Empirical Modeling of Stream Nutrients for Countries without Robust Water Quality Monitoring Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Strategy
- The definition of natural and anthropic-originated (geophysical and land-use variables) controls that determine the levels of TP and TN concentrations in water.
- The development a GIS for the systematization, evaluation, and integration of the controls (variables) identified in stage one to the 204 monitoring points distributed by the WS and SA periods.
- The analysis of the relationships between controls and the TP and TN concentrations in lotic systems. The modeling was accomplished using GAMs.
2.2. Case Studies
2.3. Water Quality Data
2.4. Land Use and Drainage Basin Characteristics
2.5. Data Analysis
2.6. Modeling
- Data were randomly divided into two sets in a 90% training–10% test sampling proportion.
- The training sample trained a GAM model with default parameters, and the test sample evaluated model adjustment with the training sample.
- NRMSE (evaluation indicator) was calculated as Equation (1):
- RMSE refers to the square root of the quadratic error calculated as Equation (2):
2.7. 2030 Scenario
3. Results
3.1. Water Quality in Both Case Studies
3.2. Main Relationships between Nutrients and Land Use—Geophysical Variables
3.3. Total Phosphorus and Total Nitrogen Models
3.4. Total Phosphorous and Total Nitrogen Models Application for 2030 Scenario
4. Discussion
5. Final Remarks
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carpenter, S.R.; Caraco, N.F.; Correll, D.L.; Howarth, R.W.; Sharpley, A.N.; Smith, V.H. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol. Appl. 1998, 8, 559–568. [Google Scholar] [CrossRef]
- Smith, V.H. Eutrophication of freshwater and coastal marine ecosystems: A global problem. Environ. Sci. Pollut. Res. 2003, 10, 126–139. [Google Scholar] [CrossRef]
- Dodds, W.K.; Smith, V.H. Nitrogen, phosphorus, and eutrophication in streams. Inland Waters 2016, 6, 155–164. [Google Scholar] [CrossRef]
- Sinha, E.; Michalak, A.M.; Balaji, V. Eutrophication will increase during the 21st century as a result of precipitation changes. Science 2017, 357, 405–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wurtsbaugh, W.A.; Paerl, H.W.; Dodds, W.K. Nutrients, eutrophication and harmful algal blooms along the freshwater to marine continuum. WIREs Water 2019, 6, e1373. [Google Scholar] [CrossRef]
- Paerl, H.W.; Gardner, W.S.; Havens, K.E.; Joyner, A.R.; McCarthy, M.J.; Newell, S.E.; Qin, B.; Scott, J.T. Mitigating cyanobacterial harmful algal blooms in aquatic ecosystems impacted by climate change and anthropogenic nutrients. Harmful Algae 2016, 54, 213–222. [Google Scholar] [CrossRef] [Green Version]
- Moss, B. Water pollution by agriculture. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 659–666. [Google Scholar] [CrossRef] [Green Version]
- Smith, V.H.; Joye, S.B.; Howarth, R.W. Eutrophication of freshwater and marine ecosystems. Limnol. Oceanogr. 2006, 51, 351–355. [Google Scholar] [CrossRef] [Green Version]
- Withers, P.J.A.; Neal, C.; Jarvie, H.P.; Doody, D.G. Agriculture and eutrophication: Where do we go from here? Sustainability 2014, 6, 5853–5875. [Google Scholar] [CrossRef] [Green Version]
- Álvarez, X.; Valero, E.; Santos, R.M.B.; Varandas, S.G.P.; Sanches Fernandes, L.F.; Pacheco, F.A.L. Anthropogenic nutrients and eutrophication in multiple land use watersheds: Best management practices and policies for the protection of water resources. Land Use Policy 2017, 69, 1–11. [Google Scholar] [CrossRef]
- Kronvang, B.; Jeppesen, E.; Conley, D.J.; Søndergaard, M.; Larsen, S.E.; Ovesen, N.B.; Carstensen, J. Nutrient pressures and ecological responses to nutrient loading reductions in Danish streams, lakes and coastal waters. J. Hydrol. 2005, 304, 274–288. [Google Scholar] [CrossRef]
- Wang, J.L.; Yang, Y.S. An approach to catchment-scale groundwater nitrate risk assessment from diffuse agricultural sources: A case study in the Upper Bann, Northern Ireland. Hydrol. Process. 2008, 22, 4274–4286. [Google Scholar] [CrossRef]
- Jarvie, H.P.; Sharpley, A.N.; Withers, P.J.A.; Scott, J.T.; Haggard, B.E.; Neal, C. Phosphorus mitigation to control river eutrophication: Murky waters, inconvenient truths, and “postnormal” science. J. Environ. Qual. 2013, 42, 295–304. [Google Scholar] [CrossRef]
- Smith, V.H.; Schindler, D.W. Eutrophication science: Where do we go from here? Trends Ecol. Evol. 2009, 24, 201–207. [Google Scholar] [CrossRef] [PubMed]
- El-Khoury, A.; Seidou, O.; Lapen, D.R.L.; Que, Z.; Mohammadian, M.; Sunohara, M.; Bahram, D. Combined impacts of future climate and land use changes on discharge, nitrogen and phosphorus loads for a Canadian river basin. J. Environ. Manag. 2015, 151, 76–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehdi, B.; Ludwig, R.; Lehner, B. Evaluating the impacts of climate change and crop land use change on streamflow, nitrates and phosphorus: A modeling study in Bavaria. J. Hydrol. Reg. Stud. 2015, 4, 60–90. [Google Scholar] [CrossRef] [Green Version]
- Matias, N.G.; Johnes, P.J. Catchment Phosphorous Losses: An Export Coefficient Modelling Approach with Scenario Analysis for Water Management. Water Resour. Manag. 2012, 26, 1041–1064. [Google Scholar] [CrossRef]
- White, M.; Harmel, D.; Yen, H.; Arnold, J.; Gambone, M.; Haney, R. Development of Sediment and Nutrient Export Coefficients for U.S. Ecoregions. J. Am. Water Resour. Assoc. 2015, 51, 758–775. [Google Scholar] [CrossRef]
- Brown, L.C.; Barnwell, T.O. The Enhanced Stream Water Quality Models QUAL2E and QUAL2E-UNCAS: Documentation and User Manual; US Environmental Protection Agency: Athens, GA, USA, 1987.
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment part I: Model development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Herr, J.W.; Chen, C.W. WARMF: Model Use, Calibration, and Validation. Trans. ASABE. 2012, 55, 1385–1394. [Google Scholar] [CrossRef]
- Duda, P.B.; Hummel, P.; Donigian, A.S., Jr.; Imhoff, J.C. BASINS/HSPF: Model Use, Calibration, and Validation. Trans. ASABE 2012, 55, 1523–1547. [Google Scholar] [CrossRef]
- Jaber, F.; Shukla, S. MIKE SHE: Model use, calibration, and validation. Trans. ASABE 2012, 55, 1479–1489. [Google Scholar] [CrossRef]
- McGonigle, D.F.; Burke, S.P.; Collins, A.L.; Gartner, R.; Haft, M.R.; Harris, R.C.; Haygarth, P.M.; Hedges, M.C.; Hiscock, K.M.; Lovett, A.A. Developing Demonstration Test Catchments as a platform for transdisciplinary land management research in England and Wales. Environ. Sci. Process. Impacts 2014, 16, 1618–1628. [Google Scholar] [CrossRef] [PubMed]
- Lindenschmidt, K.E.; Hattermann, F.; Mohaupt, V.; Merz, B.; Kundzewicz, Z.W.; Bronstert, A. Large-scale hydrological modelling and the Water Framework Directive and Floods Directive of the European Union—10th Workshop on Large-Scale Hydrological Modelling. Adv. Geosci. 2007, 11, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Döll, P.; Berkhoff, K.; Bormann, H.; Fohrer, N.; Gerten, D.; Hagemann, S.; Krol, M. Advances and visions in large-scale hydrological modelling: Findings from the 11th Workshop on Large-Scale Hydrological Modelling. Adv. Geosci. 2008, 18, 51–61. [Google Scholar] [CrossRef] [Green Version]
- Hollaway, M.J.; Beven, K.J.; Benskin, C.M.W.H.; Collins, A.L.; Evans, R.; Falloon, P.D.; Forber, K.J.; Hiscock, K.M.; Kahana, R.; Macleod, C.J.A.; et al. The challenges of modelling phosphorus in a headwater catchment: Applying a ‘limits of acceptability’ uncertainty framework to a water quality model. J. Hydrol. 2018, 558, 624. [Google Scholar] [CrossRef]
- Leta, M.K.; Demissie, T.A.; Tränckner, J. Hydrological responses of watershed to historical and future land use land cover change dynamics of nashe watershed, ethiopia. Water 2021, 13, 2372. [Google Scholar] [CrossRef]
- Hesse, C.; Krysanova, V.; Päzolt, J.; Hattermann, F.F. Eco-hydrological modelling in a highly regulated lowland catchment to find measures for improving water quality. Ecol. Modell. 2008, 218, 135–148. [Google Scholar] [CrossRef]
- Krysanova, V.; Arnold, J.G. Advances in ecohydrological modelling with SWAT—A review. Hydrol. Sci. Sci. Hydrol. 2008, 53, 939–947. [Google Scholar] [CrossRef]
- Malagó, A.; Bouraoui, F.; Vigiak, O.; Grizzetti, B.; Pastori, M. Modelling water and nutrient fluxes in the Danube River Basin with SWAT. Sci. Total Environ. 2017, 603–604, 196–218. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Jager, H.I.; Baskaran, L.M.; Baker, T.F.; Brandt, C.C. SWAT Modeling of Water Quantity and Quality in the Tennessee River Basin: Spatiotemporal Calibration and Validation. Hydrol. Earth Syst. Sci. Discuss. 2016, 34, 1–33. [Google Scholar] [CrossRef] [Green Version]
- Dos Santos, F.M.; de Oliveira, R.P.; Mauad, F.F. Evaluating a parsimonious watershed model versus SWAT to estimate streamflow, soil loss and river contamination in two case studies in Tietê river basin, São Paulo, Brazil. J. Hydrol. Reg. Stud. 2020, 29, 100685. [Google Scholar] [CrossRef]
- Gao, L.; Li, D. A review of hydrological/water-quality models. Front. Agric. Sci. Eng. 2014, 1, 267–276. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Erik Jørgensen, S. Modelling of point and non-point nutrient loadings from a watershed. Environ. Model. Softw. 2005, 20, 561–574. [Google Scholar] [CrossRef]
- Andersen, H.E.; Kronvang, B.; Larsen, S.E. Development, validation and application of Danish empirical phosphorus models. J. Hydrol. 2005, 304, 355–365. [Google Scholar] [CrossRef]
- Röman, E.; Ekholm, P.; Tattari, S.; Koskiaho, J.; Kotamäki, N. Catchment characteristics predicting nitrogen and phosphorus losses in Finland. River Res. Appl. 2018, 34, 397–405. [Google Scholar] [CrossRef]
- Strayer, D.L.; Beighley, R.E.; Thompson, L.C.; Brooks, S.; Nilsson, C.; Pinay, G.; Naiman, R.J. Effects of land cover on stream ecosystems: Roles of empirical models and scaling issues. Ecosystems 2003, 6, 407–423. [Google Scholar] [CrossRef]
- Guisan, A.; Edwards, T.C., Jr.; Hastie, T.; Edwards, T.C.; Hastie, T. Generalized linear and generalized additive models in studies of species distributions: Setting the scene. Ecol. Modell. 2002, 157, 89–100. [Google Scholar] [CrossRef] [Green Version]
- Crisci, C.; Ghattas, B.; Perera, G. A review of supervised machine learning algorithms and their applications to ecological data. Ecol. Modell. 2012, 240, 113–122. [Google Scholar] [CrossRef]
- Lehmann, A. GIS modeling of submerged macrophyte distribution using Generalized Additive Models. Plant Ecol. 1998, 139, 113–124. [Google Scholar] [CrossRef]
- Mas, J.F.; Puig, H.; Palacio, J.L.; Sosa-López, A. Modelling deforestation using GIS and artificial neural networks. Environ. Model. Softw. 2004, 19, 461–471. [Google Scholar] [CrossRef]
- Paegelow, M.; Camacho Olmedo, M.T. Modelling Environmental Dynamics. In Advances in Geomatics Solutions; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Eastman, J. Idrisi Taiga, Guide to GIS and Image Processing, Manual Version 16.02; Clark University: Worcester, MA, USA, 2009. [Google Scholar]
- Camacho Olmedo, M.T.; Paegelow, M.; Mas, J.F. Interest in intermediate soft-classified maps in land change model validation: Suitability versus transition potential. Int. J. Geogr. Inf. Sci. 2013, 27, 2343–2361. [Google Scholar] [CrossRef]
- Leta, M.K.; Demissie, T.A.; Tränckner, J. Modeling and prediction of land use land cover change dynamics based on land change modeler (Lcm) in nashe watershed, upper blue nile basin, Ethiopia. Sustain. 2021, 13, 3740. [Google Scholar] [CrossRef]
- Díaz, I.; Ceroni, A.; López, G.; Achkar, M. Análisis espacio-temporal de la intensificación agraria y su incidencia en la productividad primaria neta. Rev. Electrónic@ Medioambiente. UCM 2018, 19, 24–40. [Google Scholar]
- Panario, D.; Gutierrez, O.; Bartesaghi, L.; Achkar, M.; Ceroni, M. Clasificación y mapeo de ambientes de Uruguay. Inf. Tec. 2011, unpublished report. [Google Scholar]
- INE. Censo de Población y Vivienda; Instituto Nacional de Estadística: Montevideo, Uruguay, 2011.
- Intendencia de Canelones. Plan de Ordenamiento Rural de Canelones (POR). “Ruralidades Canarias”. Canelones.; IC: Canelones, Uruguay, 2018; 362p.
- Goyenola, G.; Acevedo, S.; Machado, I.; Mazzeo, N. Diagnóstico del Estado Ambiental de los Sistemas Acuáticos Superficiales del Departamento de Canelones. Volumen I: Ríos y Arroyos. Informe Desarrollo de Línea de Base sobre Calidad de Agua 2008–2009; Plan Estratégico Departamental de Calidad: Canelones, Uruguay, 2011; p. 67. [Google Scholar]
- Levrini, P. Análisis Espacial de las Propiedades Físico-Químicas en la Red de Tributarios de la Cuenca de Laguna del Sauce (Maldonado) y su Relación con Controles Naturales y de Origen Antrópico; Universidad de la República: Montevideo, Uruguay, 2017. [Google Scholar]
- APHA Standard Methods for Examination of Water and Wastewater; APHA/AWWA/WPCF: Washington, DC, USA, 1995.
- Valderrama, J.C. The simultaneous analysis of total nitrogen and total phosphorus in natural waters. Mar. Chem. 1981, 10, 109–122. [Google Scholar] [CrossRef]
- Müller, R.; Weidemann, O. Die bestimmung des Nitrat-ions in wasser. Wasser 1955, 22, 247. [Google Scholar]
- APHA “4500-P PHOSPHORUS (2017)” Standard Methods for the Examination of Water and Wastewater; APHA/AWWA/WPCF: Washington, DC, USA, 2017.
- NASA. ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer; NASA: Washington, DC, USA, 2006.
- INUMET. Precipitaciones Acumuladas Mensuales y Temperaturas Mensuales Medias; INUMET: Montevideo, Uruguay, 2015. [Google Scholar]
- Horton, R.E. Erosional development of streams and their drainage basins; Hydrophysical approach to quantitative morphology. Bull. Geol. Soc. Am. 1945, 56, 275–370. [Google Scholar] [CrossRef] [Green Version]
- Strahler, A.; Strahler, A. Modern Physical Geography, 3rd ed.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 1987. [Google Scholar]
- Stepinski, T.F.; Stepinski, A.P. Morphology of drainage basins as an indicator of climate on early Mars. J. Geophys. Res. E Planets 2005, 110, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Spoturno, J.; Oyhantçabal, P.; Goso, C.; Aubet, N.; Cazaux, S.; Huelmo, S.; Morales, E.; Loureiro, J. Mapa Geológico del Departamento de Canelones a Escala 1:100,000; DINAMIGE: Montevideo, Uruguay, 2004. [Google Scholar]
- INE. Estimaciones y Proyecciones de la Población de Uruguay: Metodología y Resultados Revisión 2013; Instituto Nacional de Estadística: Montevideo, Uruguay, 2014.
- DINAMA. Trámites SADI en el Departamento de Canelones; MVOTMA: Montevideo, Uruguay, 2015. [Google Scholar]
- Díaz, I. Modelación de los Aportes de Nitrógeno y Fósforo en Cuencas Hidrográficas del Departamento de Canelones (Uruguay); UdelaR: Montevideo, Uruguay, 2012. [Google Scholar]
- DIEA. Censo General Agropecuario. Resultados Definitivos; MGAP: Montevideo, Uruguay, 2011. [Google Scholar]
- Mantel, N. The Detection of Disease Clustering and a Generalized Regression Approach. Cancer Res. 1967, 27, 209–220. [Google Scholar]
- R Development Core Team. R: A Language and Environment for Statistical Computing, R versión 4.1.1; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Nelder, J.A.; Wedderburn, R.W.M. Generalized Linear Models. J. R. Stat. Soc. 1972, 135, 370–384. [Google Scholar] [CrossRef]
- McCullagh, P.; Nelder, J.A. Generalized Linear Models; Chapman and Hall: London, UK, 1989; Volume 28, ISBN 978-0-412-31760-6. [Google Scholar]
- Hastie, T.J.; Tibshirani, R. Generalized additive models. Stat. Sci. 1990, 1, 297–318. [Google Scholar]
- Burnham, K.P.; Anderson, D.R. Multimodel inference: Understanding AIC and BIC in model selection. Sociol. Methods Res. 2004, 33, 261–304. [Google Scholar] [CrossRef]
- Sanchez-Pinto, L.N.; Venable, L.R.; Fahrenbach, J.; Churpek, M.M. Comparison of variable selection methods for clinical predictive modeling. Int. J. Med. Inform. 2018, 116, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Wood, S.N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. Ser. B Stat. Methodol. 2011, 73, 3–36. [Google Scholar] [CrossRef] [Green Version]
- Wood, S.N. Stable and efficient multiple smoothing parameter estimation for generalized additive models. J. Am. Stat. Assoc. 2004, 99, 673–686. [Google Scholar] [CrossRef] [Green Version]
- Wood, S.N. Thin plate regression splines. J. R. Stat. Soc. Ser. B Stat. Methodol. 2003, 65, 95–114. [Google Scholar] [CrossRef]
- Wood, S.N. Generalized Additive Models: An Introduction with R, 2nd ed.; Chapman and Hall/CRC Press.: London, UK, 2017. [Google Scholar]
- OPP. Estrategia Uruguay III SIGLO. Aspectos Productivos.; Presidencia: Montevideo, Uruguay, 2009. [Google Scholar]
- Achkar, M.; Blum, A.; Bartesaghi, L.; Ceroni, M. Escenarios de Cambio de uso del Suelo en Uruguay; MGAP: Montevideo, Uruguay, 2012. [Google Scholar]
- Kirpich, Z. Time of concentration of small agricultural watersheds. Civ. Eng. 1940, 10, 362. [Google Scholar]
- Sheridan, J.M. Hydrograph time parameters for flatland watersheds. Trans. ASAE 1994, 37, 103–113. [Google Scholar] [CrossRef]
- Allan, D.; Castillo, M. Stream Ecology. Structure and Function of Running Waters, 2nd ed.; Springer: Dordrech, The Netherlands, 2007. [Google Scholar]
- Kalff, J. Limnology: Inland Water Ecosystems; Prentice Hal: Hoboken, NJ, USA, 2002. [Google Scholar]
- Kleinman, P.J.A.; Srinivasan, M.S.; Dell, C.J.; Schmidt, J.P.; Sharpley, A.N.; Bryant, R.B. Role of rainfall intensity and hydrology in nutrient transport via surface runoff. J. Environ. Qual. 2006, 35, 1248–1259. [Google Scholar] [CrossRef] [Green Version]
- Sharpley, A.; Jarvie, H.P.; Buda, A.; May, L.; Spears, B.; Kleinman, P. Phosphorus legacy: Overcoming the effects of past management practices to mitigate future water quality impairment. J. Environ. Qual. 2013, 42, 1308–1326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kachholz, F.; Tränckner, J. A model-based tool for assessing the impact of land use change scenarios on flood risk in small-scale river systems—part 1: Pre-processing of scenario based flood characteristics for the current state of land use. Hydrology 2021, 8, 102. [Google Scholar] [CrossRef]
- Crisci, C.; Goyenola, G.; Terra, R.; Lagomarsino, J.J.; Pacheco, J.P.; Díaz, I.; Gonzalez-Madina, L.; Levrini, P.; Méndez, G.; Bidegain, M.; et al. Dinámica ecosistémica y calidad de agua: Estrategias de monitoreo para la gestión de servicios asociados a Laguna del Sauce. Innotec 2017, 13, 46–57. [Google Scholar] [CrossRef] [Green Version]
- Farley, K.A.; Jobbágy, E.G.; Jackson, R.B. Effects of afforestation on water yield: A global synthesis with implications for policy. Glob. Chang. Biol. 2005, 11, 1565–1576. [Google Scholar] [CrossRef]
- Silveira, L.; Alonso, J. Runoff modifications due to the conversion of natural grasslands to forests in a large basin in Uruguay. Hydrol. Process. 2009, 22, 320–329. [Google Scholar] [CrossRef]
- Gazzano, I.; Achkar, M.; Díaz, I. Agricultural Transformations in the Southern Cone of Latin America: Agricultural Intensification and Decrease of the Aboveground Net Primary Production, Uruguay’s Case. Sustainability 2019, 11, 7011. [Google Scholar] [CrossRef] [Green Version]
- Decree_No.405/008; Land Use and Responsible Management Plan; Registro Nacional de Leyes y Decretos: Montevideo, Uruguay, 2008; p. 645.
- Wesche, S.D.; Armitage, D.R. Using qualitative scenarios to understand regional environmental change in the Canadian North. Reg. Environ. Chang. 2014, 14, 1095–1108. [Google Scholar] [CrossRef] [Green Version]
Variable | Parameter | Method | Source |
---|---|---|---|
Precipitation | PP accumulated (7, 30 and 60 days) | Kriging’s spatial interpolation | [58] |
Soil physical properties | Soil depth | Literature | [48] |
Soil physical properties | Soil texture | Literature | [48] |
Soil chemical properties | Soil pH a | Literature | [48] |
Soil organic compounds | Soil organic compounds a | Literature | [48] |
Basin morphology/morphometry | Drainage system density | Geoprocessing (GIS) | [59] |
Basin morphology/morphometry | Stream order | Geoprocessing (GIS) | [60] |
Basin morphology/morphometry | Basin shape coefficient | Geoprocessing (GIS) | [61] |
Basin morphology/morphometry | Basin area | Geoprocessing (GIS) | [61] |
Topography | Slope | DTM 30 × 30 m | [57] |
Lithology | Geologic formation a | Literature | [62] |
Land use/cover | Use/cover | Supervised image classification | LANDSAT 5TM a, CBERS 2b a LANDSAT 8OLI b |
Soil erosion | Active erosion area a | Supervised image classification | LANDSAT 5TM a, CBERS 2b a |
Demography | Dispersed urban population a | Geoprocessing (GIS) | [49,63] |
Demography | Rural population density a | Geoprocessing (GIS) | [49,63] |
Point sources | Presence or absence of industrial sources a | Geoprocessing (GIS) | [64] |
Riparian area | Conservation status | Qualitative classification (1 = very low a 5 = very high) | [65] |
Livestock production | Number of livestock | Geoprocessing (GIS). Interviewing producers | [66] and field data collection |
Internal stream process | Dissolved oxygen c | Portable multiparameter sonde | [51,52] |
Parameters | K | Alk | pH | DO | TSS | SOM | %SOM | TN | TP | |
---|---|---|---|---|---|---|---|---|---|---|
Case 1 | ||||||||||
WS | Min | 119.7 | 42.6 | 6.7 | 1.6 | 3 | 0.2 | 1.9 | 300 | 14.7 |
Max | 2286.7 | 952 | 8.1 | 10.8 | 538.8 | 456.3 | 98.4 | 149,800 | 2625 | |
Mean | 672.5 | 266 | 7.5 | 6.8 | 48.8 | 33 | 38.4 | 5028 | 124.9 | |
VC | 247 | 54.3 | 3.6 | 28.4 | 170 | 227 | 71.1 | 312 | 235 | |
SA | Min | 134 | 30 | 3.0 | 6.2 | 21.7 | 3.9 | 9.1 | 0.01 | 43.8 |
Max | 2407 | 900 | 8.9 | 8.2 | 1765 | 85 | 88.2 | 14560 | 26550 | |
Mean | 538.7 | 183.2 | 7.3 | 7.3 | 255.9 | 77.0 | 33.8 | 816 | 2063 | |
VC | 190.1 | 75.1 | 4.9 | 58.7 | 132.3 | 118.6 | 52.6 | 288.3 | 217.7 | |
M-W | *** | *** | *** | *** | *** | *** | ** | *** | *** | |
Case 2 | ||||||||||
WS | Min | 44 | 16 | 6 | 5.2 | 0.6 | 0.2 | 3.5 | 143.8 | 10.4 |
Max | 1299 | 442 | 8.2 | 14.1 | 85.4 | 10.5 | 100 | 1586.1 | 410.8 | |
Mean | 214 | 119 | 7.2 | 9.9 | 7.1 | 2 | 35.6 | 503.7 | 42.1 | |
VC | 82.3 | 79.2 | 6.2 | 13.5 | 130.2 | 92.4 | 52.2 | 51.9 | 116.3 | |
SA | Min | 45 | 18 | 5.8 | 1.5 | 0.1 | 0.1 | 8.7 | 193.7 | ˂10 |
Max | 979 | 440 | 9.3 | 16.7 | 202.5 | 47.5 | 100 | 3900 | 1260.8 | |
Mean | 257 | 114 | 7.3 | 7.4 | 12.5 | 4.2 | 45.7 | 647.8 | 73.2 | |
VC | 68.8 | 74 | 7.6 | 33.7 | 215.1 | 176.8 | 56.9 | 72.5 | 210.4 | |
M-W | NS | NS | NS | *** | NS | *** | *** | ** | NS |
CASE 1 | CASE 2 | |||||||
---|---|---|---|---|---|---|---|---|
WS | SA | WS | SA | |||||
TN | TP | TN | TP | TN | TP | TN | TP | |
Precipitation regime 1 | ||||||||
Accumulated precipitation 7 days | NS | NS | NS | NS | NA | NA | NA | NA |
Accumulated precipitation 30 days | NS | 0.21 * | NS | 0.27 ** | NA | NA | NA | NA |
Accumulated precipitation 60 days | NS | 0.23 * | NS | 0.25 * | NA | NA | NA | NA |
Soil | ||||||||
Deep soils | NS | NS | 0.10 * | 0.35 *** | 0.44 *** | 0.21 * | 0.32 *** | - |
Moderately deep soils | NS | NS | 0.31 *** | −0.46 *** | NS | NS | NS | 0.20 * |
Shallow soils | 0.23 ** | −0.22 ** | −0.20 * | −0.18 *** | −0.39 *** | −0.34 *** | −0.31 *** | −0.32 *** |
Sandy soils | 0.11 ** | −0.18 ** | 0.32 *** | 0.35 *** | −0.50 *** | −0.20 * | −0.47 *** | −0.41 *** |
Silty soils | NS | NS | 0.30 *** | −0.44 *** | 0.49 *** | 0.20 * | 0.47 *** | 0.41 *** |
Clay soils | NS | NS | 0.15 * | 0.33 *** | NC | NC | NC | NC |
Soil pH | 0.22 *** | 0.22 *** | NS | NS | NS | NS | NS | NS |
Soil organic carbon | NS | NS | NS | −0.25 ** | NS | NS | NS | NS |
Geomorphology and lithology | ||||||||
Drainage system density | NS | NS | NS | NS | NS | NS | NS | NS |
Stream order | NS | NS | NS | NS | NS | NS | NS | −0.20 * |
Drainage basin area | NS | NS | NS | NS | NS | −0.23 * | −0.20 * | NS |
Soft slopes (≤3%) | 0.34 *** | 0.34 * | 0.11 * | NS | 0.47 ** | 0.28 ** | 0.48 *** | 0.36 *** |
Medium slopes (3 < x < 8) | 0.32 *** | −0.32 *** | 0.24 * | NS | 0.48 *** | 0.28 ** | 0.42 *** | 0.36 *** |
Strong slopes ≥ 8 | −0.29 *** | −0.36 *** | 0.28 ** | NS | −0.48 *** | −0.28 ** | −0.42 *** | −0.36 *** |
Geological formation (high drainage) | NS | NS | 0.16 * | NS | NA | NA | NA | NA |
Land use | ||||||||
Land use: Crops | NS | NS | 0.21 * | NS | 0.33 *** | NS | NS | 0.25 ** |
Land use: Natural grasslands | NS | NS | NS | NS | −0.33 *** | NS | NS | NS |
Land use: Native forest | NS | NS | NS | NS | −0.31 *** | −0.32 *** | −0.38 *** | −0.39 *** |
Land use: Forestation | NS | −0.31 *** | −0.30 *** | NS | NS | NS | NS | NS |
Land use: Orchard | 0.23 *** | NS | 0.39 *** | 0.25 *** | NAp | NAp | NAp | NAp |
Land use: Urban | 0.26 *** | NS | 0.37 *** | 0.22 * | 0.36 *** | NS | 0.26 ** | - |
Active erosion area | 0.22 * | 0.21 * | 0.26 ** | 0.21 * | NA | NA | NA | NA |
Dispersed urban population | 0.25 *** | NS | 0.32 *** | NS | NA | NA | NA | NA |
Rural population density | 0.33 *** | 0.30 *** | 0.51 *** | 0.44 *** | NAp | NAp | NAp | NAp |
Point sources | 0.37 *** | 0.23 *** | 0.45 *** | 0.30 * | NAp | NAp | NAp | NAp |
Riparian area conservation | NS | 0.13 ** | NS | NS | −0.26 ** | NS | −0.31 *** | −0.21 * |
Cattle | NS | 0.21 *** | NS | NS | NA | NA | NA | NA |
Limnological processes | ||||||||
Dissolved oxygen | - | - | - | - | −0.21 * | NS | - | NS |
Case 1 | ||||||||
TP | WS | IU *** | RA * | DUP * | RD * | LP * | DO *** | |
SA | IU *** | RA ** | FVP * | CFO. | DP *** | LP. | DO *** | |
TN | WS | IU *** | CFO * | DUP. | AE. | DP *** | LP. | DO *** |
SA | IU *** | RA * | FVP * | AE. | DP *** | LP. | DO *** | |
Case 2 | ||||||||
TP | WS | LTS *** | CFO * | NG ** | DO * | |||
SA | LTS ** | CFO * | NG * | RA | DO ** | |||
TN | WS | LTS ** | CFO * | RA | DO ** | |||
SA | LTS | CFO * | RA ** | DO * |
Nutrient | TP | TN | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sampling | WS | SA | WS | SA | ||||||||||||
Statistical | R2 | GCV | ΔAIC | NRMSE | R2 | GCV | ΔAIC | NRMSE | R2 | GCV | ΔAIC | NRMSE | R2 | GCV | ΔAIC | NRMSE |
Case 1 | ||||||||||||||||
Section A | 0.30 | 0.13 | - | 24.2 | 0.44 | 0.16 | - | 18.5 | 0.41 | 0.14 | - | 12.1 | 0.25 | 0.34 | - | 29.0 |
Section B | 0.53 | 0.10 | 28 | 21.1 | 0.67 | 0.11 | 15 | 14.1 | 0.59 | 0.10 | 27 | 11.9 | 0.63 | 0.20 | 53 | 23.1 |
Case 2 | ||||||||||||||||
Section A | 0.50 | 0.04 | - | 13.3 | 0.29 | 0.28 | - | 25.5 | 0.34 | 0.03 | - | 7.5 | 0.28 | 0.04 | - | 7.6 |
Section B | 0.54 | 0.03 | 8 | 12.9 | 0.40 | 0.25 | 15 | 24.3 | 0.42 | 0.03 | 9 | 7.0 | 0.41 | 0.04 | 1 | 7.5 |
TP WS | TP SA | TP WS | TP SA | ||
---|---|---|---|---|---|
Case 1 | ρ | −0.20 * | NS | −0.30 *** | −0.20 *** |
Case 2 | ρ | −0.49 *** | −0.32 *** | −0.40 *** | −0.49 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díaz, I.; Levrini, P.; Achkar, M.; Crisci, C.; Fernández Nion, C.; Goyenola, G.; Mazzeo, N. Empirical Modeling of Stream Nutrients for Countries without Robust Water Quality Monitoring Systems. Environments 2021, 8, 129. https://doi.org/10.3390/environments8110129
Díaz I, Levrini P, Achkar M, Crisci C, Fernández Nion C, Goyenola G, Mazzeo N. Empirical Modeling of Stream Nutrients for Countries without Robust Water Quality Monitoring Systems. Environments. 2021; 8(11):129. https://doi.org/10.3390/environments8110129
Chicago/Turabian StyleDíaz, Ismael, Paula Levrini, Marcel Achkar, Carolina Crisci, Camila Fernández Nion, Guillermo Goyenola, and Néstor Mazzeo. 2021. "Empirical Modeling of Stream Nutrients for Countries without Robust Water Quality Monitoring Systems" Environments 8, no. 11: 129. https://doi.org/10.3390/environments8110129
APA StyleDíaz, I., Levrini, P., Achkar, M., Crisci, C., Fernández Nion, C., Goyenola, G., & Mazzeo, N. (2021). Empirical Modeling of Stream Nutrients for Countries without Robust Water Quality Monitoring Systems. Environments, 8(11), 129. https://doi.org/10.3390/environments8110129