Long-Term Changes in Cork Oak and Holm Oak Patches Connectivity. The Algarve, Portugal, a Mediterranean Landscape Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Approach and Analysis Framework
2.3. Selected Source Maps
2.3.1. Historical Maps
- -
- Decades of 1890 and 1900
- One, painted with Chinese ink on tracing paper, presents the agricultural and forest crops and the proportions between them when more than one species occurred in the same plot, and, additionally, other information of cadastral value, such as the divisions of the large and medium properties. The plots with agricultural and forest species are represented by polygons, through a sequence of codes in order of dominance of these crops, and the proportions are represented by a corresponding sequence with the relative weights of each crop present in the plot.
- Another, drawn on opaque paper and coloured in pencils, respects a chromatic table of the predominant land cover and use. It was prepared from the original version, to which more details were added, namely roads and paths, buildings, the permanent and seasonal hydrographic network, the largest water bodies, and springs of some importance, as well as the geodesic vertices [34].
- -
- Decade of 1950
2.3.2. Recent Maps—Decade of 1990 and 2000
2.3.3. Accuracy of the Selected Source Maps
2.4. Classification System for Cork and Holm Oaks’ Land Cover and Land Use in the Algarve
2.5. Landscape Metrics
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pardini, R.; Bueno, A.D.A.; Gardner, T.A.; Prado, P.I.; Metzger, J.P. Beyond the fragmentation threshold hypothesis: Regime shifts in biodiversity across fragmented landscapes. PLoS ONE 2010, 5, e13666. [Google Scholar] [CrossRef]
- Ribeiro, J.; Colli, G.R.; Soares, A. Landscape correlates of anuran functional connectivity in rice crops: A graph-theoretic approach. J. Trop. Ecol. 2019, 35, 118–131. [Google Scholar] [CrossRef]
- Taylor, P.D.; Fahrig, L.; Henein, K.; Merriam, G. Connectivity Is a Vital Element of Landscape Structure. Oikos 1993, 68, 571–573. Available online: http://www.jstor.org/stable/3544927 (accessed on 29 September 2021). [CrossRef] [Green Version]
- Ward, M.; Saura, S.; Williams, B.; Ramírez-Delgado, J.P.; Arafeh-Dalmau, N.; Allan, J.R.; Venter, O.; Dubois, G.; Watson, J.E.M. Just ten percent of the global terrestrial protected area network is structurally connected via intact land. Nat. Commun. 2020, 11, 4563. [Google Scholar] [CrossRef]
- Siqueira, F.F.; Carvalho, D.; Rhodes, J.; Archibald, C.L.; Rezende, V.L.; Berg, E.v.d. Small Landscape Elements Double Connectivity in Highly Fragmented Areas of the Brazilian Atlantic Forest. Front. Ecol. Evol. 2021, 9, 1–14. [Google Scholar] [CrossRef]
- Spanowicz, A.G.; Jaeger, J.A. Measuring landscape connectivity: On the importance of within-patch connectivity. Landsc. Ecol. 2019, 34, 2261–2278. [Google Scholar] [CrossRef]
- Tischendorf, L.; Fahrig, L. On the usage and measurement of landscape connectivity. Oikos 2000, 90, 7–19. [Google Scholar] [CrossRef] [Green Version]
- Cullinan, V.I.; Thomas, J.M. A comparison of quantitative methods for examining landscape pattern and scale. Landsc. Ecol. 1992, 7, 211–227. [Google Scholar] [CrossRef]
- Sala, O.E.; Chapin, F.S.; Armesto, J.J.; Berlow, E.; Bloomfield, J.; Dirzo, R.; Huber-Sanwald, E.; Huenneke, L.F.; Jackson, R.B.; Kinzig, A.; et al. Global Biodiversity Scenarios for the Year 2100. Science 2000, 287, 1770–1774. Available online: https://www.science.org/doi/10.1126/science.287.5459.1770 (accessed on 29 September 2021). [CrossRef]
- Reddy, C.S. Remote sensing of biodiversity: What to measure and monitor from space to species? Biodivers. Conserv. 2021, 30, 2617–2631. [Google Scholar] [CrossRef]
- Olah, B. Historical maps and their application in landscape ecological research. Ekológia 2009, 28, 143–151. [Google Scholar] [CrossRef]
- El-Hussainy, M.S.; Baraka, M.A.; El-Hallaq, M.A. A methodology for image matching of historical maps. e-Perimetron 2011, 6, 77–95. [Google Scholar]
- Frajer, J.; Geletič, J. Research of historical landscape by using old maps with focus to its positional accuracy. Dela 2011, 36, 49–67. [Google Scholar] [CrossRef]
- Statuto, D.; Cillis, G.; Picuno, P. Using Historical Maps within a GIS to Analyse Two Centuries of Rural Landscape Changes in Southern Italy. Land 2017, 6, 65. [Google Scholar] [CrossRef] [Green Version]
- Affek, A. Georeferencing of historical maps using GIS, as exemplified by the Austrian Military Surveys of Galicia. Geogr. Pol. 2013, 86, 375–390. [Google Scholar] [CrossRef]
- Geri, F.; Giordano, M.; Nucci, A.; Rocchini, D.; Chiarucci, A. Multitemporal analysis of forest landscape in the province of Siena (Italy) using historical maps. Forest 2008, 5, 82–91. [Google Scholar] [CrossRef] [Green Version]
- Raet, J.; Sepp, K.; Kaasik, A. Assessment of changes in forest coverage based on historical maps. For. Stud. 2008, 48, 67–78. [Google Scholar] [CrossRef]
- United Nations Environment Programme/Mediterranean Action Plan and Plan Bleu. State of the Environment and Development in the Mediterranean; UNEP: Nairobi, Kenya, 2020. [Google Scholar]
- Ministerio das Obras Publicas, Commercio e Industria. Carta Agricola e Estatistica Agricola Geral. Organisação e Instrucções; Imprensa Nacional: Lisboa, Portugal, 1887.
- Roque, C.; Duarte, H.; Terrinha, P.; Valadares, V.; Noiva, J.; Cachão, M.; Ferreira, J.; Legoinha, P.; Zitellini, N. Pliocene and Quaternary depositional model of the Algarve margin contourite drifts (Gulf of Cadiz, SW Iberia): Seismic architecture, tectonic control and paleoceanographic insights. Mar. Geol. 2012, 303, 42–62. [Google Scholar] [CrossRef]
- Kopp, E.; Sobral, M.; Soares, T.; Woerner, M. Os Solos do Algarve e as Suas Características; Vista Geral. In Direcção Regional de Agricultura do Algarve; Ministério da Agricultura, Pesca e Alimentação: Faro, Portugal, 1989. [Google Scholar]
- Rivas-Martínez, S.; Penas, Á.; González, T.E.D.; Cantó, P.; del Río, S.; Costa, J.C.; Herrero, L.; Molero, J. Biogeographic Units of the Iberian Peninsula and Baelaric Islands to District Level. A Concise Synopsis. In The Vegetation of the Iberian Peninsula. Plant and Vegetation; Loidi, J., Ed.; Springer: Cham, Switzerland, 2017; Volume 3, pp. 131–188. [Google Scholar] [CrossRef]
- Quinto-Canas, R.; Vila-Viçosa, C.; Paiva-Ferreira, R.; Cano-Ortiz, A.; Pinto-Gomes, C. The Algarve climatophilous vegetation series Portugal: A base document to the planning, management and nature conservation. Acta Bot. Gall. 2017, 159, 289–298. [Google Scholar] [CrossRef]
- Reboredo, F.; Pais, J. Evolution of Forest Cover in Portugal: From the Miocene to the Present. In Forest Context and Policies in Portugal. Present and Future Challenges; Reboredo, F., Ed.; World Forests 19; Springer: Cham, Switzerland, 2014; pp. 1–37. [Google Scholar]
- Silva, L.A.R. Memoria sobre a População e a Agricultura de Portugal desde a Fundação da Monarchia até 1865. Parte 1 (de 1097–1640); Imprensa Nacional: Lisboa, Portugal, 1868.
- Magalhães, J.R. O Algarve Económico Durante o Século XVI, 2nd ed.; Sul Sol e Sal: Olhão, Portugal, 2018; (first edition in 1970). [Google Scholar]
- Natividade, J.V. Subericultura; Ministério da Economia—Direcção Geral dos Serviços Florestais e Aquícolas: Lisboa, Portugal, 1950.
- Mendes, A. A Economia do Sector da Cortiça em Portugal. Evolução das Actividades de Produção e Transformação ao Longo dos Séculos XIX e XX (Documento de Trabalho); Universidade Católica Portuguesa: Porto, Portugal, 2002. [Google Scholar]
- Lains, P.; Sousa, P.S. Estatística e Produção Agrícola em Portugal, 1848–1914. Análise Soc. 1998, 149, 935–968. Available online: http://analisesocial.ics.ul.pt/documentos/1221844503Z3dSG4pz7St47GS7.pdf (accessed on 21 May 2020).
- Wu, J. Scale and Scaling: A Cross-Disciplinary Perspective. In Key Topics in Landscape Ecology; Wu, J., Hobbs, R.J., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; pp. 115–142. [Google Scholar]
- Radich, M.C.; Alves, A.A.M. Dois Séculos da Floresta em Portugal; CELPA—Associação da Indústria Papeleira: Lisboa, Portugal, 2000. [Google Scholar]
- Feio, M. A Evolução da Agricultura do Alentejo Meridional. As Cartas Agrícolas de G. Pery. As Difíceis Perspectivas Actuais na Comunidade Europeia; Edições Colibri: Lisboa, Portugal, 1998. [Google Scholar]
- Loureiro, N.S. As Pranchetas Corográfico-Agrícolas Preparatórias da Carta Agrícola e Florestal de Portugal em 1910 Relativas ao Algarve: Uma Fonte Fundamental de Informação para a História do Uso e Ocupação do Solo na Região Algarvia. In Proceedings of the VIII Simpósio Luso-Brasileiro de Cartografia Histórica, Chaves, Portugal, 28–30 October 2019. [Google Scholar]
- Lema, P.C. Fontes Para o Estudo da Agricultura em Portugal. Finisterra Rev. Port. De Geogr. 1971, 7, 131–141. [Google Scholar] [CrossRef] [Green Version]
- SNIG. Carta de Uso e Ocupação do Solo. 1995. Available online: Snig.dgterritorio.gov.pt/rndg/srv/por/catalog.search#/metadata/e2049ec4-0ea8-4211-bf62-64a9135777cd (accessed on 21 May 2020).
- Di Gregorio, A.; Jansen, L.J.M. Land Cover Classification Systems (LCCS): Classification Concepts and User Manual; FAO: Rome, Italy, 1998. [Google Scholar]
- Direção-Geral do Território, Especificações Técnicas da Carta de Uso e Ocupação do Solo de Portugal Continental Para 1995, 2007, 2010 e 2015; Relatório Técnico: Lisboa, Portugal, 2018.
- Direção-Geral do Território. Especificações Técnicas da Carta de Uso e Ocupação do Solo (COS) de Portugal Continental Para 2018; Relatório Técnico: Lisboa, Portugal, 2019.
- Sarmento, P.; Monteiro, G.; Marcelino, F.; Igreja, C.; Caetano, M. Avaliação da Exatidão Temática das Cartas de Uso e Ocupação do Solo para Portugal Continental COS1995v1.0, COS2007v2.0 e COS2010v1.0. Direção-Geral do Território: Lisboa, Portugal. 2016, p. 70. Available online: http://mapas.dgterritorio.pt/atom-dgt/pdf-cous/COS2007/Avaliacao_da_Exatidao_Tematica_COS.pdf (accessed on 19 May 2020).
- CORINE. Land Cover Nomenclature Guidelines. Available online: Land.copernicus.eu/user-corner/technical-library/corine-land-cover-nomenclature-guidelines/html (accessed on 21 May 2020).
- Fuchs, R.; Herold, M.; Verburg, P.H.; Clevers, J.G.P.W. A high-resolution and harmonized model approach for reconstructing and analysing historical land changes in Europe. Biogeosciences 2013, 10, 1543–1559. [Google Scholar] [CrossRef] [Green Version]
- Verburg, P.H.; Asselen, S.V.; Zanden, E.H.V.D.; Stehfest, E. The representation of landscapes in global scale assessments of environmental change. Landsc. Ecol. 2013, 28, 1067–1080. [Google Scholar] [CrossRef] [Green Version]
- Calabrese, J.M.; Fagan, W.F. A comparison-shopper’s guide to connectivity metrics. Front. Ecol. Environ. 2004, 2, 529–536. [Google Scholar] [CrossRef]
- Weinholtz, F.A.B. Memoria Sobre a Economia Rural da 9.ª Região Agronómica; Typ. Burocratica: Tavira, Portugal, 1891. [Google Scholar]
- Rodrigues, J.M.V. O Algarve e a Grande Guerra. A Questão das Subsistências (1914–1918); Sul, Sol e Sal: Olhão, Portugal, 2019. [Google Scholar]
- Cabreira, T. O Algarve Economico; Imprensa Libanio da Silva: Lisboa, Portugal, 1918. [Google Scholar]
- Loureiro, N.S. Sobreiros, Azinheiras, Pinheiros e Eucaliptos no Algarve, na década de 1950. Contributos cartográficos para a história do uso florestal e agro-florestal do solo no Algarve. Silva Lusit. 2018, 26, 77–113. [Google Scholar]
- Pais, J.M.; Lima, A.M.V.; Baptista, J.F.; Jesus, M.F.M.; Gameiro, M.M. Elementos para a história do fascismo nos campos: A Campanha do Trigo: 1928–1938 (II). Análise Soc. 1978, 14, 321–389. Available online: http://analisesocial.ics.ul.pt/documentos/1223989053Q5hNW8wm8Db11DB9.pdf (accessed on 19 May 2020).
- Saraiva, T. Fascist Labscapes: Geneticists, Wheat, and the Landscapes of Fascism in Italy and Portugal. Hist. Stud. Nat. Sci. 2010, 40, 457–498. [Google Scholar] [CrossRef] [Green Version]
- Rolo, J.A.C.; Coelho, I.S. A(s) Agricultura(s) Algarvia(s); Contributo para a Sua Caracterização no Início dos Anos 80; Comissão de Coordenação da Região do Algarve: Faro, Portugal, 1988.
- Melo, F.P.; Pinto, S.R.; Brancalion, P.H.; Castro, P.S.; Rodrigues, R.R.; Aronson, J.; Tabarelli, M. Priority setting for scaling-up tropical forest restoration projects: Early lessons from the Atlantic Forest Restoration Pact. Environ. Sci. Policy 2013, 33, 395–404. [Google Scholar] [CrossRef]
- Barlow, J.; Lennox, G.D.; Ferreira, J.; Berenguer, E.; Lees, A.C.; Nally, R.M.; Gardner, T.A. Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature 2016, 535, 144–147. [Google Scholar] [CrossRef] [Green Version]
- Moilanen, A.; Nieminen, M. Simple connectivity measures in spatial ecology. Ecology 2002, 83, 1131–1145. [Google Scholar] [CrossRef]
- Sánchez-Díaz, B.; Mata-Zayas, E.E. Remote sensing as indispensable technology in ecology to support the protection of biodiversity: A review. Int. J. Conserv. Sci. 2019, 10, 811–820. Available online: http://ijcs.ro/public/IJCS-19-73_Sanchez.pdf (accessed on 21 July 2021).
- García-Álvarez, D.; Lloyd, C.D.; Delden, H.V.; Camacho-Olmedo, M.T. Thematic resolution influence in spatial analysis. An application to Land Use Cover Change (LUCC) modelling calibration. Comput. Environ. Urban Syst. 2019, 78, 101375. [Google Scholar] [CrossRef]
- Wadoux, A.; Heuvelink, G.; de Bruin, S.; Brus, D.J. Spatial cross-validation is not the right way to evaluate map accuracy. Ecol. Model. 2021, 457, 109692. [Google Scholar] [CrossRef]
Species | Land Use-Cover Type | Cover-Vegetation Type |
---|---|---|
Cork oak (Quercus suber) | agroforestry lands (AFL) with cork oak | agriculture, possibly also with semi-natural areas, with cork-oak |
agriculture, possibly also with semi-natural areas, with cork and holm oaks | ||
cork-oak forests | cork-oak forests (sobreiral) | |
cork oak in forests with other broadleaf and/or coniferous trees | ||
open cork-oak forests, possibly also with other forest species | ||
non-dominant cork oak in forests with other broadleaf and/or coniferous trees | ||
Holm oak (Q. rotundifolia) | agroforestry lands (AFL) with holm oaks | agriculture, possibly also with semi-natural areas, with holm-oak |
agriculture, possibly also with semi-natural areas, with cork and holm oaks | ||
holm-oak forests | holm-oak forests (azinhal) | |
holm oaks in forests with other broadleaf and/or coniferous trees | ||
open holm-oak forests, possibly also with other forest species | ||
non-dominant holm oaks in forest with other broadleaf and/or coniferous trees |
Initials | Designation | Units | Meaning |
---|---|---|---|
NP | number of patches | number | The total number of oak patches in the regional landscape |
PA | patch area | km2 | The average oak patch area |
PTA | patch total area | km2 | The sum of the oak patch areas |
PP | patch perimeter | km | The average oak patch perimeter |
IPD | inter-patches distance | km | The average linear distance between the geometric centers of two nearest neighbor patches |
PD | patch distribution across the landscape | number | The number of 100 km2 grid squares from the regional landscape with oaks patches 100 |
PCN | patch density | number/grid | The average number of oak patches per occupied km2 grid squares |
PCA | patch clustering | km2/grid | The average of the total area cover by oak patches per occupied 100 km2 grid squares |
1890s–1900s | 1950s | 1995 | 2018 | |
---|---|---|---|---|
Cork oak (Q. suber): Total | 259.95 | 485.62 | 748.41 | 760.22 |
Cork-oak forests | 211.18 | 379.17 | 705.70 | 721.66 |
Cork-oak forests | 74.40 | 234.05 | 662.91 | 721.66 |
with other broadleaf and/or coniferous | 2.80 | 71.80 | ||
Open | 120.52 | 24.50 | 42.79 | |
Not dominant | 13.46 | 48.81 | ||
Agroforestry Lands with cork oak | 48.77 | 106.45 | 42.71 | 38.56 |
AFL with cork oak | 25.00 | 105.20 | 28.30 | 24.30 |
AFL with cork and holm oaks | 23.77 | 1.25 | 14.41 | 14.27 |
Holm oak (Q. rotundifolia): Total | 169.33 | 196.96 | 277.75 | 256.82 |
Holm-oak forests | 121.60 | 84.39 | 222.10 | 207.64 |
Holm-oak forests | 98.62 | 65.25 | 215.83 | 207.64 |
with other broadleaf and/or coniferous | 7.81 | 2.37 | ||
Open | 7.71 | 0.65 | 6.27 | |
Not dominant | 7.46 | 16.11 | ||
Agroforestry Lands with holm oak | 47.73 | 112.58 | 55.66 | 49.17 |
AFL with holm oak | 23.96 | 111.32 | 41.25 | 34.91 |
AFL with cork and holm oaks | 23.77 | 1.25 | 14.41 | 14.27 |
Species | Metrics | 1900s | 1950s | 1995 | 2018 |
---|---|---|---|---|---|
Cork oak | NP (number of patches) | 596 | 901 | 2761 | 2279 |
PA (patch average area, km2) | 0.44 | 0.54 | 0.27 | 0.33 | |
PTA (patch total area, km2) | 259.95 | 485.64 | 748.41 | 760.22 | |
PP (patch average perimeter, km) | 3.35 | 4.69 | 2.85 | 3.28 | |
IPD (interpaches average distance, km) | 0.91 | 0.83 | 0.50 | 0.57 | |
PD (number of 100 km2 grid squares with cork oak) | 38 | 51 | 60 | 62 | |
PCN (average number cork oak patches/grid square) | 17.9 | 20.8 | 50.9 | 41.1 | |
PCA (average total cork oak area km2/grid square) | 6.84 | 9.52 | 12.47 | 12.26 | |
Holm oak | NP (number of patches) | 627 | 467 | 1748 | 1265 |
PA (patch average area, km2) | 0.27 | 0.42 | 0.16 | 0.20 | |
PTA (patch total area, km2) | 169.33 | 196.97 | 277.75 | 256.82 | |
PP (patch average perimeter, km) | 2.33 | 3.66 | 2.19 | 2.61 | |
IPD (interpaches average distance, km) | 0.73 | 1.06 | 0.47 | 0.58 | |
PD (number of 100 km2 grid squares with holm oak) | 42 | 41 | 46 | 44 | |
PCN (average number holm oak patches/grid square) | 16.7 | 13.5 | 41.7 | 31.5 | |
PCA (average total holm oak area km2/grid square) | 4.03 | 4.80 | 6.04 | 5.84 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loureiro, N.d.S.; Fernandes, M.J. Long-Term Changes in Cork Oak and Holm Oak Patches Connectivity. The Algarve, Portugal, a Mediterranean Landscape Case Study. Environments 2021, 8, 131. https://doi.org/10.3390/environments8120131
Loureiro NdS, Fernandes MJ. Long-Term Changes in Cork Oak and Holm Oak Patches Connectivity. The Algarve, Portugal, a Mediterranean Landscape Case Study. Environments. 2021; 8(12):131. https://doi.org/10.3390/environments8120131
Chicago/Turabian StyleLoureiro, Nuno de Santos, and Maria Jacinta Fernandes. 2021. "Long-Term Changes in Cork Oak and Holm Oak Patches Connectivity. The Algarve, Portugal, a Mediterranean Landscape Case Study" Environments 8, no. 12: 131. https://doi.org/10.3390/environments8120131
APA StyleLoureiro, N. d. S., & Fernandes, M. J. (2021). Long-Term Changes in Cork Oak and Holm Oak Patches Connectivity. The Algarve, Portugal, a Mediterranean Landscape Case Study. Environments, 8(12), 131. https://doi.org/10.3390/environments8120131