacts of greenery, water, and impervious structures in Beijing’s Olympic area: A spatial regression approach. Ecol. Indic. 2019, 97, 77–88. [Google Scholar] [CrossRef]
- Soto-Estrada, E.; Correa-Echeveri, S.; Posada-Posada, M.I. Thermal analysis of urban environments in Medellin, Colombia, using an unmanned aerial vehicle (UAV). J. Urban Environ. Eng. 2017, 11, 142–149. [Google Scholar] [CrossRef]
- Arghavani, S.; Malakooti, H.; Ali Akbari Bidokhti, A.A. Numerical assessment of the urban green space scenarios on urban heat island and thermal comfort level in Tehran Metropolis. J. Clean. Prod. 2020, 261, 121183. [Google Scholar] [CrossRef]
- Dong, J.; Lin, M.; Zuo, J.; Lin, T.; Liu, J.; Sun, C.; Luo, J. Quantitative study on the cooling effect of green roofs in a high-density urban Area—A case study of Xiamen, China. J. Clean. Prod. 2020, 255, 120152. [Google Scholar] [CrossRef]
- Asadi, A.; Arefi, H.; Fathipoor, H. Simulation of green roofs and their potential mitigating effects on the urban heat island using an artificial neural network: A case study in Austin, Texas. Adv. Sp. Res. 2020, 66, 1846–1862. [Google Scholar] [CrossRef]
- Zhao, Q.; Myint, S.W.; Wentz, E.A.; Fan, C. Rooftop surface temperature analysis in an Urban residential environment. Remote Sens. 2015, 7, 12135–12159. [Google Scholar] [CrossRef] [Green Version]
- Herrera-Gomez, S.S.; Quevedo-Nolasco, A.; Pérez-Urrestarazu, L. The role of green roofs in climate change mitigation. A case study in Seville (Spain). Build. Environ. 2017, 123, 575–584. [Google Scholar] [CrossRef]
- Tsunematsu, N.; Yokoyama, H.; Honjo, T.; Ichihashi, A.; Ando, H.; Shigyo, N. Relationship between land use variations and spatiotemporal changes in amounts of thermal infrared energy emitted from urban surfaces in downtown Tokyo on hot summer days. Urban Clim. 2016, 17, 67–79. [Google Scholar] [CrossRef]
- Gábor, P.; Jombach, S. The relation between the biological activity and the land surface temperature in Budapest. Appl. Ecol. Environ. Res. 2010, 7, 241–251. [Google Scholar] [CrossRef]
- Gao, M.; Chen, F.; Shen, H.; Barlage, M.; Li, H.; Tan, Z.; Zhang, L. Efficacy of possible strategies to mitigate the urban heat island based on urbanized high-resolution land data assimilation system (U-HRLDAS). J. Meteorol. Soc. Jpn. 2019, 97, 1075–1097. [Google Scholar] [CrossRef] [Green Version]
- Mutani, G.; Todeschi, V. The Effects of Green Roofs on Outdoor Thermal Comfort, Urban Heat Island Mitigation and Energy Savings. Atmosphere 2020, 11, 123. [Google Scholar] [CrossRef] [Green Version]
- Alavipanah, S.; Wegmann, M.; Qureshi, S.; Weng, Q.; Koellner, T. The role of vegetation in mitigating urban land surface temperatures: A case study of Munich, Germany during the warm season. Sustainability 2015, 7, 4689–4706. [Google Scholar] [CrossRef] [Green Version]
- Sodoudi, S.; Shahmohamadi, P.; Vollack, K.; Cubasch, U.; Che-Ani, A.I. Mitigating the Urban Heat Island Effect in Megacity Tehran. Adv. Meteorol. 2014, 2014. [Google Scholar] [CrossRef]
- Yuan, C.; Chen, L. Mitigating urban heat island effects in high-density cities based on sky view factor and urban morphological understanding: A study of Hong Kong. Archit. Sci. Rev. 2011, 54, 305–315. [Google Scholar] [CrossRef]
- Zhibin, R.; Haifeng, Z.; Xingyuan, H.; Dan, Z.; Xingyang, Y. Estimation of the Relationship Between Urban Vegetation Configuration and Land Surface Temperature with Remote Sensing. J. Indian Soc. Remote Sens. 2015, 43, 89–100. [Google Scholar] [CrossRef]
- Greene, C.S.; Millward, A.A. Getting closure: The role of urban forest canopy density in moderating summer surface temperatures in a large city. Urban Ecosyst. 2017, 20, 141–156. [Google Scholar] [CrossRef]
- Grover, A.; Singh, R.B. Monitoring Spatial patterns of land surface temperature and urban heat island for sustainable megacity: A case study of Mumbai, India, using landsat TM data. Environ. Urban. Asia 2016, 7, 38–54. [Google Scholar] [CrossRef] [Green Version]
- Masoudi, M.; Tan, P.Y.; Liew, S.C. Multi-city comparison of the relationships between spatial pattern and cooling effect of urban green spaces in four major Asian cities. Ecol. Indic. 2019, 98, 200–213. [Google Scholar] [CrossRef]
- Bao, T.; Li, X.; Zhang, J.; Zhang, Y.; Tian, S. Assessing the Distribution of Urban Green Spaces and its Anisotropic Cooling Distance on Urban Heat Island Pattern in Baotou, China. ISPRS Int. J. Geo-Inf. 2016, 5, 12. [Google Scholar] [CrossRef]
- Cheng, X.; Wei, B.; Chen, G.; Li, J.; Song, C. Influence of Park Size and Its Surrounding Urban Landscape Patterns on the Park Cooling Effect. J. Urban Plan. Dev. 2015, 141, 1–10. [Google Scholar] [CrossRef]
- Yuan, F.; Bauer, M.E. Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sens. Environ. 2007, 106, 375–386. [Google Scholar] [CrossRef]
- Chen, X.-L.; Zhao, H.-M.; Li, P.-X.; Yin, Z.-Y. Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sens. Environ. 2006, 104, 133–146. [Google Scholar] [CrossRef]
- Li, J.; Song, C.; Cao, L.; Zhu, F.; Meng, X.; Wu, J. Impacts of landscape structure on surface urban heat islands: A case study of Shanghai, China. Remote Sens. Environ. 2011, 115, 3249–3263. [Google Scholar] [CrossRef]
- Zhou, W.; Huang, G.; Cadenasso, M.L. Does spatial configuration matter? Understanding the effects of land cover pattern on land surface temperature in urban landscapes. Landsc. Urban Plan. 2011, 102, 54–63. [Google Scholar] [CrossRef]
- Cao, X.; Onishi, A.; Chen, J.; Imura, H. Quantifying the cool island intensity of urban parks using ASTER and IKONOS data. Landsc. Urban Plan. 2010, 96, 224–231. [Google Scholar] [CrossRef]
- Amiri, R.; Weng, Q.; Alimohammadi, A.; Alavipanah, S.K. Spatial–temporal dynamics of land surface temperature in relation to fractional vegetation cover and land use/cover in the Tabriz urban area, Iran. Remote Sens. Environ. 2009, 113, 2606–2617. [Google Scholar] [CrossRef]
- Schwarz, N.; Lautenbach, S.; Seppelt, R. Exploring indicators for quantifying surface urban heat islands of European cities with MODIS land surface temperatures. Remote Sens. Environ. 2011, 115, 3175–3186. [Google Scholar] [CrossRef]
- Parsaee, M.; Joybari, M.M.; Mirzaei, P.A.; Haghighat, F. Urban heat island, urban climate maps and urban development policies and action plans. Environ. Technol. Innov. 2019, 14, 100341. [Google Scholar] [CrossRef]
- Pena Acosta, M.; Vahdatikhaki, F.; Santos, J.; Hammad, A.; Dorée, A.G. How to bring UHI to the urban planning table? A data-driven modeling approach. Sustain. Cities Soc. 2021, 71, 102948. [Google Scholar] [CrossRef]
- Kotharkar, R.; Ramesh, A.; Bagade, A. Urban Heat Island studies in South Asia: A critical review. Urban Clim. 2018, 24, 1011–1026. [Google Scholar] [CrossRef]
- National Weather Service JetStream Max: Addition Köppen-Geiger Climate Subdivisions. Available online: https://www.weather.gov/jetstream/climate_max (accessed on 10 September 2021).
- Kottek, A.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger climate classification updated. Meteorol. Z 2006, 15, 259–263. [Google Scholar] [CrossRef]
- European Environment Agency European Environment Agency. Available online: https://www.eea.europa.eu/ (accessed on 1 February 2021).
- Gusso, A.; Cafruni, C.; Bordin, F.; Veronez, M.; Lenz, L.; Crija, S. Multi-Temporal Patterns of Urban Heat Island as Response to Economic Growth Management. Sustainability 2015, 7, 3129–3145. [Google Scholar] [CrossRef] [Green Version]
- Foissard, X.; Dubreuil, V.; Quénol, H. Defining scales of the land use effect to map the urban heat island in a mid-size European city: Rennes (France). Urban Clim. 2019, 29, 100490. [Google Scholar] [CrossRef]
- Wilbanks, T.; Fernandez, S. (Coordinating Lead Authors). In Climate Change and Infrastructure, Urban Systems, and Vulnerabilities; Technical Report for the U.S. Department of Energy in Support of the National Climate Assessment; Island Press: Washington, DC, USA, 2013. [Google Scholar]
Sensor | Satellite Platform | Orbital Frequency | Spatial Resolution | Spectral Bands (µm) | Number Band | Data Available Since |
---|---|---|---|---|---|---|
AATSR | Envisat | 35 days | 1 km (approx.) | 11 and 12 | TIR | 2002–2012 |
ASTER | Terra | Twice daily | 90 m | 8.125–8.475 8.475–8.825 8.925–9.275 10.25–10.95 10.95–11.65 | 10 11 12 13 14 | 1999 |
AVHRR (Advanced Very High Resolution Radiometer) | NOAA 6, 8 10, TIROS-N | Twice daily | 1.1 km (approx.) | 10.3–11.3 11.5–12.5 | 4 5 | 1978–2001 |
AVHRR/2 (Advanced Very High Resolution Radiometer/2) | NOAA 7, 9, 11, 12, 13, 14 | Twice daily | 1.1 km (approx.) | 10.3–11.3 11.5–12.5 | 4 5 | 1981–2007 |
AVHRR/3 (Advanced Very High Resolution Radiometer) | METOP-A, B, C | 29 days | 1.1 km (approx.) | 10.3–11.3 11.5–12.5 | 4 5 | 2006 |
AVHRR/3 (Advanced Very High Resolution Radiometer/3) | NOAA 15, 16, 17, 18, 19 | Twice daily | 1.1 km (approx.) | 10.3–11.3 11.5–12.5 | 4 5 | 1998 |
ETM+ | Landsat 7 | 16 days | Collected at 60 m and resampled to 30 m | 10.4–12.5 | 6 | 1999 |
GOES Imager | GOES | Geostationary | 4 km (approx.) | 10.2–11.2 11.5–12.5 | TIR | 1974 |
IRMSS (Infrared Multispectral Scanner) | HJ-1B | 31 days | 300 m | 10.5–12.5 | TIR | 2008–2018 |
IRMSS (Infrared Multispectral Scanner) | CBERS 1 | 26 days | 160 m | 10.4–12.5 | 4 | 1999–2003 |
IRMSS (Infrared Multispectral Scanner) | CBERS 2 | 26 days | 160 m | 10.4–12.5 | 4 | 2003–2009 |
IRMSS (Infrared Multispectral Scanner) | CBERS 2B | 26 days | 160 m | 10.4–12.5 | 4 | 2007–2010 |
IRMSS-2 (HJ) (Infrared Multispectral Scanner-2) | HJ-2A and HJ-2B | 4 days | 300 m | 10.5–12.5 | TIR | 2020 |
IRS (Infrared Medium Resolution Scanner) | CBERS 4 | 26 days | 80 m | 10.4–12.5 | 12 | 2014 |
IRS (Infrared Medium Resolution Scanner) | CBERS 4A | 31 days | 80 m | 10.4–12.5 | 12 | 2019 |
MODIS | Terra | Twice daily | 1 km (approx.) | 10.78–11.28 11.77–12.27 | 31 32 | 1999 |
MODIS | Aqua | Twice daily | 1 km (approx.) | 10.78–11.28 11.77–12.27 | 31 32 | 2002 |
SEVIRI | Meteosat-8 | Geostationary | 3 km (approx.) | 10.812 | TIR | 2005 |
TIRS | Landsat 8 | 16 days | Collected at 100 m and resampled to 30 m | 10.6–11.2 11.5–12.5 | 10 11 | 2013 |
TIRS 2 | Landsat 9 | 16 days | Collected at 100 m and resampled to 30 m | Similar TIRS | Similar TIRS | Launch planned for 09/23/2021 |
TM | Landsat 4 | 16 days | Collected at 120 m and resampled to 30 m | 10.4–12.5 | 6 | 1982–1993 |
TM | Landsat 5 | 16 days | Collected at 120 m and resampled to 30 m | 10.4–12.5 | 6 | 1984–2011 |
Continent | No. of Publications | % of Publications |
---|---|---|
Asia | 405 | 69.94 |
Europe | 65 | 11.23 |
North America | 59 | 10.19 |
Africa | 18 | 3.11 |
South America | 12 | 2.07 |
Australian Area | 4 | 0.69 |
Antarctic Area | 2 | 0.35 |
Studies Involving More than One Continent/Sub-Continent | ||
Africa and Europe | 1 | 0.17 |
Asia and Europe | 7 | 1.21 |
Asia and North America | 3 | 0.52 |
More than two continents | 3 | 0.52 |
Total | 579 | 100 |
Group | Climate | Acronym/Name | No. of Publications That Mentioned the Climate |
---|---|---|---|
C | Temperate | Cfa—Humid Subtropical Climate | 188 |
D | Continental | Dwa—Monsoon-Influenced Hot-Summer Humid Continental Climate | 81 |
C | Temperate | Cwa—Monsoon-Influenced Humid Subtropical Climate | 54 |
A | Tropical | Aw—Tropical Savanna Climate | 50 |
C | Temperate | Cfb—Temperate Oceanic Climate | 42 |
B | Dry | BWh—Hot Desert Climate | 37 |
B | Dry | BSk—Cold Semi-Arid Climate | 33 |
C | Temperate | Csa—Hot-Summer Mediterranean Climate | 31 |
B | Dry | BSh—Hot Semi-Arid Climate | 22 |
A | Tropical | Af—Tropical Rainforest Climate | 15 |
D | Continental | Dfb—Warm-Summer Humid Continental Climate | 13 |
A | Tropical | Am—Tropical Monsoon Climate | 11 |
C | Temperate | Cwb—Subtropical Highland Climate | 6 |
D | Continental | Dfa—Hot-Summer Humid Continental Climate | 6 |
D | Continental | Dfc—Subarctic Climate | 4 |
C | Temperate | Csb—Warm-Summer Mediterranean | 3 |
B | Dry | BWk—Cold Desert Climate | 2 |
D | Continental | Dwb—Monsoon-Influenced Warm-Summer Humid Continental Climate | 1 |
E | Polar | ET—Tundra | 1 |
Keyword | No. of Citation |
---|---|
land surface temperature | 285 |
urban heat island | 285 |
heat island | 282 |
atmospheric temperature | 279 |
remote sensing | 211 |
surface temperature | 196 |
landforms | 188 |
land surface | 171 |
surface properties | 164 |
surface measurement | 149 |
China | 141 |
satellite imagery | 140 |
urbanization | 134 |
land use | 111 |
urban planning | 110 |
Study Approach | Main Data Used | No. of Papers | % |
---|---|---|---|
Rural versus urban areas and Seasonality | Including papers that used extra data (weather network, LULC, building construction, LCZs, on-site measurement) | 416 | 71.85 |
Environmental | Environmental Data Vegetation, biophysical, biochemical, water body, and wetland data | 61 | 10.53 |
Models (IVs, mathematical, computational) | Satellite data; extra data (weather network, LULC, building construction, LCZs, on-site measurement, historical data) | 31 | 5.35 |
Health and Social | Census, health data, questionnaire application | 28 | 4.84 |
Specific areas of study | Complementary data to identify local specificities (as petrochemical, arid zones, and mountainous areas) | 21 | 3.63 |
Air pollution, energy consumption, and economic factors | Consumption and pollutant data | 15 | 2.60 |
Focus on Predictability | Historical data | 7 | 1.20 |
Total | 579 | 100 |
Satellite | Exclusive Use | Combination | ||
---|---|---|---|---|
No. of Papers | % | No. of Papers | % | |
Landsat | 317 | 54.75 | 396 | 68.39 |
MODIS | 103 | 17.79 | 185 | 31.95 |
ASTER | 15 | 2.59 | 36 | 6.22 |
NOAA/AVHRR | 1 | 0.17 | 7 | 1.21 |
METEOSAT | - | - | 3 | 0.52 |
Satellite | Exclusive Use | Combination | ||
---|---|---|---|---|
No. of Papers | % | No. of Papers | % | |
Landsat | 211 | 36.44 | 324 | 55.96 |
MODIS | 51 | 8.81 | 95 | 16.41 |
ASTER | 11 | 1.90 | 32 | 5.53 |
IKONOS | 5 | 0.86 | 21 | 3.63 |
SPOT | 9 | 1.55 | 14 | 2.42 |
Keyword | Key Applications in Papers | Exclusive Use | Combination | ||
---|---|---|---|---|---|
No. of Papers | % | No. of Papers | % | ||
ArcGIS | Spatial image analysis and processing | 60 | 10.36 | 178 | 30.74 |
ENVI | 28 | 4.84 | 93 | 16.06 | |
Google Earth | 3D representation of the earth based mainly on satellite imagery used to identify LULC classes | 30 | 5.18 | 71 | 12.26 |
ERDAS Image | Spatial image analysis and processing | 11 | 1.90 | 43 | 7.43 |
FRAGSTATS | Calculating landscape metrics | - | - | 39 | 6.74 |
SPSS | Statistical calculations | - | - | 33 | 5.70 |
Index | No. of Citation |
---|---|
NDVI | 190 |
Enhanced Vegetation Index (EVI); Fraction Vegetation Cover (FVC); Photosynthesis | 105 |
Built-up | 78 |
LULC and Bareness | 73 |
NDBI | 71 |
Percent of Impermeable Surface (%ISA)/Impervious Surface Areas (ISA) | 68 |
Dimension, Altitude, Latitude, Digital Elevation Model (DEM) | 42 |
Demographic/Social Data | 33 |
Water Bodies | 31 |
Albedo | 26 |
No. of Statistical Techniques Applied | No. of Papers | % |
---|---|---|
0 | 36 | 6.22 |
1 | 232 | 40.07 |
2 | 195 | 33.68 |
3 | 62 | 10.71 |
4 | 30 | 5.18 |
5 | 14 | 2.42 |
6 | 8 | 1.38 |
Total | 579 | 100 |
No. of Statistical Techniques Applied | No. of Papers | % |
---|---|---|
Correlation | 224 | 38.69 |
Regression | 210 | 36.27 |
Descriptive Statistics | 128 | 22.11 |
Others | 60 | 10.36 |
Machine Learning | 27 | 4.66 |
Model/Method | 27 | 4.66 |
Dispersion | 25 | 4.32 |
Tests | 20 | 3.45 |
Variance | 12 | 2.07 |
Spatial Statistics | 3 | 0.52 |
Main Conclusions | No. of Papers | % |
---|---|---|
UHI identified at a study site | 579 | 100 |
Recommendations for mitigating measures considering civil construction, vegetation, and maintenance of water bodies | 229 | 39.55 |
Seasonality influences the results (different times of the day and/or seasons) | 71 | 12.26 |
The methods and models tested for the study of UHI were efficient | 49 | 8.46 |
The morphology, density, and choice of vegetation was appropriate to the specificity of the site and enhances the mitigation effects | 38 | 6.56 |
Recommendations on socioenvironmental, economic, and health measures to mitigate the effects of UHI | 15 | 2.59 |
Association of the UHI with atmospheric contamination and wind circulation, with recommendations for mitigating measures | 11 | 1.90 |
Association of the UHI with flooding and rainfall | 8 | 1.39 |
Factors | |
---|---|
Civil Constructions | Topographical features, building standards, building cooling, landscape configuration, urban morphology, spatial patterns of land use and occupancy [106,107,108], texture and spatial distribution [109], rural/urban areas with low vegetation density, in bare soil [110,111,112,113]. |
Three-dimensional urban design (such as height, volume, and surface area of the buildings, and the footprint and shadow volume) showed greater influence relative to two-dimensional ones (such as building rooftop area, street, and vegetation) [114]. | |
Heterogeneity in the composition of built surfaces and areas [115]. | |
Hydrological and soil permeability interference [116]. | |
Urban Size | Influence on surface heat flux, soil/air temperature, humidity, and wind circulation, resulting in differences in urban–rural energy balance [117]. |
Heat Emission | Night lights [118,119], heat emission from industrial and transportation sources [120,121,122]. |
Environment | Wind [123], wind speed, and land surface conditions, especially in the morning, corroborate the advance of warm air [124], aerosols can influence/limit diurnal surface heating in dry seasons [125]. |
Indicator | |
---|---|
IV | NDVI, NDBI [126], PV (that can show better results in the regressions applied when compared to NDVI) [127], landscape effects (that may have more impact than socioenvironmental data) [89]. |
Construction and soil | Characteristics and types of soils, LULC [128,129], imperviousness [130], albedo-exposed land areas [131], presence of surface contaminants, as hydrocarbons used in bioremediation processes, whose soils can present higher thermal signatures when revegetated [132]. |
Social, economic, and health | Population size [1], especially in cities with continental climate [133], economics, social, environmental, population health, anthropogenic heat flux [134,135,136,137,138,139,140,141,142,143,144], and in specific events/actions [91,145]. |
Main Consequences | |
---|---|
Environment | Atmospheric instability [167] that can influence the dispersion of pollutants [83], thermal circulations [168], convective precipitation [135,169], urban flooding [136]. |
Social and health | Biological risks [170], as the increase in mortality and heath [134,144], heat stress-related diseases (especially at night) [143], such as cardiovascular, respiratory, circulatory, emotional disorders [171], anxiety, sleep problems, and depression [142]. |
Economic | Regulation of the values practiced in the real estate market, whose properties most affected by the effect are cheaper [138], and preference in housing green areas and open spaces by high-income and educated families [88], which suggests understanding and studies regarding social vulnerability associated with residential segregation [172]. |
Increased electricity consumption in summer (due to the need for cooling/use of air conditioning), and minimized in winter (where the need for heating was not so necessary) [173], especially in areas inhabited by the high-income population, which have the means to regulate temperature, promoting thermal comfort [140]. It is noteworthy that the use of air conditioning can corroborate the increase of primary pollutant emissions and ozone generation [174], and increases the financial costs [175]. |
Mitigation | |
---|---|
Construction and LULC | Conversion of vacant land into green areas to minimize the effects of thermal discomfort [139], knowledge of local parameters, urban plantation, decentralization of urban areas [176,177,178,179], minimizing impervious areas and bare soils (such as abandoned land) [176], and diversification and balance of LULC elements, combining urban and vegetated areas, optimizing spatial configuration [178]; industrial relocation, buildings demolition, and brownfield redevelopment [180]; optimization of green land cover configuration [181] (in relatively small cities) or controlling sprawl (in larger cities) reducing the ratio of compaction in urban sprawl [182]; keeping the balance between urban and non-urban uses [183]; light-colored skyscrapers with glass curtain walls systems (which showed relatively low LST) [184]. |
Environmental | Preservation of water bodies [80,174,185,186] with simple geometry. The area of the waterbody is also a factor that influences temperature variation and, with high surface moisture, are less efficient than a water body (such as a river) [187] but can attenuate surface temperature better than vegetation cover, especially in dry seasons [188]. Increased proportion of vegetation at the expense of impermeable areas [189,190], distribution of trees and taking advantage of their shade effects [191], green surfaces/roofs [192,193,194,195,196,197,198,199,200]. The relationship between the presence of vegetation and cooling is not linear [201], and additional studies are needed to evaluate local specificities and needs. There are cases, for example, that associate the use of large trees with negative effects on nighttime cooling [202], due to higher heat retention as a consequence of a lower SVF [203]. Therefore, their characteristics must be evaluated to identify the most suitable and favorable vegetal species, arrangements, and strategies for heat exchange in a region. In addition to increasing the volume of vegetation areas at a site [204], evaluating the spatial pattern, shape, canopy cover [205], leaf density, and area of influence of heat regulation/shade effects [206,207,208]. Large parks did not present advantages over small ones [209]. |
Social, economic, and health | Encouraging the use of public transportation to reduce the circulation of cars and the emission of atmospheric pollutants [137]. Development of social measures, such as subsidies for electricity [173], and creation of heat warning and health surveillance systems, which alert users to the occurrence of heat waves [141]. |
Reference | No. of Papers | % |
---|---|---|
J. A. Voogt and T. R. Oke, “Thermal remote sensing of urban climates,” Remote Sens. Environ., vol. 86, no. 3, pp. 370–384, 2003, doi: 10.1016/S0034-4257(03)00079-8 [12]. | 105 | 18.13 |
F. Yuan and M. E. Bauer, “Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery,” Remote Sens. Environ., vol. 106, no. 3, pp. 375–386, Feb. 2007, doi: 10.1016/j.rse.2006.09.003 [210]. | 42 | 7.25 |
M. L. Imhoff, P. Zhang, R. E. Wolfe, and L. Bounoua, “Remote sensing of the urban heat island effect across biomes in the continental USA,” Remote Sens. Environ., vol. 114, no. 3, pp. 504–513, 2010, doi: 10.1016/j.rse.2009.10.008.n [2]. | 30 | 5.18 |
Q. Weng, D. Lu, and J. Schubring, “Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies,” Remote Sens. Environ., vol. 89, no. 4, pp. 467–483, 2004, doi: 10.1016/j.rse.2003.11.005 [23]. | 30 | 5.18 |
A. J. Arnfield, “Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island,” Int. J. Climatol., vol. 23, no. 1, pp. 1–26, Jan. 2003, doi: 10.1002/joc.859 [8]. | 28 | 4.84 |
T. R. Oke, “The energetic basis of the urban heat island (Symons Memorial Lecture, 20 May 1980).,” Q. Journal, R. Meteorol. Soc., vol. 108, no. 455, pp. 1–24, 1982, doi:10.1002/qj.49710845502 [1]. | 28 | 4.84 |
J. A. Sobrino, J. C. Jiménez-Muñoz, and L. Paolini, “Land surface temperature retrieval from LANDSAT TM 5,” Remote Sens. Environ., vol. 90, no. 4, pp. 434–440, Apr. 2004, doi: 10.1016/j.rse.2004.02.003 [53]. | 26 | 4.49 |
X.-L. Chen, H.-M. Zhao, P.-X. Li, and Z.-Y. Yin, “Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes,” Remote Sens. Environ., vol. 104, no. 2, pp. 133–146, Sep. 2006, doi: 10.1016/j.rse.2005.11.016 [211]. | 25 | 4.32 |
No. of Publications Associated with the Author’s Name | No. of Authors | % of Authors |
---|---|---|
1 | 1136 | 77.02 |
2 | 181 | 12.27 |
3 | 78 | 5.29 |
4 | 27 | 1.83 |
5 | 17 | 1.15 |
6 | 12 | 0.81 |
7 | 4 | 0.27 |
8 | 5 | 0.34 |
9 | 3 | 0.20 |
10 | 2 | 0.14 |
>10 | 10 | 0.68 |
Total | 1475 | 100 |
Paper | No. of Citations |
---|---|
X.-L. Chen, H.-M. Zhao, P.-X. Li, and Z.-Y. Yin, “Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes,” Remote Sens. Environ., vol. 104, no. 2, pp. 133–146, Sep. 2006, doi: 10.1016/j.rse.2005.11.016. [211] | 849 |
M. L. Imhoff, P. Zhang, R. E. Wolfe, and L. Bounoua, “Remote sensing of the urban heat island effect across biomes in the continental USA,” Remote Sens. Environ., vol. 114, no. 3, pp. 504–513, 2010, doi: 10.1016/j.rse.2009.10.008. [2] | 648 |
J. Li, C. Song, L. Cao, F. Zhu, X. Meng, and J. Wu, “Impacts of landscape structure on surface urban heat islands: A case study of Shanghai, China,” Remote Sens. Environ., vol. 115, no. 12, pp. 3249–3263, Dec. 2011, doi: 10.1016/j.rse.2011.07.008. [212] | 499 |
W. Zhou, G. Huang, and M. L. Cadenasso, “Does spatial configuration matter? Understanding the effects of land cover pattern on land surface temperature in urban landscapes,” Landsc. Urban Plan., vol. 102, no. 1, pp. 54–63, 2011, doi: 10.1016/j.landurbplan.2011.03.009. [213] | 418 |
A. Buyantuyev and J. Wu, “Urban heat islands and landscape heterogeneity: Linking spatiotemporal variations in surface temperatures to land-cover and socioeconomic patterns,” Landsc. Ecol., vol. 25, no. 1, pp. 17–33, 2010, doi: 10.1007/s10980-009-9402-4. [156] | 416 |
X. Cao, A. Onishi, J. Chen, and H. Imura, “Quantifying the cool island intensity of urban parks using ASTER and IKONOS data,” Landsc. Urban Plan., vol. 96, no. 4, pp. 224–231, Jun. 2010, doi: 10.1016/j.landurbplan.2010.03.008. [214] | 266 |
J. P. Connors, C. S. Galletti, and W. T. L. Chow, “Landscape configuration and urban heat island effects: Assessing the relationship between landscape characteristics and land surface temperature in Phoenix, Arizona,” Landsc. Ecol., vol. 28, no. 2, pp. 271–283, 2013, doi: 10.1007/s10980-012-9833-1. [107] | 257 |
R. Amiri, Q. Weng, A. Alimohammadi, and S. K. Alavipanah, “Spatial-temporal dynamics of land surface temperature in relation to fractional vegetation cover and land use/cover in the Tabriz urban area, Iran,” Remote Sens. Environ., vol. 113, no. 12, pp. 2606–2617, Dec. 2009, doi: 10.1016/j.rse.2009.07.021. [215] | 235 |
Q. Weng, “Fractal analysis of satellite-detected urban heat island effect,” Photogramm. Eng. Remote Sensing, vol. 69, no. 5, pp. 555–566, 2003, doi: 10.14358/PERS.69.5.555. [109] | 204 |
N. Schwarz, S. Lautenbach, and R. Seppelt, “Exploring indicators for quantifying surface urban heat islands of European cities with MODIS land surface temperatures,” Remote Sens. Environ., vol. 115, no. 12, pp. 3175–3186, Dec. 2011, doi: 10.1016/j.rse.2011.07.003. [216] | 199 |
Citation | No. of Papers | % |
---|---|---|
0 | 48 | 8.29 |
1–3 | 97 | 16.75 |
4–6 | 63 | 10.88 |
7–10 | 55 | 9.50 |
11–18 | 85 | 14.68 |
19–25 | 45 | 7.77 |
26–40 | 66 | 11.40 |
41–60 | 38 | 6.56 |
61–80 | 33 | 5.70 |
81–100 | 10 | 1.73 |
101–125 | 9 | 1.55 |
126–160 | 13 | 2.25 |
161–250 | 10 | 1.73 |
251–500 | 5 | 0.86 |
501–849] | 2 | 0.35 |
Total | 579 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almeida, C.R.d.; Teodoro, A.C.; Gonçalves, A. Study of the Urban Heat Island (UHI) Using Remote Sensing Data/Techniques: A Systematic Review. Environments 2021, 8, 105. https://doi.org/10.3390/environments8100105
Almeida CRd, Teodoro AC, Gonçalves A. Study of the Urban Heat Island (UHI) Using Remote Sensing Data/Techniques: A Systematic Review. Environments. 2021; 8(10):105. https://doi.org/10.3390/environments8100105
Chicago/Turabian StyleAlmeida, Cátia Rodrigues de, Ana Cláudia Teodoro, and Artur Gonçalves. 2021. "Study of the Urban Heat Island (UHI) Using Remote Sensing Data/Techniques: A Systematic Review" Environments 8, no. 10: 105. https://doi.org/10.3390/environments8100105
APA StyleAlmeida, C. R. d., Teodoro, A. C., & Gonçalves, A. (2021). Study of the Urban Heat Island (UHI) Using Remote Sensing Data/Techniques: A Systematic Review. Environments, 8(10), 105. https://doi.org/10.3390/environments8100105