Human Cell Culture, a Pertinent In Vitro Model to Evaluate the Toxicity of Landfill Leachate/Sewage Sludge. A Review
Abstract
:1. Introduction
2. Methods for Determining Cell Viability
3. The Use of Selected Human Cell Lines in Studies of the Basal Toxicity, Genotoxicity, Cytotoxicity and an Estrogenic Potential of LL and SS
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Luo, H.; Zeng, Y.; Cheng, Y.; He, D.; Pan, X. Recent advances in municipal landfill leachate: A review focusing on its characteristics, treatment, and toxicity assessment. Sci. Total Environ. 2020, 703, 135468. [Google Scholar] [CrossRef]
- Lebron, Y.A.R.; Moreira, V.R.; Brasil, Y.L.; Silva, A.F.R.; Santos, L.V.S.; Lange, L.C.; Amaral, M.C.S. A survey on experiences in leachate treatment: Common practices, differences worldwide and future perspectives. J. Environ. Manag. 2021, 288, 112475. [Google Scholar] [CrossRef] [PubMed]
- Clarke, B.O.; Anumol, T.; Barlaz, M.; Snyder, S.A. Investigating landfill leachate as a source of trace organic pollutants. Chemosphere 2015, 127, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Masoner, J.R.; Kolpin, D.W.; Furlong, E.T.; Cozzarelli, I.M.; Gray, J.L. Landfill leachate as a mirror of today’s disposable society: Pharmaceuticals and other contaminants of emerging concern in final leachate from landfills in the conterminous United States. Environ. Toxicol. Chem. 2016, 35, 906–918. [Google Scholar] [CrossRef] [PubMed]
- Moody, C.M.; Townsend, T.G. A comparison of landfill leachates based on waste composition. Waste Manag. 2017, 63, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Tait, P.W.; Brew, J.; Che, A.; Costanzo, A.; Danyluk, A.; Davis, M.; Khalaf, A.; McMahon, K.; Watson, A.; Rowcliff, K.; et al. The health impacts of waste incineration: A systematic review. Aust. N. Z. J. Public Health 2019, 44, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Goria, S.; Daniau, C.; De Crouy-Chanel, P.; Empereur-Bissonnet, P.; Fabre, P.; Colonna, M.; Duboudin, C.; Viel, J.-F.; Richardson, S. Risk of cancer in the vicinity of municipal solid waste incinerators: Importance of using a flexible modelling strategy. Int. J. Health Geogr. 2009, 8, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Candela, S.; Bonvicini, L.; Ranzi, A.; Baldacchini, F.; Broccoli, S.; Cordioli, M.; Carretta, E.; Luberto, F.; Angelini, P.; Evangelista, A.; et al. Exposure to emissions from municipal solid waste incinerators and miscarriages: A multisite study of the MONITER Project. Environ. Int. 2015, 78, 51–60. [Google Scholar] [CrossRef]
- Christensen, T.H.; Kjeldsen, P.; Bjerg, P.L.; Jensen, D.L.; Christensen, J.B.; Baun, A.; Albrechtsen, H.-J.; Heron, G. Biogeochemistry of landfill leachate plumes. Appl. Geochem. 2001, 16, 659–718. [Google Scholar] [CrossRef]
- Palmiotto, M.; Fattore, E.; Paiano, V.; Celeste, G.; Colombo, A.; Davoli, E. Influence of a municipal solid waste landfill in the surrounding environment: Toxicological risk and odor nuisance effects. Environ. Int. 2014, 68, 16–24. [Google Scholar] [CrossRef]
- Nadal, M.; Rovira, J.; Díaz-Ferrero, J.; Schuhmacher, M.; Domingo, J.L. Human exposure to environmental pollutants after a tire landfill fire in Spain: Health risks. Environ. Int. 2016, 97, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Mishra, H.; Karmakar, S.; Kumar, R.; Kadambala, P. A long-term comparative assessment of human health risk to leachate-contaminated groundwater from heavy metal with different liner systems. Environ. Sci. Pollut. Res. Int. 2017, 25, 2911–2923. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, P.; Thakur, I.S. An integrated approach to study the risk from landfill soil of Delhi: Chemical analyses, in vitro assays and human risk assessment. Ecotoxicol. Environ. Saf. 2017, 143, 120–128. [Google Scholar]
- Baderna, D.; Colombo, A.; Amodei, G.; Cantù, S.; Teoldi, F.; Cambria, F.; Rotella, G.; Natolino, F.; Lodi, M.; Benfenati, E. Chemical-based risk assessment and in vitro models of human health effects induced by organic pollutants in soils from the Olona valley. Sci. Total Environ. 2013, 463–464, 790–801. [Google Scholar] [CrossRef]
- Feng, S.; Wang, X.; Wei, G.; Peng, P.; Yang, Y.; Cao, Z. Leachates of municipal solid waste incineration bottom ash from Macao: Heavy metal concentrations and genotoxicity. Chemosphere 2007, 67, 1133–1137. [Google Scholar] [CrossRef]
- Kjeldsen, P.; Barlaz, M.A.; Rooker, A.P.; Baun, A.; Ledin, A.; Christensen, T.H. Present and long-term composition of MSW landfill leachate: A review. Crit. Rev. Environ. Sci. Technol. 2002, 32, 297–336. [Google Scholar] [CrossRef]
- Renou, S.; Givaudan, J.; Poulain, S.; Dirassouyan, F.; Moulin, P. Landfill leachate treatment: Review and opportunity. J. Hazard. Mater. 2008, 150, 468–493. [Google Scholar] [CrossRef]
- Mahmud, K.; Hossain, D.; Shams, S. Different treatment strategies for highly polluted landfill leachate in developing countries. Waste Manag. 2012, 32, 2096–2105. [Google Scholar] [CrossRef]
- Morozesk, M.; Bonomo, M.M.; Souza, I.D.C.; Rocha, L.D.; Duarte, I.D.; Martins, I.O.; Dobbss, L.B.; Carneiro, M.T.W.D.; Fernandes, M.N.; Matsumoto, S.T. Effects of humic acids from landfill leachate on plants: An integrated approach using chemical, biochemical and cytogenetic analysis. Chemosphere 2017, 184, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Aparicio, I.; Santos, J.; Alonso, E. Limitation of the concentration of organic pollutants in sewage sludge for agricultural purposes: A case study in South Spain. Waste Manag. 2009, 29, 1747–1753. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Avila, J.; Bonet, J.; Velasco, G.; Lacorte, S. Determination and occurrence of phthalates, alkylphenols, bisphenol A, PBDEs, PCBs and PAHs in an industrial sewage grid discharging to a municipal wastewater treatment plant. Sci. Total Environ. 2009, 407, 4157–4167. [Google Scholar] [CrossRef]
- Vogelsang, C.; Grung, M.; Jantsch, T.G.; Tollefsen, K.E.; Liltved, H. Occurrence and removal of selected organic micropollutants at mechanical, chemical and advanced wastewater treatment plants in Norway. Water Res. 2006, 40, 3559–3570. [Google Scholar] [CrossRef]
- Jabłońska-Trypuć, A.; Wydro, U.; Wołejko, E.; Pietryczuk, A.; Cudowski, A.; Leszczyński, J.; Rodziewicz, J.; Janczukowicz, W.; Butarewicz, A. Potential toxicity of leachate from the municipal landfill in view of the possibility of their migration to the environment through infiltration into groundwater. Environ. Geochem. Health 2021, 1–16. [Google Scholar] [CrossRef]
- Baderna, D.; Caloni, F.; Benfenati, E. Investigating landfill leachate toxicity in vitro: A review of cell models and endpoints. Environ. Int. 2019, 122, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Naveen, B.; Mahapatra, D.M.; Sitharam, T.; Sivapullaiah, P.; Ramachandra, T. Physico-chemical and biological characterization of urban municipal landfill leachate. Environ. Pollut. 2017, 220, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Gupta, A.K.; Ganguly, R. Impact of open dumping of municipal solid waste on soil properties in mountainous region. J. Rock Mech. Geotech. Eng. 2018, 10, 725–739. [Google Scholar] [CrossRef]
- Latza, U.; Gerdes, S.; Baur, X. Effects of nitrogen dioxide on human health: Systematic review of experimental and epidemiological studies conducted between 2002 and 2006. Int. J. Hyg. Environ. Health 2009, 212, 271–287. [Google Scholar] [CrossRef]
- Duruibe, J.O.; Ogwuegbu, M.O.C.; Egwurugwu, J.N. Heavy metal pollution and human biotoxic effects. Int. J. Phys. Sci. 2007, 2, 112–118. [Google Scholar]
- Martin, S.; Griswold, W. Human health effects of heavy metals. Environ. Sci. Tech. Briefs Citiz. 2009, 15, 1–6. [Google Scholar]
- Barlaz, M.A.; Rooker, A.P.; Kjeldsen, P.; Gabr, M.A.; Borden, R.C. Critical evaluation of factors required to terminate the postclosure monitoring period at solid waste landfills. Environ. Sci. Technol. 2002, 36, 3457–3464. [Google Scholar] [CrossRef] [Green Version]
- Han, Z.; Ma, H.; Shi, G.; He, L.; Wei, L.; Shi, Q. A review of groundwater contamination near municipal solid waste landfill sites in China. Sci. Total Environ. 2016, 569–570, 1255–1264. [Google Scholar] [CrossRef]
- Propp, V.R.; De Silva, A.O.; Spencer, C.; Brown, S.J.; Catingan, S.D.; Smith, J.E.; Roy, J.W. Organic contaminants of emerging concern in leachate of historic municipal landfills. Environ. Pollut. 2021, 276, 116474. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, P.; Thakur, I.S.; Kaushik, A. Bioassays for toxicological risk assessment of landfill leachate: A review. Ecotoxicol. Environ. Saf. 2017, 141, 259–270. [Google Scholar] [CrossRef]
- Jabłońska-Trypuć, A.; Wydro, U.; Serra-Majem, L.; Wołejko, E.; Butarewicz, A. The analysis of bifenox and dichlobenil toxicity in selected microorganisms and human cancer cells. Int. J. Environ. Res. Public Health 2019, 16, 4137. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Y.R.; De Araujo, C.; Sze, C.C.; Stuckey, D.C. Toxicity measurement in biological wastewater treatment processes: A review. J. Hazard. Mater. 2015, 286, 15–29. [Google Scholar] [CrossRef]
- Zavala, J.; Freedman, A.N.; Szilagyi, J.T.; Jaspers, I.; Wambaugh, J.F.; Higuchi, M.; Rager, J.E. New approach methods to evaluate health risks of air pollutants: Critical design considerations for in vitro exposure testing. Int. J. Environ. Res. Public Health 2020, 17, 2124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neale, P.A.; Brack, W.; Aït-Aïssa, S.; Busch, W.; Hollender, J.; Krauss, M.; Maillot-Marechal, E.; Munz, N.A.; Schlichting, R.; Schulze, T.; et al. Solid-phase extraction as sample preparation of water samples for cell-based and other in vitro bioassays. Environ. Sci. Process. Impacts 2018, 20, 493–504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sommaggio, L.R.D.; Mazzeo, D.E.C.; Pamplona-Silva, M.T.; Marin-Morales, M.A. Evaluation of the potential agricultural use of biostimulated sewage sludge using mammalian cell culture assays. Chemosphere 2018, 199, 10–15. [Google Scholar] [CrossRef] [Green Version]
- Prasse, C.; Stalter, D.; Schulte-Oehlmann, U.; Oehlmann, J.; Ternes, T.A. Spoilt for choice: A critical review on the chemical and biological assessment of current wastewater treatment technologies. Water Res. 2015, 87, 237–270. [Google Scholar] [CrossRef] [Green Version]
- Žegura, B.; Heath, E.; Černoša, A.; Filipič, M. Combination of in vitro bioassays for the determination of cytotoxic and genotoxic potential of wastewater, surface water and drinking water samples. Chemosphere 2009, 75, 1453–1460. [Google Scholar] [CrossRef]
- Krzysztoń-Russjan, J.; Książek, I.; Anuszewska, E. Porównanie użyteczności testów MTT i EZ4U stosowanych do oceny cytotoksyczności ksenobiotyków. Farm. Pol. 2009, 65, 395–402. [Google Scholar]
- Strober, W. Trypan blue exclusion test of cell viability. Curr. Protoc. Immunol. 2015, 111, A3.B.1–A3.B.3. [Google Scholar] [CrossRef] [PubMed]
- Boyd, V.; Cholewa, O.M.; Papas, K.K. Limitations in the use of fluorescein diacetate/propidium iodide (FDA/PI) and cell permeable nucleic acid stains for viability measurements of isolated islets of langerhans. Curr. Trends Biotechnol. Pharm. 2008, 2, 66–84. [Google Scholar]
- Narasimhan, M.; Balaji, T.M.; Varadarajan, S.; Chamundeeswari, D.P.; Sakthisekaran, D. In vitro anticancer effects of cinnamomum verum J. Presl, Cinnamaldehyde, 4 Hydroxycinnamic acid and Eugenol on an oral squamous cell carcinoma cell line. J. Contemp. Dent. Pr. 2020, 21, 1027–1033. [Google Scholar] [CrossRef]
- Repetto, G.; Del Peso, A.; Zurita, J.L. Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat. Protoc. 2008, 3, 1125–1131. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Nagarajan, A.; Uchil, P.D. Analysis of cell viability by the lactate dehydrogenase assay. Cold Spring Harb. Protoc. 2018, 2018, pdb-prot095497. [Google Scholar] [CrossRef]
- Han, X.; Gelein, R.; Corson, N.; Wade-Mercer, P.; Jiang, J.; Biswas, P.; Finkelstein, J.N.; Elder, A.; Oberdörster, G. Validation of an LDH assay for assessing nanoparticle toxicity. Toxicology 2011, 287, 99–104. [Google Scholar] [CrossRef] [Green Version]
- Yuen, C.T.; Kind, P.R.; Price, R.G.; Praill, P.F.; Richardson, A.C. Colorimetric assay for N-acetyl-beta-D-glucosaminidase (NAG) in pathological urine using the omega-nitrostyryl substrate: The development of a kit and the comparison of manual procedure with the automated fluorimetric method. Ann. Clin. Biochem. 1984, 21, 295–300. [Google Scholar] [CrossRef]
- Tolosa, L.; Donato, M.T.; Gómez-Lechón, M.J. General cytotoxicity assessment by means of the MTT assay. Methods Mol. Biol. 2014, 1250, 333–348. [Google Scholar] [CrossRef]
- Vichai, V.; Kirtikara, K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat. Protoc. 2006, 1, 1112–1116. [Google Scholar] [CrossRef]
- Cree, I.; Andreotti, P. Measurement of cytotoxicity by ATP-based luminescence assay in primary cell cultures and cell lines. Toxicol. In Vitro 1997, 11, 553–556. [Google Scholar] [CrossRef]
- Rampersad, S.N. Multiple applications of alamar blue as an indicator of metabolic function and cellular health in cell viability bioassays. Sensors 2012, 12, 12347–12360. [Google Scholar] [CrossRef] [PubMed]
- Widziewicz, K.; Kalka, J.; Skonieczna, M.; Madej, P. The comet assay for the evaluation of genotoxic potential of landfill leachate. Sci. World J. 2012, 2012, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Yi, X.; Tran, N.H.; Yin, T.; He, Y.; Gin, K.Y.-H. Removal of selected PPCPs, EDCs, and antibiotic resistance genes in landfill leachate by a full-scale constructed wetlands system. Water Res. 2017, 121, 46–60. [Google Scholar] [CrossRef]
- Schilirò, T.; Porfido, A.; Longo, A.; Coluccia, S.; Gilli, G. The E-screen test and the MELN gene-reporter assay used for determination of estrogenic activity in fruits and vegetables in relation to pesticide residues. Food Chem. Toxicol. 2013, 62, 82–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mavakala, B.K.; Le Faucheur, S.; Mulaji, C.; Laffite, A.; Devarajan, N.; Biey, E.M.; Giuliani, G.; Otamonga, J.-P.; Kabatusuila, P.; Mpiana, P.T.; et al. Leachates draining from controlled municipal solid waste landfill: Detailed geochemical characterization and toxicity tests. Waste Manag. 2016, 55, 238–248. [Google Scholar] [CrossRef] [PubMed]
- Thomas, D.J.L.; Tyrrel, S.F.; Smith, R.; Farrow, S. Bioassays for the evaluation of landfill leachate toxicity. J. Toxicol. Environ. Health Part B 2009, 12, 83–105. [Google Scholar] [CrossRef] [PubMed]
- Frazier, J.M. In vitro models for toxicological research and testing. Toxicol. Lett. 1993, 68, 73–90. [Google Scholar] [CrossRef]
- Ramirez, T.; Strigun, A.; Verlohner, A.; Huener, H.-A.; Peter, E.; Herold, M.; Bordag, N.; Mellert, W.; Walk, T.; Spitzer, M.; et al. Prediction of liver toxicity and mode of action using metabolomics in vitro in HepG2 cells. Arch. Toxicol. 2018, 92, 893–906. [Google Scholar] [CrossRef] [Green Version]
- Baderna, D.; Maggioni, S.; Boriani, E.; Gemma, S.; Molteni, M.; Lombardo, A.; Colombo, A.; Bordonali, S.; Rotella, G.; Lodi, M.; et al. A combined approach to investigate the toxicity of an industrial landfill’s leachate: Chemical analyses, risk assessment and in vitro assays. Environ. Res. 2011, 111, 603–613. [Google Scholar] [CrossRef]
- Morgado, P.I.; Jose, S.; Wanke, R.; Antunes, A.M.M.; Cardoso, A.S.; Jordao, L. Integration of cellular and molecular endpoints to assess the toxicity of polycyclic aromatic hydrocarbons in HepG2 cell line. Environ. Toxicol. Chem. 2017, 36, 3404–3414. [Google Scholar] [CrossRef] [PubMed]
- Bertanza, G.; Papa, M.; Pedrazzani, R.; Repice, C.; Mazzoleni, G.; Steimberg, N.; Feretti, D.; Ceretti, E.; Zerbini, I. EDCs, estrogenicity and genotoxicity reduction in a mixed (domestic+textile) secondary effluent by means of ozonation: A full-scale experience. Sci. Total Environ. 2013, 458–460, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Suo, J.; Zhao, L.; Yin, P.; Lu, G.; Liu, P. Estrogen effect of MCF-7 cells on phenol extracts after IME-Fenton treatment of aged landfill leachate. Acta Sci. Circumst. 2016, 36, 1121–1128. [Google Scholar]
- Coors, A.; Jones, P.D.; Giesy, J.P.; Ratte, H.T. Removal of estrogenic activity from municipal waste landfill leachate assessed with a bioassay based on reporter gene expression. Environ. Sci. Technol. 2003, 37, 3430–3434. [Google Scholar] [CrossRef] [PubMed]
- Freyberger, A.; Schmuck, G. Screening for estrogenicity and anti-estrogenicity: A critical evaluation of an MVLN cell-based transactivation assay. Toxicol. Lett. 2005, 155, 1–13. [Google Scholar] [CrossRef]
- Liu, Y.-Y.; Lin, Y.-S.; Yen, C.-H.; Miaw, C.-L.; Chen, T.-C.; Wu, M.-C.; Hsieh, C.-Y. Identification, contribution, and estrogenic activity of potential EDCs in a river receiving concentrated livestock effluent in Southern Taiwan. Sci. Total Environ. 2018, 636, 464–476. [Google Scholar] [CrossRef]
- Jabłońska-Trypuć, A.; Wydro, U.; Serra-Majem, L.; Butarewicz, A.; Wołejko, E. Studies on the cytotoxicity of filtrates obtained from sewage sludge from the municipal wastewater treatment plant. Desalination Water Treat. 2020, 186, 29–38. [Google Scholar] [CrossRef]
- Khalil, C.; AL Hageh, C.; Korfali, S.; Khnayzer, R. Municipal leachates health risks: Chemical and cytotoxicity assessment from regulated and unregulated municipal dumpsites in Lebanon. Chemosphere 2018, 208, 1–13. [Google Scholar] [CrossRef]
- Gajski, G.; Oreščanin, V.; Garaj-Vrhovac, V. Chemical composition and genotoxicity assessment of sanitary landfill leachate from Rovinj, Croatia. Ecotoxicol. Environ. Saf. 2012, 78, 253–259. [Google Scholar] [CrossRef]
- Tewari, A.; Dhawan, A.; Gupta, S.K. DNA damage in bone marrow and blood cells of mice exposed to municipal sludge leachates. Environ. Mol. Mutagen. 2006, 47, 271–276. [Google Scholar] [CrossRef]
- Jabłońska-Trypuć, A.; Wydro, U.; Serra-Majem, L.; Butarewicz, A.; Wołejko, E. The comparison of selected types of municipal sewage sludge filtrates toxicity in different biological models: From bacterial strains to mammalian cells. Preliminary study. Water 2019, 11, 2353. [Google Scholar] [CrossRef] [Green Version]
- Talorete, T.; Limam, A.; Kawano, M.; Jenhani, A.B.R.; Ghrabi, A.; Isoda, H. Stress response of mammalian cells incubated with landfill leachate. Environ. Toxicol. Chem. 2008, 27, 1084–1092. [Google Scholar] [CrossRef] [PubMed]
- Alimba, C.G.; Gandhi, D.; Sivanesan, S.; Bhanarkar, M.D.; Naoghare, P.K.; Bakare, A.A.; Krishnamurthi, K. Chemical characterization of simulated landfill soil leachates from Nigeria and India and their cytotoxicity and DNA damage inductions on three human cell lines. Chemosphere 2016, 164, 469–479. [Google Scholar] [CrossRef] [PubMed]
- Alabi, O.A.; Bakare, A.A.; Filippin-Monteiro, F.B.; Sierra, J.A.; Creczynski-Pasa, T.B. Electronic waste leachate-mediated DNA fragmentation and cell death by apoptosis in mouse fibroblast (NIH/3T3) cell line. Ecotoxicol. Environ. Saf. 2013, 94, 87–93. [Google Scholar] [CrossRef]
- Ghosh, P.; Gupta, A.; Thakur, I.S. Combined chemical and toxicological evaluation of leachate from municipal solid waste landfill sites of Delhi, India. Environ. Sci. Pollut. Res. Int. 2015, 22, 9148–9158. [Google Scholar] [CrossRef]
- Garaj-Vrhovac, V.; Oreščanin, V.; Gajski, G.; Gerić, M.; Ruk, D.; Kollar, R.; Brkanac, S.R.; Cvjetko, P. Toxicological characterization of the landfill leachate prior/after chemical and electrochemical treatment: A study on human and plant cells. Chemosphere 2013, 93, 939–945. [Google Scholar] [CrossRef]
Viability/Toxicity/Genotoxicity/ Endocrine Disrupting Test | Cell Line Used | Results | Reference |
---|---|---|---|
MTS assay, adenyl kinase release | HepG2 | cytotoxic in low doses (2.5-5%) | [60] |
MTT assay, alkaline comet assay | HepG2 | EC50 value ranging from 11.58 to 20.44% | [75] |
fluorescence microscopy (acridine orange/ethidium bromide) | lymphocytes | cytotoxic effect of raw leachate; treated samples showed no cytotoxic effect | [76] |
MTT assay cell scratch damage | MCF-7 | Phenols extracts from landfill leachate could slow down the rate of migration of cells | [63] |
MTT assay | LN-229 | no cytotoxic activity of sewage sludge filtrates | [71] |
comet assay | NHDF (normal human dermal fibroblasts), Me45 | decrease in LL toxicity after treatment | [53] |
MTT assay CellTiter-Glo™ 2.0 Assay | A-375 fibroblasts | landfill leachate cytotoxic to fibroblasts, no cytotoxic effect in A-375 | [23] |
MTT assay | A-375 fibroblasts | sewage sludge cytotoxic to fibroblasts, no cytotoxic effect in A-375 | [67] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jabłońska-Trypuć, A. Human Cell Culture, a Pertinent In Vitro Model to Evaluate the Toxicity of Landfill Leachate/Sewage Sludge. A Review. Environments 2021, 8, 54. https://doi.org/10.3390/environments8060054
Jabłońska-Trypuć A. Human Cell Culture, a Pertinent In Vitro Model to Evaluate the Toxicity of Landfill Leachate/Sewage Sludge. A Review. Environments. 2021; 8(6):54. https://doi.org/10.3390/environments8060054
Chicago/Turabian StyleJabłońska-Trypuć, Agata. 2021. "Human Cell Culture, a Pertinent In Vitro Model to Evaluate the Toxicity of Landfill Leachate/Sewage Sludge. A Review" Environments 8, no. 6: 54. https://doi.org/10.3390/environments8060054
APA StyleJabłońska-Trypuć, A. (2021). Human Cell Culture, a Pertinent In Vitro Model to Evaluate the Toxicity of Landfill Leachate/Sewage Sludge. A Review. Environments, 8(6), 54. https://doi.org/10.3390/environments8060054