Microbial Communities in Methane Cycle: Modern Molecular Methods Gain Insights into Their Global Ecology
Abstract
:1. Introduction
- New generation (high throughput) sequencing (NGS);
- Real-time PCR, or qPCR (RT-PCR);
- DNA-stable isotope probing (DNA-SIP).
Methanogenesis Pathway | Biochemical Reaction | ∆G0′, kJ/mol CH4 | Taxa |
---|---|---|---|
Acetoclastic | CH3COOˉ + H2O → CH4 + HCO3ˉ | −31 | Phylum Euryarchaeota, order Methanosarcinales (genera Methanosarcina, Methanothrix (Methanosaeta)) |
Hydrogenotrophic | 4H2 + HCO3ˉ + H+ → CH4 + 3H2O 4HCOOˉ + H+ + H2O → CH4 + 3HCO3ˉ | −135 −145 | Phylum Euryarchaeota, orders Methanosarcinales, Methanobacteriales, Methanococcales, Methanomicrobiales, Methanopyrales, Methanocellales |
Methylotrophic | 4CH3OH → 3CH4 + HCO3ˉ + H2O + H+ 4CH3NH2 + 2H2O → 3CH4 + CO2 + 4NH3 | −104 −75 | Order Methanosarcinales (family Methanosarcinaceae) |
Methyl -reducing | CH3OH + H2 → CH4 + H2O | −113 | Order Methanobacteriales, Methanomassiliicoccales |
Methane Oxidation Pathway | Biochemical Reaction | ∆G0′, kJ/mol CH4 | Taxa |
Aerobic methane oxidation | CH4 + 2O2 → CO2 + 2H2O CH4 + O2 + 2e− + 2H+ → CH3OH + H2O | −778 −322 (sMMO) −284 (pMMO) | Type I (phylum γ-proteobacteria, order Methylococcales, family Methylococcaceae) |
Type II (phylum α-proteobacteria, families Methylocystaceae, Beijerinckiaceae) | |||
Type III (phylum Verrucomicrobia, class Methylacidiphilum) | |||
Anaerobic methane oxidation | CH4 + SO42− → HCO3ˉ + HSˉ + H2O | −16.6 | anaerobic methanotrophic archaea (ANME, clusters 1—order Methanosarcinales, 2—order Methanomicrobiales, 3—order Methanococcoides) |
Nitrite-dependant methane oxidation (N-DAMO) | 3CH4 + 8NO2ˉ + 8H+ → 3CO2 + 4N2 + 10H2O | −928 | Candidatus phylum NC10 (Methylomirabilis oxyfera) Archaea: Candidatus “Methanoperedens nitroreducens” |
2. Natural Sources of Methane
2.1. Soils
2.2. Wetlands
2.3. Aquatic Environments
3. Anthropogenic Sources of Methane
3.1. Rice Fields
3.2. Livestock Animals
3.3. Landfills
3.4. Wastewater Treatment Systems
4. Methanogenic and Methanotrophic Communities in Modeling the Methane Cycle
5. Conclusions and Outlook
Funding
Conflicts of Interest
References
- Burney, J.; Ramanathan, V. Recent climate and air pollution impacts on indian agriculture. Proc. Natl. Acad. Sci. USA 2014, 111, 16319–16324. [Google Scholar] [CrossRef] [Green Version]
- Nazaries, L.; Murrell, J.C.; Millard, P.; Baggs, L.; Singh, B.K. Methane, microbes and models: Fundamental understanding of the soil methane cycle for future predictions. Environ. Microbiol. 2013, 15, 2395–2417. [Google Scholar] [CrossRef]
- Sajjad, F.; Noreen, U.; Zaman, K. Climate change and air pollution jointly creating nightmare for tourism industry. Environ. Sci. Pollut. Res. 2014, 21, 12403–12418. [Google Scholar] [CrossRef]
- Whalen, S.C. Biogeochemistry of Methane Exchange between Natural Wetlands and the Atmosphere. Environ. Eng. Sci. 2005, 22, 73–94. [Google Scholar] [CrossRef]
- Karakurt, I.; Aydin, G.; Aydiner, K. Sources and mitigation of methane emissions by sectors: A critical review. Renew. Energy 2012, 39, 40–48. [Google Scholar] [CrossRef]
- Aydin, G.; Karakurt, I.; Aydiner, K. Evaluation of geologic storage options of CO2: Applicability, cost, storage capacity and safety. Energy Policy 2010, 38, 5072–5080. [Google Scholar] [CrossRef]
- Jarraud, M.; Steiner, A. Climate Change 2014 Synthesis Report; IPCC: Geneva, Switzerland, 2015; Volume 9781107025, ISBN 9781139177245. [Google Scholar]
- Ehhalt, D.; Prather, M. Atmospheric Chemistry and Greenhouse Gases. In Climate Change 2001: Impacts, Adaptation and Vulnerability; Cambridge University Press: New York, NY, USA, 2001; pp. 239–287. [Google Scholar]
- World Meteorological Organization. WMO Statement on the State of the Global Climate in 2016; World Meteorological Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Nisbet, E.G.; Dlugokencky, E.J.; Bousquet, P. Methane on the Rise—Again. Science 2014, 343, 493–495. [Google Scholar] [CrossRef] [Green Version]
- Turner, A.J.; Frankenberg, C.; Kort, E.A. Interpreting contemporary trends in atmospheric methane. Proc. Natl. Acad. Sci. USA 2019, 116, 2805–2813. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharyya, P.; Dash, P.K.; Swain, C.K.; Padhy, S.R.; Roy, K.S.; Neogi, S.; Berliner, J.; Adak, T.; Pokhare, S.S.; Baig, M.J.; et al. Mechanism of plant mediated methane emission in tropical lowland rice. Sci. Total Environ. 2019, 651, 84–92. [Google Scholar] [CrossRef]
- Flanagan, L.B.; Nikkel, D.J.; Scherloski, L.M.; Tkach, R.E.; Smits, K.M.; Selinger, L.B.; Rood, S.B. Multiple processes contribute to methane emission in a riparian cottonwood forest ecosystem. N. Phytol. 2020, 1970–1982. [Google Scholar] [CrossRef]
- Tang, S.; Wang, K.; Xiang, Y.; Tian, D.; Wang, J.; Liu, Y.; Cao, B.; Guo, D.; Niu, S. Heavy grazing reduces grassland soil greenhouse gas fluxes: A global meta-analysis. Sci. Total Environ. 2019, 654, 1218–1224. [Google Scholar] [CrossRef]
- Plain, C.; Ndiaye, F.K.; Bonnaud, P.; Ranger, J.; Epron, D. Impact of vegetation on the methane budget of a temperate forest. New Phytol. 2019, 221, 1447–1456. [Google Scholar] [CrossRef] [Green Version]
- Houghton, J.; Ding, Y.; Griggs, D.; Noguer, M.; van der Linden, P.; Dai, X.; Maskell, K.; Johnson, C. Climate Change 2001: The Scientific Basis; IPCC: Geneva, Switzerland, 2001; ISBN 0309075742. [Google Scholar]
- Evans, P.N.; Parks, D.H.; Chadwick, G.L.; Robbins, S.J.; Orphan, V.J.; Golding, S.D.; Tyson, G.W. Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. Science 2015, 350, 434–438. [Google Scholar] [CrossRef] [Green Version]
- Borrel, G.; Adam, P.S.; Gribaldo, S. Methanogenesis and the wood–ljungdahl pathway: An ancient, versatile, and fragile association. Genome Biol. Evol. 2016, 8, 1706–1711. [Google Scholar] [CrossRef] [Green Version]
- Vanwonterghem, I.; Evans, P.N.; Parks, D.H.; Jensen, P.D.; Woodcroft, B.J.; Hugenholtz, P.; Tyson, G.W. Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota. Nat. Microbiol. 2016, 1, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Kallistova, A.Y.; Merkel, A.Y.; Tarnovetskii, I.Y.; Pimenov, N.V. Methane formation and oxidation by prokaryotes. Microbiology (Russian Fed.) 2017, 86, 671–691. [Google Scholar] [CrossRef]
- Bräuer, S.L.; Basiliko, N.; Siljanen, H.M.P.; Zinder, S.H. Methanogenic archaea in peatlands. FEMS Microbiol. Lett. 2020, 367, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Cicerone, R.J.; Oremland, R.S. Biogeochemical aspects of atmospheric methane. Global Biogeochem. Cycles 1988, 2, 299–327. [Google Scholar] [CrossRef] [Green Version]
- Saengkerdsub, S.; Ricke, S.C. Ecology and characteristics of methanogenic archaea in animals and humans. Crit. Rev. Microbiol. 2014, 40, 97–116. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Whitman, W.B. Metabolic, Phylogenetic, and Ecological Diversity of the Methanogenic Archaea. Ann. N. Y. Acad. Sci. 2008, 1125, 171–189. [Google Scholar] [CrossRef]
- Sorokin, D.Y.; Makarova, K.S.; Abbas, B.; Ferrer, M.; Golyshin, P.N.; Galinski, E.A.; Ciordia, S.; Mena, M.C.; Merkel, A.Y.; Wolf, Y.I.; et al. Discovery of extremely halophilic, methyl-reducing euryarchaea provides insights into the evolutionary origin of methanogenesis. Nat. Microbiol. 2017, 2. [Google Scholar] [CrossRef] [Green Version]
- Repeta, D.J.; Ferrón, S.; Sosa, O.A.; Johnson, C.G.; Repeta, L.D.; Acker, M.; Delong, E.F.; Karl, D.M. Marine methane paradox explained by bacterial degradation of dissolved organic matter. Nat. Geosci. 2016, 9, 884–887. [Google Scholar] [CrossRef]
- Wang, Q.; Dore, J.E.; McDermott, T.R. Methylphosphonate metabolism by Pseudomonas sp. populations contributes to the methane oversaturation paradox in an oxic freshwater lake. Environ. Microbiol. 2017, 19, 2366–2378. [Google Scholar] [CrossRef]
- Damm, E.; Helmke, E. Methane production in aerobic oligotrophic surface water in the central Arctic Ocean. Biogeosci. Discuss. 2009, 6, 10355–10379. [Google Scholar] [CrossRef] [Green Version]
- Bižić-Ionescu, M.; Ionescu, D.; Günthel, M.; Tang, K.W.; Grossart, H.-P. Oxic Methane Cycling: New Evidence for Methane Formation in Oxic Lake Water. In Biogenesis of Hydrocarbons; Springer International Publishing: Cham, Switzerland, 2018; pp. 1–22. ISBN 9783319531144. [Google Scholar]
- Lenhart, K.; Klintzsch, T.; Langer, G.; Nehrke, G.; Bunge, M.; Schnell, S.; Keppler, F. Evidence for methane production by the marine algae Emiliania huxleyi. Biogeosciences 2016, 13, 3163–3174. [Google Scholar] [CrossRef] [Green Version]
- Klintzsch, T.; Langer, G.; Nehrke, G.; Wieland, A.; Lenhart, K.; Keppler, F. Methane production by three widespread marine phytoplankton species: Release rates, precursor compounds, and relevance for the environment. Biogeosci. Discuss. 2019, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Bižić, M.; Klintzsch, T.; Ionescu, D.; Hindiyeh, M.Y.; Günthel, M.; Muro-Pastor, A.M.; Eckert, W.; Urich, T.; Keppler, F.; Grossart, H.P. Aquatic and terrestrial cyanobacteria produce methane. Sci. Adv. 2020, 6. [Google Scholar] [CrossRef] [Green Version]
- Houghton, K.M.; Carere, C.R.; Stott, M.B.; McDonald, I.R. Thermophilic methanotrophs: In hot pursuit. FEMS Microbiol. Ecol. 2019, 95. [Google Scholar] [CrossRef] [PubMed]
- Trotsenko, Y.A.; Murrell, J.C. Metabolic Aspects of Aerobic Obligate Methanotrophy. Adv. Appl. Microbiol. 2008, 63, 183–229. [Google Scholar]
- Pol, A.; Heijmans, K.; Harhangi, H.R.; Tedesco, D.; Jetten, M.S.M.; Op den Camp, H.J.M. Methanotrophy below pH 1 by a new Verrucomicrobia species. Nature 2007, 450, 874–878. [Google Scholar] [CrossRef]
- Knief, C. Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker. Front. Microbiol. 2015, 6. [Google Scholar] [CrossRef] [Green Version]
- Dedysh, S.N.; Knief, C. Diversity and Phylogeny of Described Aerobic Methanotrophs. In Methane Biocatalysis: Paving the Way to Sustainability; Kalyuzhnaya, M.G., Xing, X.-H., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 17–42. ISBN 9783319748665. [Google Scholar]
- Khadem, A.F.; Pol, A.; Wieczorek, A.; Mohammadi, S.S.; Francoijs, K.-J.; Stunnenberg, H.G.; Jetten, M.S.M.; Op den Camp, H.J.M. Autotrophic Methanotrophy in Verrucomicrobia: Methylacidiphilum fumariolicum SolV Uses the Calvin-Benson-Bassham Cycle for Carbon Dioxide Fixation. J. Bacteriol. 2011, 193, 4438–4446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knittel, K.; Boetius, A. Anaerobic oxidation of methane: Progress with an unknown process. Annu. Rev. Microbiol. 2009, 63, 311–334. [Google Scholar] [CrossRef]
- Aronson, E.L.; Allison, S.D.; Helliker, B.R. Environmental impacts on the diversity of methane-cycling microbes and their resultant function. Front. Microbiol. 2013, 4, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Cappelletti, M.; Ghezzi, D.; Zannoni, D.; Capaccioni, B.; Fedi, S. Diversity of Methane-Oxidizing Bacteria in Soils from “Hot Lands of Medolla” (Italy) Featured by Anomalous High-Temperatures and Biogenic CO2 Emission. Microbes Environ. 2016, 31, 369–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crevecoeur, S.; Vincent, W.F.; Comte, J.; Lovejoy, C. Bacterial community structure across environmental gradients in permafrost thaw ponds: Methanotroph-rich ecosystems. Front. Microbiol. 2015, 6. [Google Scholar] [CrossRef] [Green Version]
- Cui, M.; Ma, A.; Qi, H.; Zhuang, X.; Zhuang, G. Anaerobic oxidation of methane: An “active” microbial process. MicrobiologyOpen 2015, 4, 1–11. [Google Scholar] [CrossRef]
- Esson, K.C.; Lin, X.; Kumaresan, D.; Chanton, J.P.; Murrell, J.C.; Kostka, J.E. Alpha- and Gammaproteobacterial Methanotrophs Codominate the Active Methane-Oxidizing Communities in an Acidic Boreal Peat Bog. Appl. Environ. Microbiol. 2016, 82, 2363–2371. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Ni, B.J.; Sharma, K.R.; Yuan, Z. Methane emission from sewers. Sci. Total Environ. 2015, 524–525, 40–51. [Google Scholar] [CrossRef]
- Lüke, C.; Frenzel, P.; Ho, A.; Fiantis, D.; Schad, P.; Schneider, B.; Schwark, L.; Utami, S.R. Macroecology of methane-oxidizing bacteria: The β-diversity of pmoA genotypes in tropical and subtropical rice paddies. Environ. Microbiol. 2014, 16, 72–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oshkin, I.Y.; Wegner, C.E.; Lükec, C.; Glagolev, M.V.; Filippov, I.V.; Pimenov, N.V.; Liesack, W.; Dedysha, S.N. Gammaproteobacterial Methanotrophs Dominate Cold Methane Seeps in Floodplains of West Siberian Rivers. Appl. Environ. Microbiol. 2014, 80, 5944–5954. [Google Scholar] [CrossRef] [Green Version]
- Oswald, K.; Milucka, J.; Brand, A.; Littmann, S.; Wehrli, B.; Kuypers, M.M.M.; Schubert, C.J. Light-dependent aerobic methane oxidation reduces methane emissions from seasonally stratified lakes. PLoS ONE 2015, 10, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Amann, R.I.; Ludwig, W.; Schleifer, K.H.; Amann, R.I.; Ludwig, W. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 1995, 59, 143–169. [Google Scholar] [CrossRef]
- Dubey, S.K. Microbial ecology of methane emission in rice agroecosystem: A review. Appl. Ecol. Environ. Res. 2005, 3, 1–27. [Google Scholar] [CrossRef]
- Sabrekov, A.F.; Semenov, M.V.; Terent’eva, I.E.; Litti, Y.V.; Il’yasov, D.V.; Glagolev, M.V. The link between Soil Methane Oxidation Rate and Abundance of Methanotrophs Estimated by Quantitative PCR. Microbiology (Russian Fed.) 2020, 89, 182–191. [Google Scholar] [CrossRef]
- Siniscalchi, L.A.B.; Vale, I.C.; Dell’Isola, J.; Chernicharo, C.A.; Calabria Araujo, J. Enrichment and activity of methanotrophic microorganisms from municipal wastewater sludge. Environ. Technol. (UK) 2015, 36, 1563–1575. [Google Scholar] [CrossRef]
- Laloui-Carpentier, W.; Li, T.; Vigneron, V.; Mazéas, L.; Bouchez, T. Methanogenic diversity and activity in municipal solid waste landfill leachates. Antonie Van Leeuwenhoek Int. J. Gen. Mol. Microbiol. 2006, 89, 423–434. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Cai, C.; Guo, J.; Lu, W.; Yuan, Z.; Hu, S. Different clusters of Candidatus ‘Methanoperedens nitroreducens’-like archaea as revealed by high-throughput sequencing with new primers. Sci. Rep. 2018, 8, 2–9. [Google Scholar] [CrossRef]
- Le Mer, J.; Roger, P. Production, oxidation, emission and consumption of methane by soils: A review. Eur. J. Soil Biol. 2001, 37, 25–50. [Google Scholar] [CrossRef]
- Dalal, R.C.; Allen, D.E.; Livesley, S.J.; Richards, G. Magnitude and biophysical regulators of methane emission and consumption in the australian agricultural, forest, and submerged landscapes: A review. Plant Soil 2008, 309, 43–76. [Google Scholar] [CrossRef]
- Semenov, M.V.; Kravchenko, I.K.; Semenov, V.M.; Kuznetsova, T.V.; Dulov, L.E.; Udal’tsov, S.N.; Stepanov, A.L. Carbon dioxide, methane, and nitrous oxide fluxes in soil catena across the right bank of the Oka River (Moscow oblast). Eurasian Soil Sci. 2010, 43, 541–549. [Google Scholar] [CrossRef]
- Semenov, M.V.; Manucharova, N.A.; Krasnov, G.S.; Nikitin, D.A.; Stepanov, A.L. Biomass and Taxonomic Structure of Microbial Communities in Soils of the Right-Bank Basin of the Oka River. Eurasian Soil Sci. 2019, 52, 971–981. [Google Scholar] [CrossRef]
- Whalen, S.C.; Reeburgh, W.S. A methane flux transect along the trans-Alaska pipeline haul road. Tellus Ser. B 1990, 42B, 237–249. [Google Scholar] [CrossRef]
- Striegl, R.G.; McConnaughey, T.A.; Thorstenson, D.C.; Weeks, E.P.; Woodward, J.C. Consumption of atmospheric methane by desert soils. Nature 1992, 357, 145–147. [Google Scholar] [CrossRef]
- Bender, M.; Conrad, R. Effect of CH4 concentrations and soil conditions on the induction of CH4 oxidation activity. Soil Biol. Biochem. 1995, 27, 1517–1527. [Google Scholar] [CrossRef]
- Brandt, F.B.; Martinson, G.O.; Pommerenke, B.; Pump, J.; Conrad, R. Drying effects on archaeal community composition and methanogenesis in bromeliad tanks. FEMS Microbiol. Ecol. 2015, 91, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Lim, K.L.H.; Pancost, R.D.; Hornibrook, E.R.C.; Maxfield, P.J.; Evershed, R.P. Archaeol: An indicator of methanogenesis in water-saturated soils. Archaea 2012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boeckx, P.; Van Cleemput, O.; Villaralvo, I. Methane oxidation in soils with different textures and land use. Nutr. Cycl. Agroecosyst. 1997, 49, 91–95. [Google Scholar] [CrossRef]
- Bowden, R.D.; Newkirk, K.M.; Rullo, G.M. Carbon dioxide and methane fluxes by a forest soil under laboratory-controlled moisture and temperature conditions. Soil Biol. Biochem. 1998, 30, 1591–1597. [Google Scholar] [CrossRef] [Green Version]
- Dijkstra, F.A.; Morgan, J.A.; Von Fischer, J.C.; Follett, R.F. Elevated CO2 and warming effects on CH4 uptake in a semiarid grassland below optimum soil moisture. J. Geophys. Res. Biogeosci. 2011, 116, 1–9. [Google Scholar] [CrossRef]
- Von Fischer, J.C.; Butters, G.; Duchateau, P.C.; Thelwell, R.J.; Siller, R. In situ measures of methanotroph activity in upland soils: A reactiondiffusion model and field observation of water stress. J. Geophys. Res. Biogeosci. 2009, 114, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Del Grosso, S.J.; Parton, W.J.; Mosier, A.R.; Ojima, D.S.; Potter, C.S.; Brumme, R.; Dobbie, P.M.C.K.; Smith, K.A. General CH4 oxidation model and comparisons of CH4 oxidation in natural and managed systems. Glob. Biogeochem. Cycles 2000, 14, 999–1019. [Google Scholar] [CrossRef]
- Gulledge, J.; Schimel, J.P. Moisture control over atmospheric CH4 consumption and CO2 production in diverse Alaskan soils. Soil Biol. Biochem. 1998, 30, 1127–1132. [Google Scholar] [CrossRef]
- Torn, M.S.; Harte, J. Methane consumption by montane soils: Implications for positive and negative feedback with climatic change. Biogeochemistry 1996, 32, 53–67. [Google Scholar] [CrossRef]
- Moore, T.R.; Dalva, M. The influence of temperature and water table position on carbon dioxide and methane emissions from laboratory columns of peatland soils. J. Soil Sci. 1993, 44, 651–664. [Google Scholar] [CrossRef]
- Morrissey, L.A.; Livingston, G.P. Methane emissions from Alaska Arctic tundra: An assessment of local spatial variability. J. Geophys. Res. 1992, 97, 16661. [Google Scholar] [CrossRef]
- Angel, R.; Conrad, R. In situ measurement of methane fluxes and analysis of transcribed particulate methane monooxygenase in desert soils. Environ. Microbiol. 2009, 11, 2598–2610. [Google Scholar] [CrossRef]
- Sabrekov, A.F.; Runkle, B.R.K.; Glagolev, M.V.; Terentieva, I.E.; Stepanenko, V.M.; Kotsyurbenko, O.R.; Maksyutov, S.S.; Pokrovsky, O.S. Variability in methane emissions from West Siberia’s shallow boreal lakes on a regional scale and its environmental controls. Biogeosciences 2017, 14, 3715–3742. [Google Scholar] [CrossRef] [Green Version]
- Castro, M.S.; Steudler, P.A.; Melillo, J.M.; Aber, J.D.; Bowden, R.D. Factors controlling atmospheric methane consumption by temperate forest soils. Glob. Biogeochem. Cycles 1995, 9, 1–10. [Google Scholar] [CrossRef]
- Hanson, R.S.; Hanson, T.E. Methanotrophic bacteria. Microbiol. Rev. 1996, 60, 439–471. [Google Scholar] [CrossRef]
- Semrau, J.D.; Dispirito, A.A.; Yoon, S. Methanotrophs and copper. FEMS Microbiol. Rev. 2010, 34, 496–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casper, P.; Chan, O.C.; Furtado, A.L.S.; Adams, D.D. Methane in an acidic bog lake: The influence of peat in the catchment on the biogeochemistry of methane. Aquat. Sci. 2003, 65, 36–46. [Google Scholar] [CrossRef]
- Horn, M.A.; Matthies, C.; Küsel, K.; Schramm, A.; Drake, H.L. Hydrogenotrophic methanogenesis by moderately acid-tolerant methanogens of a methane-emitting acidic peat. Appl. Environ. Microbiol. 2003, 69, 74–83. [Google Scholar] [CrossRef] [Green Version]
- Glagolev, M.V.; Sabrekov, A.F.; Kleptsova, I.E.; Filippov, I.V.; Lapshina, E.D.; Machida, T.; Maksyutov, S.S. Methane emission from bogs in the subtaiga of Western Siberia: The development of standard model. Eurasian Soil Sci. 2012, 45, 947–957. [Google Scholar] [CrossRef]
- Sabrekov, A.F.; Glagolev, M.V.; Kleptsova, I.E.; Machida, T.; Maksyutov, S.S. Methane emission from mires of the West Siberian taiga. Eurasian Soil Sci. 2013, 46, 1182–1193. [Google Scholar] [CrossRef]
- Bohn, T.J.; Podest, E.; Schroeder, R.; Pinto, N.; McDonald, K.C.; Glagolev, M.; Filippov, I.; Maksyutov, S.; Heimann, M.; Chen, X.; et al. Modeling the large-scale effects of surface moisture heterogeneity on wetland carbon fluxes in the West Siberian Lowland. Biogeosciences 2013, 10, 6559–6576. [Google Scholar] [CrossRef] [Green Version]
- Sorokin, D.Y.; Jones, B.E.; Kuenen, J.G. An obligate methylotrophic, methane-oxidizing Methylomicrobium species from a highly alkaline environment. Extremophiles 2000, 4, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Dedysh, S.N. Methanotrophic bacteria of acidic Sphagnum peat bogs. Microbiology 2002, 71, 638–650. [Google Scholar] [CrossRef]
- Belova, S.E.; Oshkin, I.Y.; Glagolev, M.V.; Lapshina, E.D.; Maksyutov, S.S.; Dedysh, S.N. Methanotrophic bacteria in cold seeps of the floodplains of northern rivers. Microbiology (Russian Fed.) 2013, 82, 743–750. [Google Scholar] [CrossRef]
- Sabrekov, A.F.; Glagolev, M.V.; Fastovets, I.A.; Smolentsev, B.A.; Il’yasov, D.V.; Maksyutov, S.S. Relationship of methane consumption with the respiration of soil and grass-moss layers in forest ecosystems of the southern taiga in Western Siberia. Eurasian Soil Sci. 2015, 48, 841–851. [Google Scholar] [CrossRef]
- Hütsch, B.W. Methane oxidation in arable soil as inhibited by ammonium, nitrite, and organic manure with respect to soil pH. Biol. Fertil. Soils 1998, 28, 27–35. [Google Scholar] [CrossRef]
- Syamsul Arif, M.A.; Houwen, F.; Verstraete, W. Agricultural factors affecting methane oxidation in arable soil. Biol. Fertil. Soils 1996, 21, 95–102. [Google Scholar] [CrossRef]
- Kravchenko, I.K.; Semenov, V.M.; Kuznetsova, T.V.; Dulov, L.E.; Semenova, N.A.; Gal’chenko, V.F.; Boeckx, P.; Cleemput, O. Van Methane oxidation and nitrogen transformations in gray forest soil. Eurasian Soil Sci. 2004, 37, 49–56. [Google Scholar]
- Bodelier, P.L.E.; Frenzel, P. Contribution of methanotrophic and nitrifying bacteria to CH4 and NH4+ oxidation in the rhizosphere of rice plants as determined by new methods of discrimination. Appl. Environ. Microbiol. 1999, 65, 1826–1833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Semenov, V.M.; Kravchenko, I.K.; Kuznetsova, T.V.; Semenova, N.A.; Bykova, S.A.; Dulov, L.E.; Gal’chenko, V.F.; Pardini, G.; Gispert, M.; Boeckx, P.; et al. Seasonal Dynamics of Atmospheric Methane Oxidation in Gray Forest Soils. Microbiology 2004, 73, 356–362. [Google Scholar] [CrossRef]
- McDonald, I.R.; Bodrossy, L.; Chen, Y.; Murrell, J.C. Molecular ecology techniques for the study of aerobic methanotrophs. Appl. Environ. Microbiol. 2008, 74, 1305–1315. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Li, F.; Nie, L. Integrating multiple “omics” analysis for microbial biology: Application and methodologies. Microbiology 2010, 156, 287–301. [Google Scholar] [CrossRef] [Green Version]
- Horgan, R.P.; Kenny, L.C. ‘Omic’ technologies: Genomics, transcriptomics, proteomics and metabolomics. Obstet. Gynaecol. 2011, 13, 189–195. [Google Scholar] [CrossRef]
- Aschenbach, K.; Conrad, R.; Řeháková, K.; Doležal, J.; Janatková, K.; Angel, R. Methanogens at the top of the world: Occurrence and potential activity of methanogens in newly deglaciated soils in high-altitude cold deserts in the Western Himalayas. Front. Microbiol. 2013, 4, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allan, J.; Ronholm, J.; Mykytczuk, N.C.S.; Greer, C.W.; Onstott, T.C.; Whyte, L.G. Methanogen community composition and rates of methane consumption in Canadian High Arctic permafrost soils. Environ. Microbiol. Rep. 2014, 6, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, K.; Praeg, N.; Mutschlechner, M.; Wagner, A.O.; Illmer, P. Abundance and potential metabolic activity of methanogens in well-aerated forest and grassland soils of an alpine region. FEMS Microbiol. Ecol. 2016, 92, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serrano-Silva, N.; Valenzuela-Encinas, C.; Marsch, R.; Dendooven, L.; Alcántara-Hernández, R.J. Changes in methane oxidation activity and methanotrophic community composition in saline alkaline soils. Extremophiles 2014, 18, 561–571. [Google Scholar] [CrossRef] [PubMed]
- Dutaur, L.; Verchot, L.V. A global inventory of the soil CH4 sink. Global Biogeochem. Cycles 2007, 21. [Google Scholar] [CrossRef]
- Sullivan, B.W.; Selmants, P.C.; Hart, S.C. Does dissolved organic carbon regulate biological methane oxidation in semiarid soils? Glob. Change Biol. 2013, 19, 2149–2157. [Google Scholar] [CrossRef]
- Kou, Y.; Li, J.; Wang, Y.; Li, C.; Tu, B.; Yao, M.; Li, X. Scale-dependent key drivers controlling methane oxidation potential in Chinese grassland soils. Soil Biol. Biochem. 2017, 111, 104–114. [Google Scholar] [CrossRef]
- Christiansen, J.R.; Romero, A.J.B.; Jørgensen, N.O.G.; Glaring, M.A.; Jørgensen, C.J.; Berg, L.K.; Elberling, B. Methane fluxes and the functional groups of methanotrophs and methanogens in a young Arctic landscape on Disko Island, West Greenland. Biogeochemistry 2015, 122, 15–33. [Google Scholar] [CrossRef] [Green Version]
- Belova, S.E.; Danilova, O.V.; Ivanova, A.A.; Merkel, A.Y.; Dedysh, S.N. Methane-Oxidizing Communities in Lichen-Dominated Forested Tundra Are Composed Exclusively of High-Affinity USCα Methanotrophs. Microorganisms 2020, 8, 2047. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Malfatti, S.A.; McFarland, J.W.; Anderson, F.E.; Pati, A.; Huntemann, M.; Tremblay, J.; de Rio, T.G.; Waldrop, M.P.; Windham-Myers, L.; et al. Patterns in wetland microbial community composition and functional gene repertoire associated with methane emissions. MBio 2015, 6, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Koffi, E.N.; Bergamaschi, P.; Alkama, R.; Cescatti, A. An observation-constrained assessment of the climate sensitivity and future trajectories of wetland methane emissions. Sci. Adv. 2020, 6. [Google Scholar] [CrossRef] [Green Version]
- Bridgham, S.D.; Cadillo-Quiroz, H.; Keller, J.K.; Zhuang, Q. Methane emissions from wetlands: Biogeochemical, microbial, and modeling perspectives from local to global scales. Glob. Change Biol. 2013, 19, 1325–1346. [Google Scholar] [CrossRef] [PubMed]
- Glagolev, M.V.; Golovatskaya, E.A.; Shnyrev, N.A. Greenhouse gas emission in West Siberia. Contemp. Probl. Ecol. 2008, 1, 136–146. [Google Scholar] [CrossRef]
- Kayranli, B.; Scholz, M.; Mustafa, A.; Hedmark, Å. Carbon storage and fluxes within freshwater wetlands: A critical review. Wetlands 2010, 30, 111–124. [Google Scholar] [CrossRef]
- Laanbroek, H.J. Methane emission from natural wetlands: Interplay between emergent macrophytes and soil microbial processes. A mini-review. Ann. Bot. 2010, 105, 141–153. [Google Scholar] [CrossRef]
- Jaatinen, K.; Fritze, H.; Laine, J.; Laiho, R. Effects of short- and long-term water-level drawdown on the populations and activity of aerobic decomposers in a boreal peatland. Glob. Change Biol. 2007, 13, 491–510. [Google Scholar] [CrossRef]
- Turetsky, M.R.; Treat, C.C.; Waldrop, M.P.; Waddington, J.M.; Harden, J.W.; McGuire, A.D. Short-term response of methane fluxes and methanogen activity to water table and soil warming manipulations in an Alaskan peatland. J. Geophys. Res. Biogeosci. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Yrjälä, K.; Tuomivirta, T.; Juottonen, H.; Putkinen, A.; Lappi, K.; Tuittila, E.-S.; Penttilä, T.; Minkkinen, K.; Laine, J.; Peltoniemi, K.; et al. CH4 production and oxidation processes in a boreal fen ecosystem after long-term water table drawdown. Glob. Change Biol. 2011, 17, 1311–1320. [Google Scholar] [CrossRef] [Green Version]
- Peltoniemi, K.; Laiho, R.; Juottonen, H.; Bodrossy, L.; Kell, D.K.; Minkkinen, K.; Mäkiranta, P.; Mehtätalo, L.; Penttilä, T.; Siljanen, H.M.P.; et al. Responses of methanogenic and methanotrophic communities to warming in varying moisture regimes of two boreal fens. Soil Biol. Biochem. 2016, 97, 144–156. [Google Scholar] [CrossRef]
- Krüger, M.; Treude, T.; Wolters, H.; Nauhaus, K.; Boetius, A. Microbial methane turnover in different marine habitats. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2005, 227, 6–17. [Google Scholar] [CrossRef]
- Blumenberg, M.; Seifert, R.; Michaelis, W. Aerobic methanotrophy in the oxic-anoxic transition zone of the Black Sea water column. Org. Geochem. 2007, 38, 84–91. [Google Scholar] [CrossRef]
- Heintz, M.B.; Mau, S.; Valentine, D.L. Physical control on methanotrophic potential in waters of the Santa Monica Basin, Southern California. Limnol. Oceanogr. 2012, 57, 420–432. [Google Scholar] [CrossRef]
- Kessler, J.D.; Valentine, D.L.; Redmond, M.C.; Du, M.; Chan, E.W.; Mendes, S.D.; Quiroz, E.W.; Villanueva, C.J.; Shusta, S.S.; Werra, L.M.; et al. A Persistent Oxygen Anomaly Reveals the Fate of Spilled Methane in the Deep Gulf of Mexico. Science 2011, 331, 312–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reeburgh, W.S.; Ward, B.B.; Whalen, S.C.; Sandbeck, K.A.; Kilpatrickt, K.A.; Kerkhof, L.J. Black Sea methane geochemistry. Deep Sea Res. Part A Oceanogr. Res. Pap. 1991, 38, S1189–S1210. [Google Scholar] [CrossRef] [Green Version]
- Chronopoulou, P.M.; Shelley, F.; Pritchard, W.J.; Maanoja, S.T.; Trimmer, M. Origin and fate of methane in the Eastern Tropical North Pacific oxygen minimum zone. ISME J. 2017, 11, 1386–1399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crill, P.M.; Martens, C.S. Spatial and temporal fluctuations of methane production in anoxic coastal marine sediments. Limnol. Oceanogr. 1983, 28, 1117–1130. [Google Scholar] [CrossRef] [Green Version]
- Xiao, K.Q.; Beulig, F.; Kjeldsen, K.U.; Jørgensen, B.B.; Risgaard-Petersen, N. Concurrent methane production and oxidation in surface sediment from Aarhus Bay, Denmark. Front. Microbiol. 2017, 8, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Günthel, M.; Donis, D.; Kirillin, G.; Ionescu, D.; Bizic, M.; McGinnis, D.F.; Grossart, H.P.; Tang, K.W. Contribution of oxic methane production to surface methane emission in lakes and its global importance. Nat. Commun. 2019, 10, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Wik, M.; Varner, R.K.; Anthony, K.W.; MacIntyre, S.; Bastviken, D. Climate-sensitive northern lakes and ponds are critical components of methane release. Nat. Geosci. 2016, 9, 99–105. [Google Scholar] [CrossRef]
- Timmers, P.H.A.; Suarez-Zuluaga, D.A.; Van Rossem, M.; Diender, M.; Stams, A.J.M.; Plugge, C.M. Anaerobic oxidation of methane associated with sulfate reduction in a natural freshwater gas source. ISME J. 2016, 10, 1400–1412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deutzmann, J.S.; Stief, P.; Brandes, J.; Schink, B. Anaerobic methane oxidation coupled to denitrification is the dominant methane sink in a deep lake. Proc. Natl. Acad. Sci. USA 2014, 111, 18273–18278. [Google Scholar] [CrossRef] [Green Version]
- Norði, K.Á.; Thamdrup, B. Nitrate-dependent anaerobic methane oxidation in a freshwater sediment. Geochim. Cosmochim. Acta 2014, 132, 141–150. [Google Scholar] [CrossRef]
- Sivan, O.; Adler, M.; Pearson, A.; Gelman, F.; Bar-Or, I.; John, S.G.; Eckert, W. Geochemical evidence for iron-mediated anaerobic oxidation of methane. Limnol. Oceanogr. 2011, 56, 1536–1544. [Google Scholar] [CrossRef] [Green Version]
- Segarra, K.E.A.; Schubotz, F.; Samarkin, V.; Yoshinaga, M.Y.; Hinrichs, K.U.; Joye, S.B. High rates of anaerobic methane oxidation in freshwater wetlands reduce potential atmospheric methane emissions. Nat. Commun. 2015, 6, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Rissanen, A.J.; Karvinen, A.; Nykänen, H.; Peura, S.; Tiirola, M.; Mäki, A.; Kankaala, P. Effects of alternative electron acceptors on the activity and community structure of methane-producing and consuming microbes in the sediments of two shallow boreal lakes. FEMS Microbiol. Ecol. 2017, 93. [Google Scholar] [CrossRef] [PubMed]
- Nordi, K.Á.; Thamdrup, B.; Schubert, C.J. Anaerobic oxidation of methane in an iron-rich Danish freshwater lake sediment. Limnol. Oceanogr. 2013, 58, 546–554. [Google Scholar] [CrossRef]
- Bogard, M.J.; Del Giorgio, P.A.; Boutet, L.; Chaves, M.C.G.; Prairie, Y.T.; Merante, A.; Derry, A.M. Oxic water column methanogenesis as a major component of aquatic CH4 fluxes. Nat. Commun. 2014, 5. [Google Scholar] [CrossRef] [PubMed]
- Peeters, F.; Encinas Fernandez, J.; Hofmann, H. Sediment fluxes rather than oxic methanogenesis explain diffusive CH4 emissions from lakes and reservoirs. Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Donis, D.; Flury, S.; Stöckli, A.; Spangenberg, J.E.; Vachon, D.; McGinnis, D.F. Full-scale evaluation of methane production under oxic conditions in a mesotrophic lake. Nat. Commun. 2017, 8, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Günthel, M.; Klawonn, I.; Woodhouse, J.; Bižić, M.; Ionescu, D.; Ganzert, L.; Kümmel, S.; Nijenhuis, I.; Zoccarato, L.; Grossart, H.P.; et al. Photosynthesis-driven methane production in oxic lake water as an important contributor to methane emission. Limnol. Oceanogr. 2020, 65, 2853–2865. [Google Scholar] [CrossRef]
- Zheng, Y.; Harris, D.F.; Yu, Z.; Fu, Y.; Poudel, S.; Ledbetter, R.N.; Fixen, K.R.; Yang, Z.Y.; Boyd, E.S.; Lidstrom, M.E.; et al. A pathway for biological methane production using bacterial iron-only nitrogenase. Nat. Microbiol. 2018, 3, 281–286. [Google Scholar] [CrossRef]
- Torres-Alvarado, M.D.R.; Fernández, F.J.; Ramírez Vives, F.; Varona-Cordero, F. Dynamics of the methanogenic archaea in tropical estuarine sediments. Archaea 2013, 2013. [Google Scholar] [CrossRef]
- Munson, M.A.; Nedwell, D.B.; Embley, T.M. Phylogenetic diversity of Archaea in sediment samples from a coastal salt marsh. Appl. Environ. Microbiol. 1997, 63, 4729–4733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Purdy, K.J.; Munson, M.A.; Nedwell, D.B.; Embley, T.M. Comparison of the molecular diversity of the methanogenic community at the brackish and marine ends of a UK estuary. FEMS Microbiol. Ecol. 2002, 39, 17–21. [Google Scholar] [CrossRef]
- Purdy, K.J.; Munson, M.A.; Cresswell-Maynard, T.; Nedwell, D.B.; Embley, T.M. Use of 16S rRNA-targeted oligonucleotide probes to investigate function and phylogeny of sulphate-reducing bacteria and methanogenic archaea in a UK estuary. FEMS Microbiol. Ecol. 2003, 44, 361–371. [Google Scholar] [CrossRef] [Green Version]
- Takii, S.; Fukui, M. Relative importance of methanogenesis, sulfate reduction and denitrification in sediments of the lower Tama River. Bull. Jpn. Soc. Microb. Ecol. 1991, 6, 9–17. [Google Scholar] [CrossRef] [Green Version]
- Oremland, R.S.; Polcin, S.; Survey, U.S.G.; Park, M. Methanogenesis and sulfate reduction: Competitive and noncompetitive substrates in estuarine sediments. Deep Sea Res. Part B Oceanogr. Lit. Rev. 1983, 30, 470. [Google Scholar] [CrossRef] [Green Version]
- Maltby, J.; Steinle, L.; Löscher, C.R.; Bange, H.W.; Fischer, M.A.; Schmidt, M.; Treude, T. Microbial methanogenesis in the sulfate-reducing zone in sediments from Eckernförde Bay, SW Baltic Sea. Biogeosci. Discuss. 2017, 1–45. [Google Scholar] [CrossRef]
- Sela-Adler, M.; Ronen, Z.; Herut, B.; Antler, G.; Vigderovich, H.; Eckert, W.; Sivan, O. Co-existence of methanogenesis and sulfate reduction with common substrates in sulfate-rich estuarine sediments. Front. Microbiol. 2017, 8, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Yin, X. Stratified Communities of Methanogens in the Jiulong River Estuarine Sediments, Southern China. Indian J. Microbiol. 2013, 53, 432–437. [Google Scholar] [CrossRef] [Green Version]
- Zeleke, J.; Lu, S.L.; Wang, J.G.; Huang, J.X.; Li, B.; Ogram, A.V.; Quan, Z.X. Methyl Coenzyme M Reductase A (mcrA) Gene-Based Investigation of Methanogens in the Mudflat Sediments of Yangtze River Estuary, China. Microb. Ecol. 2013, 66, 257–267. [Google Scholar] [CrossRef]
- Webster, G.; Rinna, J.; Roussel, E.G.; Fry, J.C.; Weightman, A.J.; Parkes, R.J. Prokaryotic functional diversity in different biogeochemical depth zones in tidal sediments of the Severn Estuary, UK, revealed by stable-isotope probing. FEMS Microbiol. Ecol. 2010, 72, 179–197. [Google Scholar] [CrossRef] [Green Version]
- Ke, X.; Lu, Y.; Conrad, R. Different behaviour of methanogenic archaea and Thaumarchaeota in rice field microcosms. FEMS Microbiol. Ecol. 2014, 87, 18–29. [Google Scholar] [CrossRef] [Green Version]
- Das, S.; Adhya, T.K. Effect of combine application of organic manure and inorganic fertilizer on methane and nitrous oxide emissions from a tropical flooded soil planted to rice. Geoderma 2014, 213, 185–192. [Google Scholar] [CrossRef]
- Zhang, A.; Bian, R.; Pan, G.; Cui, L.; Hussain, Q.; Li, L.; Zheng, J.; Zheng, J.; Zhang, X.; Han, X.; et al. Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: A field study of 2 consecutive rice growing cycles. Field Crop. Res. 2012, 127, 153–160. [Google Scholar] [CrossRef]
- Bharati, K.; Mohanty, S.R.; Padmavathi, P.V.L.; Rao, V.R.; Adhya, T.K. Influence of six nitrification inhibitors on methane production in a flooded alluvial soil. Nutr. Cycl. Agroecosyst. 2000, 58, 389–394. [Google Scholar] [CrossRef]
- Oo, A.Z.; Win, K.T.; Bellingrath-Kimura, S.D. Within field spatial variation in methane emissions from lowland rice in Myanmar. SpringerPlus 2015, 4. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, T.R.; Dick, R.P. Ecology of aerobic methanotrophs in controlling methane fluxes from wetlands. Appl. Soil Ecol. 2013, 65, 8–22. [Google Scholar] [CrossRef]
- Brye, K.R.; Rogers, C.W.; Smartt, A.D.; Norman, R.J. Soil Texture Effects on Methane Emissions from Direct-Seeded, Delayed-Flood Rice Production in Arkansas. Soil Sci. 2013, 178, 519–529. [Google Scholar] [CrossRef]
- Wang, Z.P.; Lindau, C.W.; Delaune, R.D.; Patrick, W.H. Methane emission and entrapment in flooded rice soils as affected by soil properties. Biol. Fertil. Soils 1993, 16, 163–168. [Google Scholar] [CrossRef]
- Yang, B.; Xiong, Z.; Wang, J.; Xu, X.; Huang, Q.; Shen, Q. Mitigating net global warming potential and greenhouse gas intensities by substituting chemical nitrogen fertilizers with organic fertilization strategies in rice-wheat annual rotation systems in China: A 3-year field experiment. Ecol. Eng. 2015, 81, 289–297. [Google Scholar] [CrossRef]
- Qi, L.; Ma, Z.; Chang, S.X.; Zhou, P.; Huang, R.; Wang, Y.; Wang, Z.; Gao, M. Biochar decreases methanogenic archaea abundance and methane emissions in a flooded paddy soil. Sci. Total Environ. 2021, 752. [Google Scholar] [CrossRef]
- Schütz, H.; Seiler, W.; Conrad, R. Influence of soil temperature on methane emission from rice paddy fields. Biogeochemistry 1990, 11, 77–95. [Google Scholar] [CrossRef]
- Neue, H.U.; Wassmann, R.; Kludze, H.; Wang, B.; Lantin, R.S. Factors and processes controlling methane emissions from rice fields. Nutr. Cycl. Agroecosyst. 1997, 49, 111–117. [Google Scholar] [CrossRef]
- Datta, A.; Yeluripati, J.B.; Nayak, D.R.; Mahata, K.R.; Santra, S.C.; Adhya, T.K. Seasonal variation of methane flux from coastal saline rice field with the application of different organic manures. Atmos. Environ. 2013, 66, 114–122. [Google Scholar] [CrossRef]
- Bhatia, A.; Ghosh, A.; Kumar, V.; Tomer, R.; Singh, S.D.; Pathak, H. Effect of elevated tropospheric ozone on methane and nitrous oxide emission from rice soil in north India. Agric. Ecosyst. Environ. 2011, 144, 21–28. [Google Scholar] [CrossRef]
- Zheng, F.; Wang, X.; Lu, F.; Hou, P.; Zhang, W.; Duan, X.; Zhou, X.; Ai, Y.; Zheng, H.; Ouyang, Z.; et al. Effects of elevated ozone concentration on methane emission from a rice paddy in Yangtze River Delta, China. Glob. Change Biol. 2011, 17, 898–910. [Google Scholar] [CrossRef]
- Smith, K.E.; Runion, G.B.; Prior, S.A.; Rogers, H.H.; Torbert, H.A. Effects of elevated CO2 and agricultural management on flux of greenhouse gases from soil. Soil Sci. 2010, 175, 349–356. [Google Scholar] [CrossRef]
- Gutierrez, J.; Kim, S.Y.; Kim, P.J. Effect of rice cultivar on CH4 emissions and productivity in Korean paddy soil. Field Crop. Res. 2013, 146, 16–24. [Google Scholar] [CrossRef]
- Liang, K.; Zhong, X.; Huang, N.; Lampayan, R.M.; Pan, J.; Tian, K.; Liu, Y. Grain yield, water productivity and CH4 emission of irrigated rice in response to water management in south China. Agric. Water Manag. 2016, 163, 319–331. [Google Scholar] [CrossRef]
- Reim, A.; Hernández, M.; Klose, M.; Chidthaisong, A.; Yuttitham, M.; Conrad, R. Response of methanogenic microbial communities to desiccation stress in flooded and rain-fed paddy soil from Thailand. Front. Microbiol. 2017, 8, 1–17. [Google Scholar] [CrossRef]
- Jiang, J.; Chen, L.; Sun, Q.; Sang, M.; Huang, Y. Application of herbicides is likely to reduce greenhouse gas (N2O and CH4) emissions from rice-wheat cropping systems. Atmos. Environ. 2015, 107, 62–69. [Google Scholar] [CrossRef]
- Malyan, S.K.; Bhatia, A.; Kumar, A.; Gupta, D.K.; Singh, R.; Kumar, S.S.; Tomer, R.; Kumar, O.; Jain, N. Methane production, oxidation and mitigation: A mechanistic understanding and comprehensive evaluation of influencing factors. Sci. Total Environ. 2016, 572, 874–896. [Google Scholar] [CrossRef]
- Lee, H.J.; Kim, S.Y.; Kim, P.J.; Madsen, E.L.; Jeon, C.O. Methane emission and dynamics of methanotrophic and methanogenic communities in a flooded rice field ecosystem. FEMS Microbiol. Ecol. 2014, 88, 195–212. [Google Scholar] [CrossRef] [PubMed]
- Krüger, M.; Frenzel, P.; Kemnitz, D.; Conrad, R. Activity, structure and dynamics of the methanogenic archaeal community in a flooded Italian rice field. FEMS Microbiol. Ecol. 2005, 51, 323–331. [Google Scholar] [CrossRef]
- Knief, C.; Delmotte, N.; Chaffron, S.; Stark, M.; Innerebner, G.; Wassmann, R.; Von Mering, C.; Vorholt, J.A. Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J. 2012, 6, 1378–1390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- United States Environmental Protection Agency. Climate Change Indicators in the United States; Metadata; United States Environmental Protection Agency: Washington, DC, USA, 2010; pp. 1–150.
- Hill, J.; McSweeney, C.; Wright, A.D.G.; Bishop-Hurley, G.; Kalantar-zadeh, K. Measuring Methane Production from Ruminants. Trends Biotechnol. 2016, 34, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Meese, S.; Ulbrich, S.E.; Bollwein, H.; Bruckmaier, R.; Wellnitz, O.; Kreuzer, M.; Röntgen, M.; Gimsa, U.; Schwarm, A. Methane emission, metabolism, and performance of Holstein dairy cows with low, medium, and high lymphocyte proliferation during transition. J. Dairy Sci. 2020, 103, 4367–4377. [Google Scholar] [CrossRef] [PubMed]
- Alford, A.R.; Hegarty, R.S.; Parnell, P.F.; Cacho, O.J.; Herd, R.M.; Griffith, G.R. The impact of breeding to reduce residual feed intake on enteric methane emissions from the Australian beef industry. Aust. J. Exp. Agric. 2006, 46, 813–820. [Google Scholar] [CrossRef]
- Janssen, P.H.; Kirs, M. Structure of the archaeal community of the rumen. Appl. Environ. Microbiol. 2008, 74, 3619–3625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamke, J.; Kittelmann, S.; Soni, P.; Li, Y.; Tavendale, M.; Ganesh, S.; Janssen, P.H.; Shi, W.; Froula, J.; Rubin, E.M.; et al. Rumen metagenome and metatranscriptome analyses of low methane yield sheep reveals a Sharpea-enriched microbiome characterised by lactic acid formation and utilisation. Microbiome 2016, 4, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, W.; Cheng, Y.; Zhu, W. The community structure of Methanomassiliicoccales in the rumen of Chinese goats and its response to a high-grain diet. J. Anim. Sci. Biotechnol. 2017, 8, 1–10. [Google Scholar] [CrossRef]
- Kumar, S.; Choudhury, P.K.; Carro, M.D.; Griffith, G.W.; Dagar, S.S.; Puniya, M.; Calabro, S.; Ravella, S.R.; Dhewa, T.; Upadhyay, R.C.; et al. New aspects and strategies for methane mitigation from ruminants. Appl. Microbiol. Biotechnol. 2014, 98, 31–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lettat, A.; Hassanat, F.; Benchaar, C. Corn silage in dairy cow diets to reduce ruminal methanogenesis: Effects on the rumen metabolically active microbial communities. J. Dairy Sci. 2013, 96, 5237–5248. [Google Scholar] [CrossRef]
- Olijhoek, D.W.; Hellwing, A.L.F.; Brask, M.; Weisbjerg, M.R.; Højberg, O.; Larsen, M.K.; Dijkstra, J.; Erlandsen, E.J.; Lund, P. Effect of dietary nitrate level on enteric methane production, hydrogen emission, rumen fermentation, and nutrient digestibility in dairy cows. J. Dairy Sci. 2016, 99, 6191–6205. [Google Scholar] [CrossRef] [Green Version]
- Patra, A.K. Enteric methane mitigation technologies for ruminant livestock: A synthesis of current research and future directions. Environ. Monit. Assess. 2012, 184, 1929–1952. [Google Scholar] [CrossRef]
- Zhang, L.; Huang, X.; Xue, B.; Peng, Q.; Wang, Z.; Yan, T.; Wang, L. Immunization against rumen methanogenesis by vaccination with a new recombinant protein. PLoS ONE 2015, 10. [Google Scholar] [CrossRef] [Green Version]
- Lan, W.; Yang, C. Ruminal methane production: Associated microorganisms and the potential of applying hydrogen-utilizing bacteria for mitigation. Sci. Total Environ. 2019, 654, 1270–1283. [Google Scholar] [CrossRef]
- Børsting, C.F.; Brask, M.; Hellwing, A.L.F.; Weisbjerg, M.R.; Lund, P. Enteric methane emission and digestion in dairy cows fed wheat or molasses. J. Dairy Sci. 2020, 103, 1448–1462. [Google Scholar] [CrossRef] [Green Version]
- Kozłowska, M.; Cieślak, A.; Jóźwik, A.; El-Sherbiny, M.; Stochmal, A.; Oleszek, W.; Kowalczyk, M.; Filipiak, W.; Szumacher-Strabel, M. The effect of total and individual alfalfa saponins on rumen methane production. J. Sci. Food Agric. 2020, 100, 1922–1930. [Google Scholar] [CrossRef]
- Li, Y.; Leahy, S.C.; Jeyanathan, J.; Henderson, G.; Cox, F.; Altermann, E.; Kelly, W.J.; Lambie, S.C.; Janssen, P.H.; Rakonjac, J.; et al. The complete genome sequence of the methanogenic archaeon ISO4-H5 provides insights into the methylotrophic lifestyle of a ruminal representative of the Methanomassiliicoccales. Stand. Genomic Sci. 2016, 11, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Gilmore, S.P.; Henske, J.K.; Sexton, J.A.; Solomon, K.V.; Seppälä, S.; Yoo, J.I.; Huyett, L.M.; Pressman, A.; Cogan, J.Z.; Kivenson, V.; et al. Genomic analysis of methanogenic archaea reveals a shift towards energy conservation. BMC Genomics 2017, 18, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Elekwachi, C.O.; Jiao, J.; Wang, M.; Tang, S.; Zhou, C.; Tan, Z.; Forster, R.J. Investigation and manipulation of metabolically active methanogen community composition during rumen development in black goats. Sci. Rep. 2017, 7, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Latham, E.A.; Anderson, R.C.; Pinchak, W.E.; Nisbet, D.J. Insights on alterations to the rumen ecosystem by nitrate and nitrocompounds. Front. Microbiol. 2016, 7, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Araujo, R.C.; Koenig, K.M.; Beauchemin, K.A. Effects of encapsulated nitrate on enteric methane production and nitrogen and energy utilization in beef heifers. J. Anim. Sci. 2015, 93, 2391–2404. [Google Scholar] [CrossRef] [PubMed]
- Van Zijderveld, S.M.; Gerrits, W.J.J.; Apajalahti, J.A.; Newbold, J.R.; Dijkstra, J.; Leng, R.A.; Perdok, H.B. Nitrate and sulfate: Effective alternative hydrogen sinks for mitigation of ruminal methane production in sheep. J. Dairy Sci. 2010, 93, 5856–5866. [Google Scholar] [CrossRef] [Green Version]
- Van Zijderveld, S.M.; Gerrits, W.J.J.; Dijkstra, J.; Newbold, J.R.; Hulshof, R.B.A.; Perdok, H.B. Persistency of methane mitigation by dietary nitrate supplementation in dairy cows. J. Dairy Sci. 2011, 94, 4028–4038. [Google Scholar] [CrossRef]
- Bowen, J.M.; Cormican, P.; Lister, S.J.; McCabe, M.S.; Duthie, C.A.; Roehe, R.; Dewhurst, R.J. Links between the rumen microbiota, methane emissions and feed efficiency of finishing steers offered dietary lipid and nitrate supplementation. PLoS ONE 2020, 15, 1–14. [Google Scholar] [CrossRef]
- Patra, A.K.; Yu, Z. Combinations of nitrate, saponin, and sulfate additively reduce methane production by rumen cultures in vitro while not adversely affecting feed digestion, fermentation or microbial communities. Bioresour. Technol. 2014, 155, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Xu, X.; Cao, Y.; Cai, C.; Cui, H.; Yao, J. Nitrate decreases methane production also by increasing methane oxidation through stimulating NC10 population in ruminal culture. AMB Express 2017, 7. [Google Scholar] [CrossRef]
- Fielding, E.R.; Archer, D.B.; de Macario, E.C.; Macario, A.J.L. Isolation and Characterization of Methanogenic Bacteria from Landfills. Appl. Environ. Microbiol. 1988, 54, 835–836. [Google Scholar] [CrossRef] [Green Version]
- Mori, K.; Yamamoto, H.; Kamagata, Y.; Hatsu, M.; Takamizawa, K. Methanocalculus pumilus sp. nov., a heavy-metal-tolerant methanogen isolated from a waste-disposal site. Int. J. Syst. Evol. Microbiol. 2000, 50, 1723–1729. [Google Scholar] [CrossRef] [Green Version]
- Chen, A.C.; Imachi, H.; Sekiguchi, Y.; Ohashi, A.; Harada, H. Archaeal community compositions at different depths (up to 30 m) of a municipal solid waste landfill in Taiwan as revealed by 16S rDNA cloning analyses. Biotechnol. Lett. 2003, 25, 719–724. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.N.; Chen, Y.Q.; Zhou, H.; Luo, S.; Lan, C.Y.; Qu, L.H. Characterization of methanogenic Archaea in the leachate of a closed municipal solid waste landfill. FEMS Microbiol. Ecol. 2003, 46, 171–177. [Google Scholar] [CrossRef] [Green Version]
- Krishnamurthi, S.; Chakrabarti, T. Diversity of Bacteria and Archaea from a landfill in Chandigarh, India as revealed by culture-dependent and culture-independent molecular approaches. Syst. Appl. Microbiol. 2013, 36, 56–68. [Google Scholar] [CrossRef] [PubMed]
- Luton, P.E.; Wayne, J.M.; Sharp, R.J.; Riley, P.W. The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology 2002, 148, 3521–3530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, L.; Wang, Y.; Tang, W.; Lei, Y. Archaeal community diversity in municipal waste landfill sites. Appl. Microbiol. Biotechnol. 2015, 99, 6125–6137. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Chi, Z.F.; Lu, W.J.; Wang, H.T. Mitigating CH4 emissions in semi-aerobic landfills: Impacts of operating conditions on abundance and community structure of methanotrophs in cover soils. J. Microbiol. Biotechnol. 2013, 23, 993–1003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stams, A.J.M.; Sousa, D.Z.; Kleerebezem, R.; Plugge, C.M. Role of syntrophic microbial communities in high-rate methanogenic bioreactors. Water Sci. Technol. 2012, 66, 352–362. [Google Scholar] [CrossRef] [PubMed]
- Kosaric, N.; Blaszczyk, R. Microbial aggregates in anaerobic wastewater treatment. Adv. Biochem. Eng. Biotechnol. 1990, 42, 27–62. [Google Scholar] [CrossRef] [PubMed]
- Lettinga, G. Anaerobic digestion and wastewater treatment systems. Antonie Van Leeuwenhoek 1995, 67, 3–28. [Google Scholar] [CrossRef] [PubMed]
- Van Lier, J.B.; Van Der Zee, F.P.; Tan, N.C.G.; Rebac, S.; Kleerebezem, R. Advances in high-rate anaerobic treatment: Staging of reactor systems. Water Sci. Technol. 2001, 44, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Macarie, H. Overview of the application of anaerobic treatment to chemical and petrochemical wastewaters. Water Sci. Technol. 2000, 42, 201–214. [Google Scholar] [CrossRef]
- Kuroda, K.; Hatamoto, M.; Nakahara, N.; Abe, K.; Takahashi, M.; Araki, N.; Yamaguchi, T. Community Composition of Known and Uncultured Archaeal Lineages in Anaerobic or Anoxic Wastewater Treatment Sludge. Microb. Ecol. 2015, 69, 586–596. [Google Scholar] [CrossRef] [PubMed]
- Narihiro, T.; Kim, N.K.; Mei, R.; Nobu, M.K.; Liu, W.T. Microbial community analysis of anaerobic reactors treating soft drink wastewater. PLoS ONE 2015, 10, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Kampman, C.; Temmink, H.; Hendrickx, T.L.G.; Zeeman, G.; Buisman, C.J.N. Enrichment of denitrifying methanotrophic bacteria from municipal wastewater sludge in a membrane bioreactor at 20 °C. J. Hazard. Mater. 2014, 274, 428–435. [Google Scholar] [CrossRef]
- Nie, W.B.; Xie, G.J.; Ding, J.; Lu, Y.; Liu, B.F.; Xing, D.F.; Wang, Q.; Han, H.J.; Yuan, Z.; Ren, N.Q. High performance nitrogen removal through integrating denitrifying anaerobic methane oxidation and Anammox: From enrichment to application. Environ. Int. 2019, 132, 105107. [Google Scholar] [CrossRef] [PubMed]
- Degelmann, D.M.; Borken, W.; Drake, H.L.; Kolb, S. Different atmospheric methane-oxidizing communities in european beech and norway spruce soils. Appl. Environ. Microbiol. 2010, 76, 3228–3235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kroeger, M.E.; Meredith, L.K.; Meyer, K.M.; Webster, K.D.; de Camargo, P.B.; de Souza, L.F.; Tsai, S.M.; van Haren, J.; Saleska, S.; Bohannan, B.J.M.; et al. Rainforest-to-pasture conversion stimulates soil methanogenesis across the Brazilian Amazon. ISME J. 2020. [Google Scholar] [CrossRef]
- Zhang, Y.; Cui, M.; Duan, J.; Zhuang, X.; Zhuang, G.; Ma, A. Abundance, rather than composition, of methane-cycling microbes mainly affects methane emissions from different vegetation soils in the Zoige alpine wetland. Microbiologyopen 2019, 8, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Ramayo-Caldas, Y.; Zingaretti, L.; Popova, M.; Estellé, J.; Bernard, A.; Pons, N.; Bellot, P.; Mach, N.; Rau, A.; Roume, H.; et al. Identification of rumen microbial biomarkers linked to methane emission in Holstein dairy cows. J. Anim. Breed. Genet. 2020, 137, 49–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reddy, K.R.; Rai, R.K.; Green, S.J.; Chetri, J.K. Effect of temperature on methane oxidation and community composition in landfill cover soil. J. Ind. Microbiol. Biotechnol. 2019, 46, 1283–1295. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Baca, C.P.; Omar, A.E.H.; Pollard, J.T.; Richardson, R.E. Microbial communities controlling methane and nutrient cycling in leach field soils. Water Res. 2019, 151, 456–467. [Google Scholar] [CrossRef] [PubMed]
- James, A. Mathematical Models in Water Pollution Control; Wiley-Blackwell: Hoboken, NJ, USA, 1978; ISBN 9780471994718. [Google Scholar]
- Lovley, D.R.; Klug, M.J. Model for the distribution of sulfate reduction and methanogenesis in freshwater sediments. Geochim. Cosmochim. Acta 1986, 50, 11–18. [Google Scholar] [CrossRef] [Green Version]
- D’Acunha, B.; Johnson, M.S. Water quality and greenhouse gas fluxes for stormwater detained in a constructed wetland. J. Environ. Manag. 2019, 231, 1232–1240. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, F.; Shi, Z.; Qin, A.; Wang, H.; Sun, Z.; Yang, Z.; Zhu, Y.; Pang, S.; Wang, P. Sources of seasonal wetland methane emissions in permafrost regions of the Qinghai-Tibet Plateau. Sci. Rep. 2020, 10, 1–11. [Google Scholar] [CrossRef]
- Sun, H.; Zhou, S.; Zhang, J.; Zhang, X.; Wang, C. Year-to-year climate variability affects methane emission from paddy fields under irrigated conditions. Environ. Sci. Pollut. Res. 2020, 27, 14780–14789. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Yuan, F.; Hanson, P.J.; Wullschleger, S.D.; Thornton, P.E.; Riley, W.J.; Song, X.; Graham, D.E.; Song, C.; Tian, H. Reviews and syntheses: Four decades of modeling methane cycling in terrestrial ecosystems. Biogeosciences 2016, 13, 3735–3755. [Google Scholar] [CrossRef] [Green Version]
- Christensen, T.R.; Prentice, I.C.; Kaplan, J.; Haxeltine, A.; Sitch, S. Methane flux from northern wetlands and tundra: An ecosystem source modelling approach. Tellus Ser. B Chem. Phys. Meteorol. 1996, 48, 652–661. [Google Scholar] [CrossRef]
- Eliseev, A.V.; Mokhov, I.I.; Arzhanov, M.M.; Demchenko, P.F.; Denisov, S.N. Interaction of the methane cycle and processes in wetland ecosystems in a climate model of intermediate complexity. Izv. Atmos. Ocean Phys. 2008, 44, 139–152. [Google Scholar] [CrossRef]
- Curry, C.L. Modeling the soil consumption at atmospheric methane at the global scale. Glob. Biogeochem. Cycles 2007, 21, 1–15. [Google Scholar] [CrossRef]
- Walter, B.P.; Heimann, M.; Shannon, R.D.; White, J.R. A process-based model to derive methane emissions from natural wetlands. Geophys. Res. Lett. 1996, 23, 3731–3734. [Google Scholar] [CrossRef]
- Zhuang, Q.; Melillo, J.M.; Kicklighter, D.W.; Prinn, R.G.; McGuire, A.D.; Steudler, P.A.; Felzer, B.S.; Hu, S. Methane fluxes between terrestrial ecosystems and the atmosphere at northern high latitudes during the past century: A retrospective analysis with a process-based biogeochemistry model. Glob. Biogeochem. Cycles 2004, 18. [Google Scholar] [CrossRef]
- Tian, H.; Xu, X.; Liu, M.; Ren, W.; Zhang, C.; Chen, G.; Lu, C. Spatial and temporal patterns of CH4 and N2O fluxes in terrestrial ecosystems of North America during 1979–2008: Application of a global biogeochemistry model. Biogeosciences 2010, 7, 2673–2694. [Google Scholar] [CrossRef] [Green Version]
- Grant, R.F. Simulation of methanogenesis in the mathematical model ecosys. Soil Biol. Biochem. 1998, 30, 883–896. [Google Scholar] [CrossRef]
- Kettunen, A. Connecting methane fluxes to vegetation cover and water table fluctuations at microsite level: A modeling study. Glob. Biogeochem. Cycles 2003, 17. [Google Scholar] [CrossRef] [Green Version]
- Grant, R. A review of the Canadian ecosystem model. In Modeling Carbon and Nitrogen Dynamics for Soil Management; Shaffer, M.J., Ma, L., Hansen, S., Eds.; CRC Press: New York, NY, USA, 2001. [Google Scholar]
- Vavilin, V.; Rytov, S.; Conrad, R. Modelling methane formation in sediments of tropical lakes focusing on syntrophic acetate oxidation: Dynamic and static carbon isotope equations. Ecol. Modell. 2017, 363, 81–95. [Google Scholar] [CrossRef]
- Kotsyurbenko, O.R.; Chin, K.J.; Glagolev, M.V.; Stubner, S.; Simankova, M.V.; Nozhevnikova, A.N.; Conrad, R. Acetoclastic and hydrogenotrophic methane production and methanogenic populations in an acidic West-Siberian peat bog. Environ. Microbiol. 2004, 6, 1159–1173. [Google Scholar] [CrossRef] [PubMed]
- Kolb, S. The quest for atmospheric methane oxidizers in forest soils. Environ. Microbiol. Rep. 2009, 1, 336–346. [Google Scholar] [CrossRef]
- Dunfield, P. The soil methane sink. In Green House Gas Sinks; CABI Publishing: Wallingford, UK, 2007; pp. 152–170. [Google Scholar]
- Oh, Y.; Stackhouse, B.; Lau, M.C.Y.; Xu, X.; Trugman, A.T.; Moch, J.; Onstott, T.C.; Jørgensen, C.J.; D’Imperio, L.; Elberling, B.; et al. Supporting infomation for: A scalable model for methane consumption in arctiv mineral soils. Geophys. Res. Lett. 2016, 2289–2296. [Google Scholar] [CrossRef] [Green Version]
- Bodelier, P.L.E.; Pérez, G.; Veraart, A.J.; Krause, S.M.B. Methanotroph Ecology, Environmental Distribution and Functioning. In Methanotrophs. Microbiology Fundamentals and Biotechnological Applications; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1–38. ISBN 9783030232610. [Google Scholar]
- Dedysh, S.N.; Knief, C.; Dunfield, P.F. Methylocella species are facultatively methanotrophic. J. Bacteriol. 2005, 187, 4665–4670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aronson, E.L.; Helliker, B.R. Methane flux in non-wetland soils in response to nitrogen addition: A meta-analysis. Ecology 2010, 91, 3242–3251. [Google Scholar] [CrossRef]
- Belova, S.E.; Baani, M.; Suzina, N.E.; Bodelier, P.L.E.; Liesack, W.; Dedysh, S.N. Acetate utilization as a survival strategy of peat-inhabiting Methylocystis spp. Environ. Microbiol. Rep. 2011, 3, 36–46. [Google Scholar] [CrossRef]
- Conrad, R. The global methane cycle: Recent advances in understanding the microbial processes involved. Environ. Microbiol. Rep. 2009, 1, 285–292. [Google Scholar] [CrossRef]
- Dunfield, P.F.; Belova, S.E.; Vorob’ev, A.V.; Cornish, S.L.; Dedysh, S.N. Methylocapsa aurea sp. nov., a facultative methanotroph possessing a particulate methane monooxygenase, and emended description of the genus Methylocapsa. Int. J. Syst. Evol. Microbiol. 2010, 60, 2659–2664. [Google Scholar] [CrossRef] [Green Version]
- Im, J.; Semrau, J.D. Pollutant degradation by a Methylocystis strain SB2 grown on ethanol: Bioremediation via facultative methanotrophy. FEMS Microbiol. Lett. 2011, 318, 137–142. [Google Scholar] [CrossRef] [Green Version]
- Pratscher, J.; Dumont, M.G.; Conrad, R. Assimilation of acetate by the putative atmospheric methane oxidizers belonging to the USCα clade. Environ. Microbiol. 2011, 13, 2692–2701. [Google Scholar] [CrossRef] [PubMed]
- Reay, D.; Smith, K.; Hewitt, C. Methane: Importance, sources and sinks. In Greenhouse Gas Sinks; CABI Publishing: Wallingford, UK, 2007; pp. 143–151. [Google Scholar]
- Wieczorek, A.S.; Drake, H.L.; Kolb, S. Organic acids and ethanol inhibit the oxidation of methane by mire methanotrophs. FEMS Microbiol. Ecol. 2011, 77, 28–39. [Google Scholar] [CrossRef] [PubMed]
- Hellweger, F.L.; Clegg, R.J.; Clark, J.R.; Plugge, C.M.; Kreft, J.U. Advancing microbial sciences by individual-based modelling. Nat. Rev. Microbiol. 2016, 14, 461–471. [Google Scholar] [CrossRef] [PubMed]
- Widder, S.; Allen, R.J.; Pfeiffer, T.; Curtis, T.P.; Wiuf, C.; Sloan, W.T.; Cordero, O.X.; Brown, S.P.; Momeni, B.; Shou, W.; et al. Challenges in microbial ecology: Building predictive understanding of community function and dynamics. ISME J. 2016, 10, 2557–2568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wania, R.; Ross, I.; Prentice, I.C. Implementation and evaluation of a new methane model within a dynamic global vegetation model: LPJ-WHyMe v1.3.1. Geosci. Model Dev. 2010, 3, 565–584. [Google Scholar] [CrossRef] [Green Version]
- Sabrekov, A.F.; Glagolev, M.V.; Alekseychik, P.K.; Smolentsev, B.A.; Terentieva, I.E.; Krivenok, L.A.; Maksyutov, S.S. A process-based model of methane consumption by upland soils. Environ. Res. Lett. 2016, 11. [Google Scholar] [CrossRef]
- Smemo, K.A.; Yavitt, J.B. Anaerobic oxidation of methane: An underappreciated aspect of methane cycling in peatland ecosystems? Biogeosciences 2011, 8, 779–793. [Google Scholar] [CrossRef] [Green Version]
- Blazewicz, S.J.; Petersen, D.G.; Waldrop, M.P.; Firestone, M.K. Anaerobic oxidation of methane in tropical and boreal soils: Ecological significance in terrestrial methane cycling. J. Geophys. Res. Biogeosci. 2012, 117, 1–9. [Google Scholar] [CrossRef]
- Gauthier, M.; Bradley, R.L.; Šimek, M. More evidence that anaerobic oxidation of methane is prevalent in soils: Is it time to upgrade our biogeochemical models? Soil Biol. Biochem. 2015, 80, 167–174. [Google Scholar] [CrossRef]
Location | Methanogens | Methanotrophs | Detection Type | Link |
---|---|---|---|---|
Soils | ||||
Forest soil (Germany) | USCα type ((1.2-0.2) × 108 pmoA genes per g of dry weight) | qPCR of pmoA genes; sequencing of 16S rRNA genes | [213] | |
Deglaciated soils in high-altitude cold deserts (India) | Methanosarcina, Methanocella, Methanobacterium; mcrA gene copies per dry weight soil 5 × 102 to 1.5 × 104 | T-RFLP of archaeal 16S rRNA genes; qPCR of mcrA gene | [95] | |
Saline alkaline soils (Mexico) | type I (Gammaproteobacteria), Methylomicrobium sp. | pmoA gene cloning and sequencing | [98] | |
Alpine grassland and forest soil | Methanococcales (dominated the forest soil), Methanomicrobiales, Methanocella spp, Methanosarcinales | qPCR | [97] | |
Steppe soil (China) | type I and pxmA methanotrophs | qPCR and high-throughput sequencing of pmoA, amoA and pxmA-like gene, | [101] | |
Alluvial meadow soil (Russia) | genera Methanobacterium, Methanobrevibacter, Methanocella, Methanolinea, Methanomassiliicoccus, Methanoregula, Methanosarcina, Methanospirillum, Methanothrix. | sequencing of 16S rRNA genes | [58] | |
Middle taiga subzone forest (Russia) | The pmoA gene numbers per g of dry weight varied from 107 to 109. | qPCR of pmoA genes | [51] | |
Amazon rainforest (Brazil) | Methanogens diversity and number increased in soil under pasture compared to rainforests (both primary and secondary) | Type II methanotrophs (Alphaproteobacteria) dominated the active methanotroph community | DNA-SIP, qPCR of mcrA, pmoA genes; sequencing of 16S rRNA, mcrA, pmoA genes | [214] |
Subarctic sandy upland soil (Russia) | USCα type (Candidatus Methyloaffinis lahnbergensis; “Methylocapsa gorgona” MG08) | qPCR of pmoA genes; sequencing of 16S rRNA genes | [103] | |
Wetlands | ||||
Acidic bog peat | Methanobacteriaceae, Methanomicrobiales, Methanosarcinaceae | DGGE and sequencing | [79] | |
Peatland (Alaska) | Methanogen abundances showed a positive relationship with mean daily CH4 fluxes | qPCR of mcrA gene | [111] | |
Boreal fen (Finland) | Methanosarcinacea, Methanocellales Fen cluster | Methylocystis | T-RFLP of mcrA and pmoA genes | [112] |
Restored wetland (China) | anaerobic Euryarchaeota; order Methanomicrobiales, Methanobacteriales, Methanosarcinales | Methylocystis, Methylosinus within Methylocystaceae (type II), Methylococcaceae (type I). | 16S rRNA gene sequencing; Shotgun metagenomics and analysis of pmoA, mcrA | [104] |
Boreal fens (Finland) | Methanogen abundance decreased after warming | type Ib, genus Methylocapsa | pmoA microarray data, TRFLP of mcrA, qPCR of mcrA and pmoA genes and gene transcripts | [113] |
Zoige wetland (China) | The mcrA gene numbers per g of soil varied from 103 to 106; methanogen community dominants were fam. Methanobacteriaceae, Methanosaetaceae, Methanoregulaceae, Methanosarcinaceae | The pmoA gene numbers varied from 105 to 106; methanotroph community dominants were gen. Methylocystis, Methylocaldum | qPCR and sequencing of mcrA and pmoA genes | [215] |
Aquatic environments | ||||
Acidic bog lake | Acetate-using methanogens | Fluorescence in situ hybridization (FISH) | [78] | |
Cold seeps in the river | type I and type II methanotrophs Methylobacter psychrohilus; Methylobacter tundripaludum; Crenothrix polyspora | pmoA gene cloning and sequencing | [85] | |
River estuary (China) | Acetoclastic and hydrogenotrophic methanogeneses | ANME | T-RFLP analysis of 16S rRNA gene | [144] |
River estuary (China) | Methanosarcinales, Methanomicrobiales | 454-pyrosequencing of 16S rRNA gene, qPCR of mcrA gene | [145] | |
Lake sediments (Germany) | Candidatus Methylomirabilis oxyfera peak in anoxic layers that coincided with the zone of methane oxidation | T-RFLP analysis of NC10 bacterial 16S rRNA genes; qPCR of pmoA genes | [125] | |
Marine sediments (Denmark) | Methanomicrobiales, genera Methanococcoides and Methanococcus; Mostly methylotrophic and hydrogenotrophic methanogens | Sequencing of archaeal 16S rRNA gene | [121] | |
Eastern part of Pacific Ocean | Methanosarcinales, Methanomicrobiales Methanocellales | type 1, genera Methylococcus, Methylomonas | Sequencing of mcrA and pmoA genes | [119] |
Oxic layer of oligotrophic-mesotrophic lake | no mcrA genes were detected, relative abundance of Pseudomonas sp. (with potential for methane production in oxic conditions) was 11% | Sequencing of 16S rRNA gene, qPCR of mcrA genes | [27] | |
Boreal lake sediments (Finland) | hydrogenotrophic Methanobacteriaceae, Methanoregulaceae, Methanocellales; acetoclastic Methanosaetaceae; methyl-consuming Methanomassiliicoccales, Verstraetearchaeota | ANME-2D archaea | Sequencing of 16S rRNA gene, mcrA genes and transcripts | [129] |
Estuary sediments (Israel) | 3.4 × 107 copies per gr of dry sediment | qPCR of mcrA gene | [143] | |
Rice fields | ||||
Rice field, two seasons (Italy) | Methanosaetaceae, Methanosarcinacea, Methanobacteriaceae | T-RFLP of archaeal SSU rRNA genes | [169] | |
Phyllosphere and rhizosphere of rice cultivars | Methanogens contributed 3% to the total microbial community | Methylobacterium in phyllosphere | Sequencing of bacterial and archaeal 16S rRNA genes, metagenomics, metaproteomics | [170] |
Rice paddy soil with 8 cultivars (Korea) | Highest mcrA abundance was observed under rice cultivar with highest CH4 emission rates | Highest pmoA abundance was observed under rice cultivar with lowest CH4 emission rates | qPCR of mcrA and pmoA genes | [163] |
Rice microcosms, different soil compartments (roots, rhizosphere) and seasons (China) | Methanobacteriales, Methanosarcinaceae and Methanocellales | qPCR, T-RFLP, sequencing of archaeal mcrA, 16S rRNA genes | [147] | |
Flooded rice ecosystem | Methanosaeta, Methanocella, Methanosarcina, Methanobacterium | Methylocystis, Methylosinus, unclassified Methylocystaceae (type II), Methylocaldum, Methylobacter, Methylomonas, Methylosarcina (type I), negligible amount of anaerobic methanotrophs | qPCR of pmoA and mcrA genes and gene transcripts, sequencing of 16S rRNA gene | [168] |
Paddy soils of irrigated and rain-fed rice fields (Thailand) | Transcript copy numbers of mcrA increased, relative abundances of Methanomicrobiales decreased, Methanocellales increased after desiccation and reincubation | qPCR of mcrA genes and gene transcripts, sequencing of 16S rRNA gene, T-RFLP of archaeal 16S rRNA genes | [165] | |
Pot experiment with biochar addition (China) | Methanocella, Methanomassiliicoccus, Methanobacterium, Methanosarcina; biochar led to decrease in methanogenic archaea | Methylococcaceae, Methylocystis, Methyloparacoccus | qPCR and sequencing of methanogenic archaea (mcrA) and methanotrophic bacteria (pmoA) genes | [156] |
Rumen of livestock animals | ||||
Rumen of cows fed on different forage | Methanobrevibacter spp | cDNA-based length heterogeneity PCR, qPCR of bacterial rrs RNA and archaeal mcrA genes and transcripts | [179] | |
Ovine rumen | Isolate of order Methanomassiliicoccales – hydrogenotrophic methanogenesis | Isolate genome study | [186] | |
Goat ruminal fluid | Supplementation of NaNO3 decreased the relative proportion of methanogens | Supplementation of NaNO3 increased the relative proportion of NC10; ANME were not detected | qPCR of mcrA gene, NC10 and ANME-2d-specific primers | [195] |
Goat rumen fractions | Most abundant genera were Methanobrevibacter, Candidatus Methanomethylophilus, Methanosphaera; methanogenic community was distinct in rumen solid- and liquid phase, protozoa- and epithelium-associated fractions | RNA-based qPCR, sequencing of archaeal 16S rRNA genes | [188] | |
Steer rumen microbiota | Methanosphaera, Methanobrevibacter (ord. Methanobacteriales); Thermoplasmata (VadinCA11) | Sequencing of 16S rRNA gene | [193] | |
Holstein dairy cows rumen | Ruminotype cluster associated with higher CH4 was characterized by lower abundance of Methanosphaera | Sequencing of 16S rRNA gene, shotgun metagenomic sequencing | [216] | |
Landfills | ||||
Municipal solid waste landfill (Taiwan) | Mostly thermophilic species, Methanothermobacter thermautotrophicu | Sequencing of archaeal 16S rDNA clone libraries | [198] | |
Leachate of a closed municipal solid waste landfill | hydrogenotrophic Methanomicrobiales and the methylotrophic and acetoclastic Methanosarcinales | Cloning and phylogenetic analysis of archaeal 16SrRNA gene sequences | [199] | |
Municipal solid waste landfill leachates (France) | Families Methanosaetaceae, Methanosarcinaceae; hydrogenotrophic order Methanomicrobiales (genera Methanoculleus, Methanofollis) | Cloning and phylogenetic analysis of archaeal 16SrRNA gene sequences | [53] | |
Municipal landfill (India) | Methanosarcinales, Methanomicrobiales | Sequencing of archaeal 16S rRNA gene | [200] | |
Cover soils of semi-aerobic landfills (China) | Methylobacter, Methylosarcina, Methylomicrobium (Type I) Methylocystis (Type II) | qPCR, DGGE of 16S rRNA genes | [203] | |
Leachate of municipal waste landfill sites (China) | Hydrogenotrophic methanogens Methanomicrobiales, Methanobacteriales | 454 pyrosequencing of archaeal community (V3–V5 region of the 16S rRNA gene) | [202] | |
Landfill cover soil | genus Methylobacter (type I) dominated the cover soil | 16S rRNA gene amplicon sequencing and shotgun metagenome sequencing | [217] | |
WWTP | ||||
Enriched municipal wastewater sludge | ANME-I and II, Methylocaldium, Methanobacteria, Methylosinus, Methylocistis, Verrucomicrobia | qPCR, pyrosequencing | [52] | |
Anoxic Wastewater Treatment Sludge | methanogens belonging to Euryarchaeota | Sequencing of archaeal 16S rRNA gene | [209] | |
Membrane Aerated Membrane Bioreactor (MAMBR) | Candidatus Methanoperedens, Candidatus Methylomirabilis | Sequencing of 16S rRNA gene, FISH | [212] | |
Leach field soils | mcrA gene copies were highest (107 copies per g of dry weight soil) near the wastewater inlet in both soil columns; Methanosaetaceae, Methanosarcinaceae, Methanobacteriaceae, Methanomassillicoccaceae | Methylococcaceae (Type I), Methylocystaceae (Type II) | qPCR and sequencing of 16S rRNA, mcrA, and pmoA genes and gene transcripts | [218] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kharitonov, S.; Semenov, M.; Sabrekov, A.; Kotsyurbenko, O.; Zhelezova, A.; Schegolkova, N. Microbial Communities in Methane Cycle: Modern Molecular Methods Gain Insights into Their Global Ecology. Environments 2021, 8, 16. https://doi.org/10.3390/environments8020016
Kharitonov S, Semenov M, Sabrekov A, Kotsyurbenko O, Zhelezova A, Schegolkova N. Microbial Communities in Methane Cycle: Modern Molecular Methods Gain Insights into Their Global Ecology. Environments. 2021; 8(2):16. https://doi.org/10.3390/environments8020016
Chicago/Turabian StyleKharitonov, Sergey, Mikhail Semenov, Alexander Sabrekov, Oleg Kotsyurbenko, Alena Zhelezova, and Natalia Schegolkova. 2021. "Microbial Communities in Methane Cycle: Modern Molecular Methods Gain Insights into Their Global Ecology" Environments 8, no. 2: 16. https://doi.org/10.3390/environments8020016
APA StyleKharitonov, S., Semenov, M., Sabrekov, A., Kotsyurbenko, O., Zhelezova, A., & Schegolkova, N. (2021). Microbial Communities in Methane Cycle: Modern Molecular Methods Gain Insights into Their Global Ecology. Environments, 8(2), 16. https://doi.org/10.3390/environments8020016