Characterizing Seasonal Variation in Landfill Leachate Using Leachate Pollution Index (LPI) at Nam Son Solid Waste Landfill in Hanoi, Vietnam
Abstract
:1. Introduction
2. Current Status of Solid Waste and Landfill Management in Hanoi, Vietnam
3. Materials and Methods
3.1. Study Site
3.2. Sampling and Analysis of Landfill Leachate
3.3. Leachate Pollution Index (LPI)
4. Results and Discussion
4.1. Seasonal and Temporal Variations of Landfill Leachate Quality
4.2. Seasonal and Temporal Variations of LPI
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tashiro, T. IRBC: The “Fukuoka Method”: Semi-Aerobic Landfill Technology—Fukuoka Region, Japan; Program document at International Regions Benchmarking Consortium (IRBC); Metro Vancouver: Burnaby, BC, Canada, 2011. [Google Scholar]
- Bhalla, B.; Saini, M.S.; Jha, M.K. Effect of age and seasonal variations on leachate characteristics of municipal solid waste landfill. Int. J. Res. Eng. Technol. 2013, 2, 223–232, eISSN: 2319–1163, pISSN: 2321–7308. [Google Scholar]
- Sewwandi, B.G.N.; Koide, T.; Kawamoto, K.; Hamamoto, S.; Asamoto, S.; Sato, H. Evaluation of leachate contamination potential of municipal solid waste dumpsites in Sri Lanka using leachate pollution index. In Proceedings of the Fourteenth International Waste Management and Landfill Symposium, Sardinia, Italy, 30 September–4 October 2013; p. 233. [Google Scholar]
- Slack, R.J.; Gronow, J.R.; Voulvoulis, N. Household hazardous waste in municipal landfills: Contaminants in leachate. Sci. Total Environ. 2005, 337, 119–137. [Google Scholar] [CrossRef] [PubMed]
- Umar, M.; Aziz, H.A.; Yusoff, M.S. Variability of parameters involved in leachate pollution index and determination of LPI from four landfills in Malaysia. Int. J. Chem. Eng. 2010. [Google Scholar] [CrossRef]
- Chen, P.H. Assessment of leachates from sanitary landfills: Impact of age, rainfall, and treatment. Environ. Int. 1996, 22, 225–237. [Google Scholar] [CrossRef]
- Camba, A.; González-García, S.; Bala, A.; Fullana-i-Palmer, P.; Moreira, M.T.; Feijoo, G. Modeling the leachate flow and aggregated emissions from municipal waste landfills under life cycle thinking in the Oceanic region of the Iberian Peninsula. J. Clean. Prod. 2014, 67, 98–106. [Google Scholar] [CrossRef]
- Ahmed, S.; Joshi, R.; Kumar, S. Seasonal variation of leachate quality at active landfill sites in Delhi, India. In Proceedings of the Institution of Civil Engineers—Municipal Engineer; ICE Publishing: London, UK, 2020; Volume 173, pp. 157–170. ISSN 0965-0903. E-ISSN 1751-7699. [Google Scholar] [CrossRef]
- Kumar, D.; Alappat, B.J. Evaluating leachate contamination potential of landfill sites using leachate pollution index. Clean Technol. Environ. 2005, 7, 190–197. [Google Scholar] [CrossRef]
- Kumar, D.; Alappat, B.J. Analysis of leachate pollution index and formulation of sub leachate pollution indices. Waste Manag. Res. 2005, 22, 230–239. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.; Alappat, B.J. Errors involved in the estimation of leachate pollution index. J. Hazard. Toxic Radioact. Waste 2005, 9, 103–111. [Google Scholar] [CrossRef]
- Perera, K.L.S. An overview of the issue of solid waste management in Sri Lanka. In Proceedings of the Third International Conference on Environment and Health, Chennai, India, 15–17 December 2003; pp. 346–352. [Google Scholar]
- Abeynayaka, A.; Werellagama, D.R.I.B. Efficiency improvement of solid waste management systems with load reduction: A case study in Kandy City, Sri Lanka. In Proceedings of the International Conference on Sustainable Solid Waste Management, Chennai, India, 5–7 September 2007; pp. 126–133. [Google Scholar]
- Ministry of Natural Resources and Environment. National State of Environmental Report, 2019; Ministry of Natural Resources and Environment (MONRE): Hanoi, Vietnam, 2019.
- Ministry of Construction. Overview of Solid Waste Management in Vietnam 2016; Ministry of Construction (MOC): Hanoi, Vietnam, 2016.
- The Prime Minister of Viet Nam. Decision No. 609/QD-TTg: Approving the Master Plan on Solid Waste Disposal of Hanoi Capital to 2030, with a Vision to 2050; The Prime Minister of Viet Nam: Hanoi, Vietnam, 2014.
- Hien, D.X.; Tap, V.H. Initially, the Study on the Treatment of Landfill Leachate by O3 and UV/O3 Agent. J. Sci. Technol. Vietnam Acad. Sci. Technol. 2013, 51, 224–230. (In Vietnamese) [Google Scholar]
- Toan, V.D. Assessing the impact of landfills Xuan Son, Ha Noi to the aquatic environment and propose solutions. J. Hydraul. Eng. Environ. 2012, 39, 28–33. (In Vietnamese) [Google Scholar]
- Tri, T.M. Project Report: Application of the Advanced Oxidation Process (AOPs) for Treating Leachate after Biological Treatment State in Go Cat Treatment Plant on Pilot Systems of 15–20 m3/day; Center for Chemical and Environmental Technology: Ho Chi Minh City, Vietnam, 2007. (In Vietnamese) [Google Scholar]
- Tung, T.Q.; Tuan, L.V.; Tuyen, N.T.K.; Lieu, P.K. The Study of Leachate Treatment by UV–Fenton Agent in the Interrupted Device. J. Sci. Hue Univ. 2009, 53, 165–175. (In Vietnamese) [Google Scholar]
- Ministry of Natural Resources and Environment (MONRE). QCVN 40:2011/BTNMT; National Technical Regulation on Industrial Wastewater; Ministry of Natural Resources and Environment: Hanoi, Vietnam, 2012.
- Ministry of Natural Resources and Environment (MONRE). QCVN 25:2009/BTNMT; National Technical Regulation on Wastewater of the Solid Waste Landfill Sites; Ministry of Natural Resources and Environment: Hanoi, Vietnam, 2009.
- Giang, N.V.; Kochanek, K.; Vu, N.T.; Duan, N.B. Landfill leachate assessment by hydrological and geophysical data: Case study Nam Son, Hanoi, Vietnam. J. Mater. Cycles Waste Manag. 2018. [Google Scholar] [CrossRef]
- Khai, N.M.; Quynh Trang, H.T. Chemical precipitation of ammonia and phosphate from Nam Son landfill leachate, Hanoi. Iranica. J. Energy Environ. (Special Issue Environ. Technol.) 2012, 3, 32–36. [Google Scholar] [CrossRef]
- Hanoi Urban Environment Company (URENCO). Plan on Management and Operation of Nam Son Waste Disposal Area, from 2018–2020; Hanoi Urban Environment Company: Hanoi, Vietnam, 2018. (In Vietnamese) [Google Scholar]
- Yen, H.V. Optimization of Partial Nitrification and Denitrification Processes in Landfill Leachate Treatment Using Sequencing Batch Reactor Technique. PhD Thesis, University De Liege, Liege, Belgium, 2009. Available online: https://core.ac.uk/download/pdf/58881103.pdf (accessed on 20 December 2020).
- Rice, E.W.; Baird, R.B.; Eaton, A.D.; Clesceri, L.S. (Eds.) Standard Methods for the Examination of Water and Wastewater, 22nd ed.; American Public Health Association (APHA), American Water Works Association (AWWA) and Water Environment Federation (WEF): Washington, DC, USA, 2012. [Google Scholar]
- Campisano, R.; Hall, K.; Griggs, J.; Willison, S.; Reimer, S.; Mash, H.; Magnuson, M.; Boczek, L.; Rhodes, E. Selected Analytical Methods for Environmental Remediation and Recovery (SAM) U.S. EPA/600/R-17/356, 2017. Available online: https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NHSRC&dirEntryId=339252 (accessed on 20 December 2020).
- Wiszniowski, J.; Robert, D.; Surmacz-Gorska, J.; Miksch, K.; Malato, S.; Weber, J.V. Solar photocatalytic degradation of humic acids as a model of organic compounds of landfill leachate in pilot-plant experiments: Influence of inorganic salts. Appl. Catal. B Environ. 2004, 53, 127–137. [Google Scholar] [CrossRef]
- Kamaruddin, M.A.; Yusoff, M.S.; Rui, L.M.; Isa, A.M.; Zawawi, M.H.; Alrozi, R. An overview of municipal solid waste management and landfill leachate treatment: Malaysia and Asian perspectives. Environ. Sci. Pollut. Res. 2017, 24, 26988–27020. [Google Scholar] [CrossRef] [PubMed]
- Ngoc, N.T.; Nakajima, J.; Takaoka, T.; Hang, N.T.A. Heavy metal speciation in landfill leachate and its association with organic matter. IOP Conf. Ser. Earth Environ. Sci. 2019, 266, 012006. [Google Scholar] [CrossRef]
- Esakku, S.; Karthik, O.; Joseph, K.; Nagendran, R.; Palanivelu, K.; Pathirana, K.P.M.N.; Karunarathna, A.K.; Basnayake, B.F.A. Seasonal Variations in Leachate Characteristics from Municipal Solid Waste Dumpsites in India and Sri Lanka. In Proceedings of the International Conference on Sustainable Solid Waste Management, Chennai, India, 5–7 September 2007; pp. 341–347. [Google Scholar]
Landfill Site | QCVN 40 (Column B) 7/QCVN 25 8 | |||||
---|---|---|---|---|---|---|
Nam Son | Xuan Son | Go Cat | Thuy Phuong | Trang Cat | ||
City, Year | Hanoi, 2013 | Hanoi, 2012 | Ho Chi Minh, 2007 | Hue, 2009 | Haiphong, 2013 | |
Parameters | ||||||
pH | 6.8–8.0 | 7.7 | 7.4–7.6 | 7.7–8.5 | 6.5–8.2 | 5.5–9 |
TDS (mg/L) 1 | 6.9 × 103–2.0 × 104 | - | - | - | 4.5–9.2 | - |
TSS (mg/L) 2 | 1.2 × 102–2.2 × 103 | 9.9 × 102 | 7.0 × 102–2.0 × 103 | 42–84 | 21–78 | 100 |
COD (mg/L) 3 | 1.0 × 103–2.3 × 104 | 3.5 × 103 | 1.4 × 104–1.7 × 104 | 6.2 × 102–2.4 × 103 | 3.3 × 102–1.0 × 103 | 150/ 400 |
BOD5 (mg/L) 4 | 5.0 × 102–1.2 × 104 | 2.2 × 103 | 6.3 × 103–9.2 × 103 | 1.5 × 102–4.0 × 102 | 1.2 × 102–4.7 × 102 | 50/ 100 |
BOD5/COD | 0.49–0.54 | 0.61 | 0.46–0.58 | 0.16–0.23 | 0.37–0.47 | - |
TN (mg/L) 5 | 4.2 × 102–2.3 × 103 | 62 | 1.8 × 103–2.9 × 103 | - | 1.8 × 102–5.1 × 102 | 40/ 60 |
NH4+–N (mg/L) | - | 17 | 1.7 × 103–2.4 × 103 | 1.8 × 102–6.4 × 102 | - | 10/ 25 |
NO2-–N (mg/L) | - | 13 | 0–6.2 | - | - | - |
TP (mg/L) 6 | 6.5–25 | 4.3 | 10–20 | - | 3.9–8.6 | 6 |
Total Hardness (mg CaCO3/L) | - | - | - | 1.4 × 103–4.9 × 103 | - | - |
Cl (mg/L) | - | - | - | 5.2 × 102–1.2 × 103 | - | 1000 |
As (mg/L) | 0.001–0.003 | 0.2 | - | - | 0.047–0.086 | 0.1 |
Pb (mg/L) | 0.050–0.086 | 0.34 | - | - | <0.05 | 0.5 |
Cd (mg/L) | 0.010–0.025 | 0.14 | - | - | <0.01 | 0.1 |
Hg (mg/L) | 0.0001–0.0009 | - | - | - | 0.0001 | 0.01 |
Reference | [17] | [18] | [19] | [20] | [17] | [21,22] |
Parameter | Testing Methods 1 | Parameter | Testing Methods |
---|---|---|---|
Odor | SMEWW 2150 (2012) | Ni | SMEWW 3125 (2012) |
pH | TCVN 6492 (2011) | Pb | SMEWW 3125 (2012) |
Dissolved oxygen (DO) | TCVN 7325 (2004) | Zn | SMEWW 3125 (2012) |
BOD5 | TCVN 6001-1 (2008) | Cr (VI) | SMEWW 3500Cr.B (2012) |
COD | SMEWW 5220C (2012) | CN− | SMEWW 4500 (2012) |
Suspended solids (SS) | SMEWW 2540D (2012) | Phenol | TCVN 6216 (1996) |
As | SMEWW 3125 (2012) | S2− | SMEWW 4500 S2−D (2012) |
Cd | SMEWW 3125 (2012) | F− | SMEWW4500 F−B&D (2012) |
Cr (III) | SMEWW 350Cr.B (2012) | NH4+–N | TCVN 6179-1 (1996) |
Cu | SMEWW 3125 (2012) | TN | TCVN 6638 (2000) |
Fe | SMEWW 3125 (2012) | TP | TCVN 6202 (2008) |
Hg | SMEWW 3125 (2012) | Cl− | SMEWW4500 (2012) |
Mn | SMEWW 3125 (2012) | Coliform | TCVN 6187-1 (2009) |
LPI in March 2017 | LPI in December 2019 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Index | Parameter | Value | Pi | Wi | WiPi | LPI | Value | Pi | Wi | WiPi | LPI |
LPIor | BOD5 | 2.0 × 103 | 40 | 0.267 | 10.7 | 1.48 × 103 | 32 | 0.267 | 8.54 | ||
COD | 4.14 × 103 | 62 | 0.263 | 16.3 | 2.96 × 103 | 58 | 0.263 | 15.3 | |||
Phenolic | 0.60 | 5 | 0.246 | 1.23 | 0.40 | 5 | 0.246 | 1.23 | |||
Coliform | 5.0 × 107 | 100 | 0.224 | 22.4 | 50.6 | 1.06 × 108 | 100 | 0.224 | 22.4 | 47.4 | |
LPIin | pH | 8.65 | 5 | 0.214 | 1.07 | 8.23 | 5 | 0.214 | 1.07 | ||
NH4+–N | 9.08 × 102 | 95 | 0.198 | 18.8 | 1.47 × 103 | 100 | 0.198 | 19.8 | |||
Cl− | 1.62 × 103 | 11 | 0.187 | 2.06 | 9.61 × 102 | 7 | 0.187 | 1.31 | |||
TN | 1.45 × 103 | 50 | 0.206 | 10.3 | 40.1 | 1.72 × 103 | 60 | 0.206 | 12.4 | 42.9 | |
LPIhm | Fe | 6.35 | 5 | 0.088 | 0.44 | 1.25 × 101 | 6 | 0.088 | 0.53 | ||
Cu | 0.019 | 5 | 0.098 | 0.49 | 0.026 | 5 | 0.098 | 0.49 | |||
Ni | 0.183 | 5 | 0.102 | 0.51 | 0.085 | 5 | 0.102 | 0.51 | |||
Zn | 0.443 | 5 | 0.110 | 0.55 | 0.344 | 5 | 0.110 | 0.55 | |||
Pb | 0.025 | 5 | 0.123 | 0.62 | 0.135 | 6 | 0.123 | 0.74 | |||
Cr | 0.090 | 5 | 0.125 | 0.63 | 0.038 | 5 | 0.125 | 0.63 | |||
As | 0.137 | 5 | 0.119 | 0.60 | 0.031 | 5 | 0.119 | 0.60 | |||
CN | 0.027 | 5 | 0.114 | 0.57 | 0.006 | 5 | 0.114 | 0.57 | |||
Hg | 0.002 | 5 | 0.121 | 0.61 | 5.0 | 0.001 | 5 | 0.121 | 0.61 | 5.2 | |
Overall LPI | 24.6 | 24.7 |
2017 | 2018 | 2019 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Parameters | Mar. | Jun. | Sep. | Dec. | Mar. | Jun. | Sep. | Dec. | Mar. | Jun. | Sep. | Dec. |
Temperature (°C) | 22 | 28 | 33 | 20 | 27 | 32 | 29 | 25 | 24 | 30 | 29 | 22 |
pH | 7.8 | 8.4 | 9.8 | 8.6 | 7.6 | 7.8 | 6.5 | 8.1 | 8.0 | 8.6 | 8.0 | 8.3 |
DO (mg/L) | 0 | 0.32 | 0 | 0 | 0 | 0.1 | 0 | 0 | 0 | 0 | 0.35 | 0.28 |
BOD5 (mg/L) | 3.8 × 103 | 6.9 × 102 | 7.2 × 102 | 2.7 × 103 | 1.2 × 103 | 2.7 × 103 | 6.3 × 102 | 4.3 × 102 | 4.3 × 102 | 2.6 × 103 | 8.9 × 102 | 1.5 × 103 |
COD (mg/L) | 7.8 × 103 | 1.5 × 103 | 1.7 × 103 | 5.5 × 103 | 3.8 × 103 | 6.1 × 103 | 1.4 × 103 | 1.0 × 103 | 1.0 × 103 | 5.5 × 103 | 2.1 × 103 | 3.2 × 103 |
SS (mg/L) | 2.7 × 102 | 1.7 × 102 | 1.6 × 102 | 9.6 × 102 | 2.5 × 102 | 6.7 × 102 | 4.9 × 102 | 1.6 × 102 | 0.8 × 102 | 3.0 × 102 | 0.8 × 102 | 0.4 × 102 |
As (mg/L) | 0.24 | 0.14 | 0.13 | 0.038 | 0.001 | 0.010 | 0.007 | 0.025 | 0.004 | 0.014 | 0.075 | 0.03 |
Cd (mg/L) | 0.0012 | 0.001 | 0.0009 | 0.0005 | 0.001 | 0.039 | 0.0006 | 0.025 | <0.0002 | 0.01 | 0.0008 | 0.0005 |
Cr (III) (mg/L) | 0.097 | 0.14 | 0.085 | 0.040 | 0.095 | 0.13 | 0.008 | 0.28 | 0.005 | 0.039 | 0.069 | 0.035 |
Cr (VI) (mg/L) | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.017 | <0.01 | <0.04 | <0.04 | <0.01 | 0.069 | 0.035 |
Cu (mg/L) | 0.019 | 0.035 | 0.016 | 0.007 | 0.015 | 0.034 | 0.005 | 0.75 | 0.015 | 0.018 | 0.039 | 0.032 |
Fe (mg/L) | 8.5 | 6.4 | 6.4 | 4.1 | 8.5 | 10 | 0.98 | 41 | 0.7 | 19 | 23 | 8.1 |
Hg (mg/L) | 0.0061 | 0.0005 | 0.001 | 0.0006 | 0.006 | 0.008 | 0.0002 | 0.003 | 0.0009 | 0.001 | 0.0005 | 0.002 |
Mn (mg/L) | 0.41 | 0.22 | 0.23 | 0.56 | 0.40 | 0.47 | 0.03 | 10.4 | 0.01 | 7.5 | 5.4 | 0.6 |
Ni (mg/L) | 0.32 | 0.21 | 0.13 | 0.069 | 0.32 | 0.39 | 0.008 | 0.45 | 0.017 | 0.084 | 0.039 | 0.2 |
Pb (mg/L) | 0.023 | 0.04 | 0.013 | 0.024 | 0.002 | 0.014 | 0.009 | 1.65 | 0.008 | 0.008 | 0.024 | 0.5 |
Zn (mg/L) | 0.28 | 1.1 | 0.33 | 0.11 | 0.29 | 0.25 | 0.069 | 8.4 | 0.083 | 0.28 | 0.25 | 0.77 |
CN− (mg/L) | <0.004 | 0.019 | 0.028 | 0.034 | <0.004 | <0.02 | 0.011 | 0.009 | 0.007 | 0.008 | 0.005 | 0.005 |
Phenol (mg/L) | 1.4 | 0.22 | 0.25 | 0.50 | 1.5 | 0.41 | 0.26 | 0.20 | 0.17 | 0.92 | 0.37 | 0.14 |
S2− (mg/L) | 16 | 21 | 5.4 | 17 | 16 | 13 | 0.48 | 0.01 | 0.35 | 11 | 5.3 | 0.85 |
F− (mg/L) | 11 | 11 | 6.4 | 4.3 | 10 | 11 | 9.1 × 102 | 31 | 50 | 49 | 11 | 13 |
NH4+–N (mg/L) | 1.2 × 103 | 6.3 × 102 | 7.6 × 102 | 1.0 × 103 | 5.3 × 102 | 8.6 × 102 | 9.7 × 102 | 1.1 × 103 | 1.2 × 103 | 1.2 × 103 | 1.3 × 103 | 2.1 × 103 |
TN (mg/L) | 1.3 × 103 | 1.6 × 103 | 1.6 × 103 | 1.4 × 103 | 1.3 × 103 | 1.3 × 103 | 1.1 × 103 | 1.4 × 103 | 1.5 × 103 | 1.5 × 103 | 1.4 × 103 | 2.5 × 103 |
TP (mg/L) | 9.7 | 0.74 | 13 | 3.1 | 9.7 | 23 | 13 | 21 | 12 | 3.6 | 15 | 22 |
Cl− (mg/L) | 1.8 × 103 | 1.5 × 103 | 1.5 × 103 | 1.6 × 103 | 1.8 × 103 | 1.9 × 103 | 1.3 × 103 | 1.3 × 103 | 1.2 × 103 | 2.4 × 102 | 1.4 × 103 | 9.8 × 102 |
Coliform (MPN/100 mL) | 4.7 × 107 | 3.6 × 107 | 7.5 × 107 | 4.3 × 107 | 4.5 × 107 | 4.6 × 107 | 4.3 × 109 | 7.5 × 108 | 3.9 × 108 | 3.1 × 107 | 3.1 × 106 | 2.7 × 106 |
2017 | 2018 | 2019 | QCVN 40 [21] | |
---|---|---|---|---|
LPIor | 50.6 | 48.2 | 46.9 | 24.4 |
LPIin | 40.1 | 35.8 | 42.4 | 5.5 |
LPIhm | 5.0 | 5.8 | 5.2 | 5.0 |
Overall LPI | 24.6 | 23.3 | 24.4 | 9.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoai, S.T.; Nguyen Lan, H.; Thi Viet, N.T.; Nguyen Hoang, G.; Kawamoto, K. Characterizing Seasonal Variation in Landfill Leachate Using Leachate Pollution Index (LPI) at Nam Son Solid Waste Landfill in Hanoi, Vietnam. Environments 2021, 8, 17. https://doi.org/10.3390/environments8030017
Hoai ST, Nguyen Lan H, Thi Viet NT, Nguyen Hoang G, Kawamoto K. Characterizing Seasonal Variation in Landfill Leachate Using Leachate Pollution Index (LPI) at Nam Son Solid Waste Landfill in Hanoi, Vietnam. Environments. 2021; 8(3):17. https://doi.org/10.3390/environments8030017
Chicago/Turabian StyleHoai, Son Tran, Huong Nguyen Lan, Nga Tran Thi Viet, Giang Nguyen Hoang, and Ken Kawamoto. 2021. "Characterizing Seasonal Variation in Landfill Leachate Using Leachate Pollution Index (LPI) at Nam Son Solid Waste Landfill in Hanoi, Vietnam" Environments 8, no. 3: 17. https://doi.org/10.3390/environments8030017
APA StyleHoai, S. T., Nguyen Lan, H., Thi Viet, N. T., Nguyen Hoang, G., & Kawamoto, K. (2021). Characterizing Seasonal Variation in Landfill Leachate Using Leachate Pollution Index (LPI) at Nam Son Solid Waste Landfill in Hanoi, Vietnam. Environments, 8(3), 17. https://doi.org/10.3390/environments8030017