Potentially Toxic Elements’ Contamination of Soils Affected by Mining Activities in the Portuguese Sector of the Iberian Pyrite Belt and Optional Remediation Actions: A Review
Abstract
:1. Introduction
2. Soil Characteristics in Abandoned Mines at the Portuguese Sector of the IPB
2.1. General Considerations
2.1.1. Main Impacts in the IPB
2.1.2. Total versus Extractable PTEs Concentrations
2.1.3. Soil Quality Guidelines Values
2.2. Trace Elements Contamination in Abandoned Mines at the Portuguese Sector of the IPB
2.2.1. Aljustrel Mine
2.2.2. Lousal Mine
2.2.3. São Domingos Mine
3. Remediation of Mine-Degraded Sites in the Portuguese Sector of the IPB
3.1. Conventional Solutions
3.2. The Example of the Aljustrel Mine
3.3. Phytotechnologies
3.4. Plant Selection for the Phytoremediation
3.5. Soil Amendments in Phytotechnologies
- (i)
- (ii)
- Wastes or by-products typical of specific areas of the IPB, and that sometimes are problematic for their over-production or seasonality, such as the olive pomace, “alperujo”, the solid by-product from the extraction of olive oil [210,223], sugarbeet sludge, an alkaline residual waste from the sugar manufacturing process [58,188,192,222,223,226], paper mill sludge [81,200], or from animal production, such as slurries and manures (e.g., pig slurry [142,202,210,227], cow manure or slurry [142,200], poultry manure [200], composted horse manure [228], and green waste compost [49,57,58,206,208,209,211];
- (iii)
- Ash-based materials, which are very alkaline (i.e., pH ranging from 9 to 13), used mainly as liming agents, increasing the pH and buffering capacity of acid soils, but that can also provide nutrients, such biomass-ash or biomass-ash-based material (e.g., granules) from the pulp and paper industry) [81,229,230,231,232,233], or coal combustion fly ash [36].
- (iv)
- More uncommon wastes (organic or inorganic) which are not so usually used as agricultural soil amendments, but could be used in the rehabilitation of mine soils, avoiding their landfilling, and allowing their valorization, such as drinking water treatment residuals [198], polyacrylate polymers [234], or hydroxyapatite, chegemite, and calthemite [29].
- (v)
- Biochar, a material which results from the pyrolysis of different organic materials under limiting oxygen conditions [235], has been proposed successfully to remediate soils affected by high concentrations of PTEs [196,236,237,238]. In fact, biochar is a carbonaceous material which is highly porous, with a large surface area, low density, high cation exchange capacity, and alkaline pH, which makes it a very interesting material to be used in the remediation of PTE contaminated mine soils, by reducing their available concentrations in the amended soils, important in a phytostabilization strategy.
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tornos, F. Environment of Formation and Styles of Volcanogenic Massive Sulfides: The Iberian Pyrite Belt. Ore Geol. Rev. 2006, 28, 259–307. [Google Scholar] [CrossRef]
- Tornos, F.; Pamo, E.; España, J. The Iberian Pyrite Belt. In Contextos Geológicos Españoles: Una Aproximación al Patrimonio Geológico de Relevancia Internacional; Instituto Geológico y Minero: Madrid, Spain, 2008; pp. 56–64. ISBN 978-84-7840-754-5. [Google Scholar]
- Leistel, J.M.; Marcoux, E.; Thiéblemont, D.; Quesada, C.; Sánchez, A.; Almodóvar, G.R.; Pascual, E.; Sáez, R. The Volcanic-Hosted Massive Sulphide Deposits of the Iberian Pyrite Belt. Miner. Depos. 1997, 33, 2–30. [Google Scholar] [CrossRef]
- Solomon, M.; Tornos, F.; Large, R.R.; Badham, J.N.P.; Both, R.A.; Zaw, K. Zn–Pb–Cu Volcanic-Hosted Massive Sulphide Deposits: Criteria for Distinguishing Brine Pool-Type from Black Smoker-Type Sulphide Deposition. Ore Geol. Rev. 2004, 25, 259–283. [Google Scholar] [CrossRef]
- Matos, J.X.; Martins, L.P. Reabilitaçao ambiental de áreas mineiras do sector português da Faixa Piritosa Ibérica: Estado da arte e perspectivas futuras. Boletín Geol. Min. 2006, 117, 289–304. [Google Scholar]
- Nocete, F.; Álex, E.; Nieto, J.M.; Sáez, R.; Bayona, M.R. An Archaeological Approach to Regional Environmental Pollution in the South-Western Iberian Peninsula Related to Third Millennium BC Mining and Metallurgy. J. Archaeol. Sci. 2005, 32, 1566–1576. [Google Scholar] [CrossRef]
- Oliveira, J.M.S.; Farinha, J.; Matos, J.; Paula, Á.; Rosa, C.; Machado, M.J.C.; Daniel, F.S.; Martins, L.; Leite, M.R.M. Diagnóstico Ambiental Das Principais Áreas Mineiras Degradadas Do País. Bol. Minas 2002, 39, 67–85. [Google Scholar]
- González, I.; Galán, E.; Romero, A. Assessing Soil Quality in Areas Affected by Sulfide Mining. Application to Soils in the Iberian Pyrite Belt (SW Spain). Minerals 2011, 1, 73–108. [Google Scholar] [CrossRef] [Green Version]
- Pérez-López, R.; Delgado, J.; Nieto, J.M.; Márquez-García, B. Rare Earth Element Geochemistry of Sulphide Weathering in the São Domingos Mine Area (Iberian Pyrite Belt): A Proxy for Fluid–Rock Interaction and Ancient Mining Pollution. Chem. Geol. 2010, 276, 29–40. [Google Scholar] [CrossRef]
- Oliveira, D.P.S.; Batista, M.J.; Matos, J.X.; Silva, T.P. Mineral Sustainability, Iberian Pyrite Belt Portuguese Sector of the Iberian Pyrite Belt. Comun. Geol. 2020, 107, 11–20. [Google Scholar]
- Karaca, O.; Cameselle, C.; Reddy, K.R. Mine Tailing Disposal Sites: Contamination Problems, Remedial Options and Phytocaps for Sustainable Remediation. Rev. Environ. Sci. Biotechnol. 2018, 17, 205–228. [Google Scholar] [CrossRef]
- Matos, J.; Pereira, Z.; Oliveira, V.; Oliveira, J. The Geological Setting of the São Domingos Pyrite Orebody, Iberian Pyrite Belt. 1 June 2006. Available online: https://www.researchgate.net/publication/295860200_The_geological_setting_of_the_Sao_Domingos_pyrite_orebody_Iberian_Pyrite_Belt (accessed on 28 June 2021).
- Álvarez-Valero, A.M.; Pérez-López, R.; Matos, J.; Capitán, M.A.; Nieto, J.M.; Sáez, R.; Delgado, J.; Caraballo, M. Potential Environmental Impact at São Domingos Mining District (Iberian Pyrite Belt, SW Iberian Peninsula): Evidence from a Chemical and Mineralogical Characterization. Environ. Geol. 2008, 55, 1797–1809. [Google Scholar] [CrossRef]
- Alvarenga, P.; Guerreiro, N.; Simões, I.; Imaginário, M.J.; Palma, P. Assessment of the Environmental Impact of Acid Mine Drainage on Surface Water, Stream Sediments, and Macrophytes Using a Battery of Chemical and Ecotoxicological Indicators. Water 2021, 13, 1436. [Google Scholar] [CrossRef]
- Anawar, H.M. Sustainable Rehabilitation of Mining Waste and Acid Mine Drainage Using Geochemistry, Mine Type, Mineralogy, Texture, Ore Extraction and Climate Knowledge. J. Environ. Manag. 2015, 158, 111–121. [Google Scholar] [CrossRef]
- Kefeni, K.K.; Msagati, T.A.M.; Mamba, B.B. Acid Mine Drainage: Prevention, Treatment Options, and Resource Recovery: A Review. J. Clean. Prod. 2017, 151, 475–493. [Google Scholar] [CrossRef]
- Quental, L.; Brito, M.G.; Sousa, A.J.; Abreu, M.M.; Batista, M.J.; Oliveira, V.; Vairinho, M.; Tavares, T. Utilização de imagens hiperespectrais na avaliação da contaminação mineira em S. Domingos, Faixa Piritosa, Alentejo. In Proceedings of the VI Congresso Nacional de Geologia, Monte de Caparica, Portugal, 4–6 June 2003. [Google Scholar]
- EDM (Empresa de Desenvolvimento Mieiro, S.A.). The Legacy of Abandoned Mines. 2011. Available online: https://edm.pt/wp-content/uploads/2017/03/livro_edm.pdf (accessed on 18 June 2021).
- Decree-Law No. 198-A/2001. 6 July 2001. Available online: https://dre.pt/pesquisa/-/search/365766/details/maximized (accessed on 30 June 2021).
- EDM (Empresa de Desenvolvimento Mieiro, S.A.). Inventariação de Áreas Mineiras. 2017. Available online: https://edm.pt/area-ambiental/inventariacao-de-areas-mineiras/ (accessed on 28 June 2021).
- Law No. 54/2015. 22 June 2015. Available online: https://dre.pt/home/-/dre/67552498/details/maximized (accessed on 30 June 2021).
- Relvas, J.; Pinto, A.; Matos, J. Lousal, Portugal: A Successful Example of Rehabilitation of a Closed Mine in the Iberian Pyrite Belt. Soc. Geol. Appl. Miner. Depos. SGA News 2012, 31, 1–16. [Google Scholar]
- Abraham, J.; Dowling, K.; Florentine, S. Assessment of Potentially Toxic Metal Contamination in the Soils of a Legacy Mine Site in Central Victoria, Australia. Chemosphere 2018, 192, 122–132. [Google Scholar] [CrossRef] [PubMed]
- Bech, J.; Roca, N.; Tume, P.; Ramos-Miras, J.; Gil, C.; Boluda, R. Screening for New Accumulator Plants in Potential Hazards Elements Polluted Soil Surrounding Peruvian Mine Tailings. CATENA 2016, 136, 66–73. [Google Scholar] [CrossRef]
- Protano, G.; Nannoni, F. Influence of Ore Processing Activity on Hg, As and Sb Contamination and Fractionation in Soils in a Former Mining Site of Monte Amiata Ore District (Italy). Chemosphere 2018, 199, 320–330. [Google Scholar] [CrossRef] [PubMed]
- Abreu, M.M.; Santos, E.S.; Magalhães, M.C.F.; Fernandes, E. Trace Elements Tolerance, Accumulation and Translocation in Cistus Populifolius, Cistus Salviifolius and Their Hybrid Growing in Polymetallic Contaminated Mine Areas. J. Geochem. Explor. 2012, 123, 52–60. [Google Scholar] [CrossRef]
- Pietrzykowski, M.; Socha, J.; van Doorn, N.S. Linking Heavy Metal Bioavailability (Cd, Cu, Zn and Pb) in Scots Pine Needles to Soil Properties in Reclaimed Mine Areas. Sci. Total Environ. 2014, 470–471, 501–510. [Google Scholar] [CrossRef]
- Santos, E.S.; Abreu, M.M.; Magalhães, M.C.F. Cistus Ladanifer Phytostabilizing Soils Contaminated with Non-Essential Chemical Elements. Ecol. Eng. 2016, 94, 107–116. [Google Scholar] [CrossRef]
- Arenas-Lago, D.; Abreu, M.M.; Andrade Couce, L.; Vega, F.A. Is Nanoremediation an Effective Tool to Reduce the Bioavailable As, Pb and Sb Contents in Mine Soils from Iberian Pyrite Belt? CATENA 2019, 176, 362–371. [Google Scholar] [CrossRef]
- Maiti, S.K. Properties of Mine Soil and Its Affects on Bioaccumulation of Metals in Tree Species: Case Study from a Large Opencast Coalmining Project. Int. J. Min. Reclam. Environ. 2006, 20, 96–110. [Google Scholar] [CrossRef]
- Ngole-Jeme, V.M.; Fantke, P. Ecological and Human Health Risks Associated with Abandoned Gold Mine Tailings Contaminated Soil. PLoS ONE 2017, 12, e0172517. [Google Scholar] [CrossRef] [Green Version]
- Venkateswarlu, K.; Nirola, R.; Kuppusamy, S.; Thavamani, P.; Naidu, R.; Megharaj, M. Abandoned Metalliferous Mines: Ecological Impacts and Potential Approaches for Reclamation. Rev. Environ. Sci. Biotechnol. 2016, 15, 327–354. [Google Scholar] [CrossRef]
- Wang, L.; Ji, B.; Hu, Y.; Liu, R.; Sun, W. A Review on in Situ Phytoremediation of Mine Tailings. Chemosphere 2017, 184, 594–600. [Google Scholar] [CrossRef] [PubMed]
- Evangelou, V.P.; Zhang, Y.L. A Review: Pyrite Oxidation Mechanisms and Acid Mine Drainage Prevention. Crit. Rev. Environ. Sci. Technol. 1995, 25, 141–199. [Google Scholar] [CrossRef]
- Hubbard, C.G.; Black, S.; Coleman, M.L. Aqueous Geochemistry and Oxygen Isotope Compositions of Acid Mine Drainage from the Río Tinto, SW Spain, Highlight Inconsistencies in Current Models. Chem. Geol. 2009, 265, 321–334. [Google Scholar] [CrossRef]
- Pérez-López, R.; Nieto, J.M.; de Almodóvar, G.R. Immobilization of Toxic Elements in Mine Residues Derived from Mining Activities in the Iberian Pyrite Belt (SW Spain): Laboratory Experiments. Appl. Geochem. 2007, 22, 1919–1935. [Google Scholar] [CrossRef]
- Salomons, W.; Förstner, U. Metals in the Hydrocycle; Springer: Berlin/Heidelberg, Germany, 1984; ISBN 978-3-642-69327-4. [Google Scholar]
- Abreu, M.M.; Batista, M.J.; Magalhães, M.C.F.; Matos, J.X. Acid mine drainage in the Portuguese Iberian Pyrite Belt. In Mine Drainage and Related Problems; Nova Science Pub. Inc.: New York, NY, USA, 2011; pp. 71–118. [Google Scholar]
- Sarmiento, A.M.; Grande, J.A.; Luís, A.T.; Dávila, J.M.; Fortes, J.C.; Santisteban, M.; Curiel, J.; de la Torre, M.L.; da Silva, E.F. Negative PH Values in an Open-Air Radical Environment Affected by Acid Mine Drainage. Characterization and Proposal of a Hydrogeochemical Model. Sci. Total Environ. 2018, 644, 1244–1253. [Google Scholar] [CrossRef]
- Nawab, J.; Khan, S.; Shah, M.T.; Qamar, Z.; Din, I.; Mahmood, Q.; Gul, N.; Huang, Q. Contamination of Soil, Medicinal, and Fodder Plants with Lead and Cadmium Present in Mine-Affected Areas, Northern Pakistan. Environ. Monit. Assess. 2015, 187, 605. [Google Scholar] [CrossRef] [PubMed]
- Józefowska, A.; Pietrzykowski, M.; Woś, B.; Cajthaml, T.; Frouz, J. The Effects of Tree Species and Substrate on Carbon Sequestration and Chemical and Biological Properties in Reforested Post-Mining Soils. Geoderma 2017, 292, 9–16. [Google Scholar] [CrossRef]
- Doumas, P.; Munoz, M.; Banni, M.; Becerra, S.; Bruneel, O.; Casiot, C.; Cleyet-Marel, J.-C.; Gardon, J.; Noack, Y.; Sappin-Didier, V. Polymetallic Pollution from Abandoned Mines in Mediterranean Regions: A Multidisciplinary Approach to Environmental Risks. Reg. Environ. Chang. 2018, 18, 677–692. [Google Scholar] [CrossRef]
- Alvarenga, P.M.; Araújo, M.F.; Silva, J.A.L. Elemental Uptake and Root-Leaves Transfer in Cistus Ladanifer L. Growing in a Contaminated Pyrite Mining Area (Aljustrel-Portugal). Water Air Soil Pollut. 2004, 152, 81–96. [Google Scholar] [CrossRef]
- Madejón, E.; de Mora, A.P.; Felipe, E.; Burgos, P.; Cabrera, F. Soil Amendments Reduce Trace Element Solubility in a Contaminated Soil and Allow Regrowth of Natural Vegetation. Environ. Pollut. 2006, 139, 40–52. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Caliani, J.; Barba-Brioso, C.; González, I.; Galán, E. Heavy Metal Pollution in Soils Around the Abandoned Mine Sites of the Iberian Pyrite Belt (Southwest Spain). Water Air Soil Pollut. 2009, 200, 211–226. [Google Scholar] [CrossRef]
- Monaci, F.; Leidi, E.O.; Mingorance, M.D.; Valdés, B.; Oliva, S.R.; Bargagli, R. Selective Uptake of Major and Trace Elements in Erica Andevalensis, an Endemic Species to Extreme Habitats in the Iberian Pyrite Belt. J. Environ. Sci. 2011, 23, 444–452. [Google Scholar] [CrossRef]
- Anawar, H.M.; Freitas, M.C.; Canha, N.; Santa Regina, I. Arsenic, Antimony, and Other Trace Element Contamination in a Mine Tailings Affected Area and Uptake by Tolerant Plant Species. Environ. Geochem. Health 2011, 33, 353–362. [Google Scholar] [CrossRef]
- Alvarenga, P.; Palma, P.; de Varennes, A.; Cunha-Queda, A.C. A Contribution towards the Risk Assessment of Soils from the São Domingos Mine (Portugal): Chemical, Microbial and Ecotoxicological Indicators. Environ. Pollut. 2012, 161, 50–56. [Google Scholar] [CrossRef]
- Alvarenga, P.; Laneiro, C.; Palma, P.; de Varennes, A.; Cunha-Queda, C. A Study on As, Cu, Pb and Zn (Bio)Availability in an Abandoned Mine Area (São Domingos, Portugal) Using Chemical and Ecotoxicological Tools. Environ. Sci. Pollut. Res. 2013, 20, 6539–6550. [Google Scholar] [CrossRef]
- Rodríguez-Liébana, J.A.; Mingorance, M.D.; Pena, A. Pesticide Mobility and Leachate Toxicity in Two Abandoned Mine Soils. Effect of Organic Amendments. Sci. Total Environ. 2014, 497–498, 561–569. [Google Scholar] [CrossRef]
- Pérez-López, R.; Márquez-García, B.; Abreu, M.M.; Nieto, J.M.; Córdoba, F. Erica andevalensis and Erica australis Growing in the Same Extreme Environments: Phytostabilization Potential of Mining Areas. Geoderma 2014, 230–231, 194–203. [Google Scholar] [CrossRef]
- Durães, N.; Bobos, I.; Ferreira da Silva, E.; Dekayir, A. Copper, Zinc and Lead Biogeochemistry in Aquatic and Land Plants from the Iberian Pyrite Belt (Portugal) and North of Morocco Mining Areas. Environ. Sci. Pollut. Res. 2015, 22, 2087–2105. [Google Scholar] [CrossRef]
- Monaci, F.; Trigueros, D.; Mingorance, M.D.; Rossini-Oliva, S. Phytostabilization Potential of Erica Australis L. and Nerium Oleander L.: A Comparative Study in the Riotinto Mining Area (SW Spain). Environ. Geochem. Health 2020, 42, 2345–2360. [Google Scholar] [CrossRef] [PubMed]
- Santos, E.S.; Abreu, M.M.; Batista, M.J.; Magalhães, M.C.F.; Fernandes, E. Inter-Population Variation on the Accumulation and Translocation of Potentially Harmful Chemical Elements in Cistus ladanifer L. from Brancanes, Caveira, Chança, Lousal, Neves Corvo and São Domingos Mines in the Portuguese Iberian Pyrite Belt. J Soils Sediments 2014, 14, 758–772. [Google Scholar] [CrossRef]
- Alvarenga, P.; Simões, I.; Palma, P.; Amaral, O.; Matos, J.X. Field Study on the Accumulation of Trace Elements by Vegetables Produced in the Vicinity of Abandoned Pyrite Mines. Sci. Total Environ. 2014, 470–471, 1233–1242. [Google Scholar] [CrossRef] [Green Version]
- Antoniadis, V.; Levizou, E.; Shaheen, S.M.; Ok, Y.S.; Sebastian, A.; Baum, C.; Prasad, M.N.V.; Wenzel, W.W.; Rinklebe, J. Trace Elements in the Soil-Plant Interface: Phytoavailability, Translocation, and Phytoremediation—A Review. Earth-Sci. Rev. 2017, 171, 621–645. [Google Scholar] [CrossRef]
- Alvarenga, P.; Gonçalves, A.P.; Fernandes, R.M.; de Varennes, A.; Duarte, E.; Cunha-Queda, C.A.A.; Vallini, G. Reclamation of a Mine Contaminated Soil Using Biologically Reactive Organic Matrices. Waste Manag. Res. 2009, 27, 101–111. [Google Scholar] [CrossRef]
- Alvarenga, P.; Gonçalves, A.P.; Fernandes, R.M.; de Varennes, A.; Vallini, G.; Duarte, E.; Cunha-Queda, A.C. Evaluation of Composts and Liming Materials in the Phytostabilization of a Mine Soil Using Perennial Ryegrass. Sci. Total Environ. 2008, 406, 43–56. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Wang, Y.; Chen, Q.; Li, Y.; Guo, D.; Nie, X.; Peng, X. Assessment of Heavy Metal Pollution and the Effect on Bacterial Community in Acidic and Neutral Soils. Ecol. Indic. 2020, 117, 106626. [Google Scholar] [CrossRef]
- Brevik, E.C.; Slaughter, L.; Singh, B.R.; Steffan, J.J.; Collier, D.; Barnhart, P.; Pereira, P. Soil and Human Health: Current Status and Future Needs. Air Soil Water Res. 2020, 13, 1178622120934441. [Google Scholar] [CrossRef]
- Rodrigues, S.M.; Henriques, B.; Ferreira da Silva, E.; Pereira, M.E.; Duarte, A.C.; Groenenberg, J.E.; Römkens, P.F.A.M. Evaluation of an Approach for the Characterization of Reactive and Available Pools of 20 Potentially Toxic Elements in Soils: Part II--Solid-Solution Partition Relationships and Ion Activity in Soil Solutions. Chemosphere 2010, 81, 1560–1570. [Google Scholar] [CrossRef] [PubMed]
- Harmsen, J. Measuring Bioavailability: From a Scientific Approach to Standard Methods. J. Environ. Qual. 2007, 36, 1420–1428. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, S.M.; Cruz, N.; Coelho, C.; Henriques, B.; Carvalho, L.; Duarte, A.C.; Pereira, E.; Römkens, P.F.A.M. Risk Assessment for Cd, Cu, Pb and Zn in Urban Soils: Chemical Availability as the Central Concept. Environ. Pollut. 2013, 183, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Adriano, D.C.; Wenzel, W.W.; Vangronsveld, J.; Bolan, N.S. Role of Assisted Natural Remediation in Environmental Cleanup. Geoderma 2004, 122, 121–142. [Google Scholar] [CrossRef]
- Groenenberg, J.E.; Römkens, P.F.A.M.; Zomeren, A.V.; Rodrigues, S.M.; Comans, R.N.J. Evaluation of the Single Dilute (0.43 M) Nitric Acid Extraction to Determine Geochemically Reactive Elements in Soil. Environ. Sci. Technol. 2017, 51, 2246–2253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rocha, L.; Rodrigues, S.M.; Lopes, I.; Soares, A.M.V.M.; Duarte, A.C.; Pereira, E. The Water-Soluble Fraction of Potentially Toxic Elements in Contaminated Soils: Relationships between Ecotoxicity, Solubility and Geochemical Reactivity. Chemosphere 2011, 84, 1495–1505. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Yin, M.; Xiao, T.; Zhang, C.; Tsang, D.C.W.; Bao, Z.; Zhou, Y.; Chen, Y.; Luo, X.; Yuan, W.; et al. Thallium Isotopic Fractionation in Industrial Process of Pyrite Smelting and Environmental Implications. J. Hazard. Mater. 2020, 384, 121378. [Google Scholar] [CrossRef]
- Bang, J.; Hesterberg, D. Dissolution of Trace Element Contaminants from Two Coastal Plain Soils as Affected by PH. J. Environ. Qual. 2004, 33, 891–901. [Google Scholar] [CrossRef]
- FAO; GSP. Global Symposium on Soil Pollution. Food and Agriculture Organization of the United Nations. 2008. Available online: http://www.fao.org/about/meetings/global-symposium-on-soil-pollution/en/ (accessed on 29 June 2021).
- Rodríguez Eugenio, N.; McLaughlin, M.J.; Pennock, D.J. Soil Pollution, A Hidden Reality. Global Soil Partnership. Food and Agriculture Organization of the United Nations. Available online: http://www.fao.org/global-soil-partnership/resources/highlights/detail/en/c/1127426/ (accessed on 29 June 2021).
- IUSS (International Union of Soil Sciences) International Decade of Soils, n.d. Available online: https://www.iuss.org/international-decade-of-soils/ (accessed on 30 June 2021).
- EEA (European Environment Agency) Signals 2019—Land and Soil in Europe—European Environment Agency. Available online: https://www.eea.europa.eu/signals/signals-2019-content-list/signals-2019 (accessed on 28 June 2021).
- European Commission 2020. Horizon Europe Framework Programme. Available online: https://ec.europa.eu/info/index_en (accessed on 4 March 2021).
- European Commission 2021. Mission Area: Soil Health and Food. Available online: https://ec.europa.eu/info/research-and-innovation/funding/funding-opportunities/funding-pro-grammes-and-open-calls/horizon-europe/missions-horizon-europe/soil-health-and-food_en (accessed on 28 June 2021).
- Rodrigues, S.M.; Pereira, M.E.; da Silva, E.F.; Hursthouse, A.S.; Duarte, A.C. A Review of Regulatory Decisions for Environmental Protection: Part I—Challenges in the Implementation of National Soil Policies. Environ. Int. 2009, 35, 202–213. [Google Scholar] [CrossRef]
- Rodrigues, S.M.; Pereira, M.E.; da Silva, E.F.; Hursthouse, A.S.; Duarte, A.C. A Review of Regulatory Decisions for Environmental Protection: Part II—The Case-Study of Contaminated Land Management in Portugal. Environ. Int. 2009, 1, 214–225. [Google Scholar] [CrossRef]
- Ferguson, C.C. Assessing Risks from Contaminated Sites: Policy and Practice in 16 European Countries. Land Contam. Reclam. 1999, 7, 23. [Google Scholar]
- Tóth, G.; Hermann, T.; Da Silva, M.R.; Montanarella, L. Heavy Metals in Agricultural Soils of the European Union with Implications for Food Safety. Environ. Int. 2016, 88, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Agência Portuguesa do Ambiente. Solos Contaminados—Guia Técnico. Valores de referência para o solo. 2019. Available online: https://apambiente.pt/avaliacao-e-gestao-ambiental/guias-tecnicos-0 (accessed on 29 June 2021).
- Potter, K. Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health: Benzene; ETDEWEB: Gatineau, QC, Canada, 2004; p. 6. [Google Scholar]
- Alvarenga, P.; Rodrigues, D.; Mourinha, C.; Palma, P.; de Varennes, A.; Cruz, N.; Tarelho, L.A.C.; Rodrigues, S. Use of Wastes from the Pulp and Paper Industry for the Remediation of Soils Degraded by Mining Activities: Chemical, Biochemical and Ecotoxicological Effects. Sci. Total Environ. 2019, 686, 1152–1163. [Google Scholar] [CrossRef]
- Candeias, C.; da Silva, E.F.; Salgueiro, A.R.; Pereira, H.G.; Reis, A.P.; Patinha, C.; Matos, J.X.; Ávila, P.H. Assessment of Soil Contamination by Potentially Toxic Elements in the Aljustrel Mining Area in Order to Implement Soil Reclamation Strategies. Land Degrad. Dev. 2011, 22, 565–585. [Google Scholar] [CrossRef] [Green Version]
- Durães, N.; Bobos, I.; da Silva, E.F. Speciation and Precipitation of Heavy Metals in High-Metal and High-Acid Mine Waters from the Iberian Pyrite Belt (Portugal). Environ. Sci. Pollut. Res. 2017, 24, 4562–4576. [Google Scholar] [CrossRef]
- Luís, A.; Grande, J.; Davila, J.M.; Aroba, J.; Durães, N.; Almeida, S.; Torre, M.; Sarmiento, A.; Garrido, J.C.; Silva, E.; et al. Application of Fuzzy Logic Tools for the Biogeochemical Characterisation of (Un)Contaminated Waters from Aljustrel Mining Area (South Portugal). Chemosphere 2018, 211, 736–744. [Google Scholar] [CrossRef]
- Luís, A.T.; Durães, N.; de Almeida, S.F.P.; da Silva, E.F. Integrating Geochemical (Surface Waters, Stream Sediments) and Biological (Diatoms) Approaches to Assess AMD Environmental Impact in a Pyritic Mining Area: Aljustrel (Alentejo, Portugal). J. Environ. Sci. 2016, 42, 215–226. [Google Scholar] [CrossRef]
- Luís, A.T.; Teixeira, P.; Almeida, S.F.P.; Ector, L.; Matos, J.X.; Ferreira da Silva, E.A. Impact of Acid Mine Drainage (AMD) on Water Quality, Stream Sediments and Periphytic Diatom Communities in the Surrounding Streams of Aljustrel Mining Area (Portugal). Water Air Soil Pollut. 2009, 200, 147–167. [Google Scholar] [CrossRef]
- Maia, F.; Pinto, C.; Waerenborgh, J.C.; Gonçalves, M.A.; Prazeres, C.; Carreira, O.; Sério, S. Metal Partitioning in Sediments and Mineralogical Controls on the Acid Mine Drainage in Ribeira Da Água Forte (Aljustrel, Iberian Pyrite Belt, Southern Portugal). Appl. Geochem. 2012, 27, 1063–1080. [Google Scholar] [CrossRef]
- Candeias, C.; Ferreira da Silva, E.; Salgueiro, A.R.; Pereira, H.G.; Reis, A.P.; Patinha, C.; Matos, J.X.; Ávila, P.H. The Use of Multivariate Statistical Analysis of Geochemical Data for Assessing the Spatial Distribution of Soil Contamination by Potentially Toxic Elements in the Aljustrel Mining Area (Iberian Pyrite Belt, Portugal). Environ. Earth Sci. 2011, 62, 1461–1479. [Google Scholar] [CrossRef]
- Da Silva, E.F.; Patinha, C.; Reis, P.; Fonseca, E.C.; Matos, J.X.; Barrosinho, J.; Oliveira, J.M.S. Interaction of Acid Mine Drainage with Waters and Sediments at the Corona Stream, Lousal Mine (Iberian Pyrite Belt, Southern Portugal). Environ. Geol. 2006, 50, 1001–1013. [Google Scholar] [CrossRef]
- Luís, A.T.; Teixeira, P.; Almeida, S.F.P.; Matos, J.X.; da Silva, E.F. Environmental Impact of Mining Activities in the Lousal Area (Portugal): Chemical and Diatom Characterization of Metal-Contaminated Stream Sediments and Surface Water of Corona Stream. Sci. Total Environ. 2011, 409, 4312–4325. [Google Scholar] [CrossRef]
- Silva, E.F.D.; Fonseca, E.C.; Matos, J.X.; Patinha, C.; Reis, P.; Oliveira, J.M.S. The Effect of Unconfined Mine Tailings on the Geochemistry of Soils, Sediments and Surface Waters of the Lousal Area (Iberian Pyrite Belt, Southern Portugal). Land Degrad. Dev. 2005, 16, 213–228. [Google Scholar] [CrossRef]
- Freitas, H.; Prasad, M.N.V.; Pratas, J. Plant Community Tolerant to Trace Elements Growing on the Degraded Soils of São Domingos Mine in the South East of Portugal: Environmental Implications. Environ. Int. 2004, 30, 65–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-López, R.; Álvarez-Valero, A.M.; Nieto, J.M.; Sáez, R.; Matos, J.X. Use of Sequential Extraction Procedure for Assessing the Environmental Impact at Regional Scale of the São Domingos Mine (Iberian Pyrite Belt). Appl. Geochem. 2008, 23, 3452–3463. [Google Scholar] [CrossRef]
- Andráš, P.; Matos, J.X.; Turisová, I.; Batista, M.J.; Kanianska, R.; Kharbish, S. The Interaction of Heavy Metals and Metalloids in the Soil–Plant System in the São Domingos Mining Area (Iberian Pyrite Belt, Portugal). Environ. Sci. Pollut. Res. 2018, 25, 20615–20630. [Google Scholar] [CrossRef]
- Pereira, R.; Sousa, J.P.; Ribeiro, R.; Gonçalves, F. Microbial Indicators in Mine Soils (S. Domingos Mine, Portugal). Soil Sediment Contam. Int. J. 2006, 15, 147–167. [Google Scholar] [CrossRef]
- Santos, E.S.; Abreu, M.M.; Nabais, C.; Saraiva, J.A. Trace Elements and Activity of Antioxidative Enzymes in Cistus Ladanifer L. Growing on an Abandoned Mine Area. Ecotoxicology 2009, 18, 860–868. [Google Scholar] [CrossRef]
- Arenas-Lago, D.; Santos, E.S.; Carvalho, L.C.; Abreu, M.M.; Andrade, M.L. Cistus Monspeliensis L. as a Potential Species for Rehabilitation of Soils with Multielemental Contamination under Mediterranean Conditions. Environ. Sci. Pollut. Res. 2018, 25, 6443–6455. [Google Scholar] [CrossRef] [Green Version]
- Santos, E.S.; Abreu, M.M.; Saraiva, J.A. Mutielemental Concentration and Physiological Responses of Lavandula Pedunculata Growing in Soils Developed on Different Mine Wastes. Environ. Pollut. 2016, 213, 43–52. [Google Scholar] [CrossRef]
- Gascó, G.; Álvarez, M.L.; Paz-Ferreiro, J.; Méndez, A. Combining Phytoextraction by Brassica Napus and Biochar Amendment for the Remediation of a Mining Soil in Riotinto (Spain). Chemosphere 2019, 231, 562–570. [Google Scholar] [CrossRef]
- Romero-Baena, A.J.; González, I.; Galán, E. Soil Pollution by Mining Activities in Andalusia (South Spain)—The Role of Mineralogy and Geochemistry in Three Case Studies. J. Soils Sediments 2018, 18, 2231–2247. [Google Scholar] [CrossRef]
- Galán, E.; González, I.; Romero, A.; Aparicio, P. A Methodological Approach to Estimate the Geogenic Contribution in Soils Potentially Polluted by Trace Elements. Application to a Case Study. J. Soils Sediments 2014, 14, 810–818. [Google Scholar] [CrossRef]
- Romero, A.; González, I.; Galán, E. Trace Elements Absorption by Citrus in a Heavily Polluted Mining Site. J. Geochem. Explor. 2012, 113, 76–85. [Google Scholar] [CrossRef]
- De la Fuente, V.; Rufo, L.; Rodríguez, N.; Amils, R.; Zuluaga, J. Metal Accumulation Screening of the Río Tinto Flora (Huelva, Spain). Biol. Trace Elem. Res. 2010, 134, 318–341. [Google Scholar] [CrossRef]
- López, M.; González, I.; Romero, A. Trace Elements Contamination of Agricultural Soils Affected by Sulphide Exploitation (Iberian Pyrite Belt, Sw Spain). Environ. Geol. 2008, 54, 805–818. [Google Scholar] [CrossRef]
- Chopin, E.I.B.; Alloway, B.J. Distribution and Mobility of Trace Elements in Soils and Vegetation Around the Mining and Smelting Areas of Tharsis, Ríotinto and Huelva, Iberian Pyrite Belt, SW Spain. Water Air Soil Pollut. 2007, 182, 245–261. [Google Scholar] [CrossRef]
- Madejón, P.; Barba-Brioso, C.; Lepp, N.W.; Fernández-Caliani, J.C. Traditional Agricultural Practices Enable Sustainable Remediation of Highly Polluted Soils in Southern Spain for Cultivation of Food Crops. J. Environ. Manag. 2011, 92, 1828–1836. [Google Scholar] [CrossRef]
- Fernández-Caliani, J.C.; Barba-Brioso, C. Metal Immobilization in Hazardous Contaminated Minesoils after Marble Slurry Waste Application. A Field Assessment at the Tharsis Mining District (Spain). J. Hazard. Mater. 2010, 181, 817–826. [Google Scholar] [CrossRef]
- Sánchez España, J.; López Pamo, E.; Santofimia, E.; Aduvire, O.; Reyes, J.; Barettino, D. Acid Mine Drainage in the Iberian Pyrite Belt (Odiel River Watershed, Huelva, SW Spain): Geochemistry, Mineralogy and Environmental Implications. Appl. Geochem. 2005, 20, 1320–1356. [Google Scholar] [CrossRef]
- Basta, N.T.; Busalacchi, D.M.; Hundal, L.S.; Kumar, K.; Dick, R.P.; Lanno, R.P.; Carlson, J.; Cox, A.E.; Granato, T.C. Restoring Ecosystem Function in Degraded Urban Soil Using Biosolids, Biosolids Blend, and Compost. J. Environ. Qual. 2016, 45, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Hussain Lahori, A.; Zhang, Z.; Guo, Z.; Mahar, A.; Li, R.; Kumar Awasthi, M.; Ali Sial, T.; Kumbhar, F.; Wang, P.; Shen, F.; et al. Potential Use of Lime Combined with Additives on (Im)Mobilization and Phytoavailability of Heavy Metals from Pb/Zn Smelter Contaminated Soils. Ecotoxicol. Environ. Saf. 2017, 145, 313–323. [Google Scholar] [CrossRef] [PubMed]
- Obrycki, J.F.; Basta, N.T.; Culman, S.W. Management Options for Contaminated Urban Soils to Reduce Public Exposure and Maintain Soil Health. J. Environ. Qual. 2017, 46, 420–430. [Google Scholar] [CrossRef]
- Lee, S.-H.; Ji, W.; Yang, H.-J.; Kang, S.-Y.; Kang, D.M. Reclamation of Mine-Degraded Agricultural Soils from Metal Mining: Lessons from 4 Years of Monitoring Activity in Korea. Environ. Earth Sci. 2017, 76, 720. [Google Scholar] [CrossRef]
- Khalid, S.; Shahid, M.; Niazi, N.K.; Murtaza, B.; Bibi, I.; Dumat, C. A Comparison of Technologies for Remediation of Heavy Metal Contaminated Soils. J. Geochem. Explor. 2017, 182, 247–268. [Google Scholar] [CrossRef] [Green Version]
- García-Carmona, M.; Romero-Freire, A.; Sierra Aragón, M.; Martínez Garzón, F.J.; Martín Peinado, F.J. Evaluation of Remediation Techniques in Soils Affected by Residual Contamination with Heavy Metals and Arsenic. J. Environ. Manag. 2017, 191, 228–236. [Google Scholar] [CrossRef]
- Simón, M.; Díez, M.; García, I.; Martín, F. Distribution of As and Zn in Soils Affected by the Spill of a Pyrite Mine and Effectiveness of the Remediation Measures. Water Air Soil Pollut. 2009, 198, 77–85. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Prasad, S.M. Remediation of Heavy Metal Contaminated Ecosystem: An Overview on Technology Advancement. Int. J. Environ. Sci. Technol. 2015, 12, 353–366. [Google Scholar] [CrossRef]
- Naidu, R. Recent Advances in Contaminated Site Remediation. Water Air Soil Pollut. 2013, 224, 1705. [Google Scholar] [CrossRef]
- Bacchetta, G.; Cappai, G.; Carucci, A.; Tamburini, E. Use of Native Plants for the Remediation of Abandoned Mine Sites in Mediterranean Semiarid Environments. Bull. Environ. Contam. Toxicol. 2015, 94, 326–333. [Google Scholar] [CrossRef] [PubMed]
- Kogbara, R.B.; Yi, Y.; Al-Tabbaa, A. Process Envelopes for Stabilisation/Solidification of Contaminated Soil Using Lime–Slag Blend. Environ. Sci. Pollut. Res. 2011, 18, 1286–1296. [Google Scholar] [CrossRef]
- Wang, Y.; Li, A.; Cui, C. Remediation of Heavy Metal-Contaminated Soils by Electrokinetic Technology: Mechanisms and Applicability. Chemosphere 2021, 265, 129071. [Google Scholar] [CrossRef] [PubMed]
- Ali, H.; Khan, E.; Sajad, M.A. Phytoremediation of Heavy Metals—Concepts and Applications. Chemosphere 2013, 91, 869–881. [Google Scholar] [CrossRef] [PubMed]
- Gil-Díaz, M.; González, A.; Alonso, J.; Lobo, M.C. Evaluation of the Stability of a Nanoremediation Strategy Using Barley Plants. J. Environ. Manag. 2016, 165, 150–158. [Google Scholar] [CrossRef]
- Silva, T.P.; Matos, J.X.; De Oliveira, D.; Veiga, J.P.; Morais, I.; Gonçalves, P.; Albardeiro, L. Mineral Inventory of the Algares 30-Level Adit, Aljustrel Mine, Iberian Pyrite Belt, Portugal. Minerals 2020, 10, 853. [Google Scholar] [CrossRef]
- Lacalle, R.G.; Becerril, J.M.; Garbisu, C. Biological Methods of Polluted Soil Remediation for an Effective Economically-Optimal Recovery of Soil Health and Ecosystem Services. J. Environ. Sci. Public Health 2020, 4, 112–133. [Google Scholar]
- Gómez-Sagasti, M.T.; Epelde, L.; Alkorta, I.; Garbisu, C. Reflections on Soil Contamination Research from a Biologisťs Point of View. Appl. Soil Ecol. 2016, 105, 207–210. [Google Scholar] [CrossRef]
- Kidd, P.; Mench, M.; Álvarez-López, V.; Bert, V.; Dimitriou, I.; Friesl-Hanl, W.; Herzig, R.; Olga Janssen, J.; Kolbas, A.; Müller, I.; et al. Agronomic Practices for Improving Gentle Remediation of Trace Element-Contaminated Soils. Int. J. Phytoremediat. 2015, 17, 1005–1037. [Google Scholar] [CrossRef] [Green Version]
- Peña, A.; Mingorance, M.D.; Guzmán-Carrizosa, I.; Fernández-Espinosa, A.J. Improving the Mining Soil Quality for a Vegetation Cover after Addition of Sewage Sludges: Inorganic Ions and Low-Molecular-Weight Organic Acids in the Soil Solution. J. Environ. Manag. 2015, 150, 216–225. [Google Scholar] [CrossRef]
- Sheoran, V.; Sheoran, A.S.; Poonia, P. Soil Reclamation of Abandoned Mine Land by Revegetation: A Review. Int. J. Soil Sediment water 2010, 3, 21. [Google Scholar]
- Pardo, T.; Clemente, R.; Epelde, L.; Garbisu, C.; Bernal, M.P. Evaluation of the Phytostabilisation Efficiency in a Trace Elements Contaminated Soil Using Soil Health Indicators. J. Hazard. Mater. 2014, 268, 68–76. [Google Scholar] [CrossRef]
- Burges, A.; Alkorta, I.; Epelde, L.; Garbisu, C. From Phytoremediation of Soil Contaminants to Phytomanagement of Ecosystem Services in Metal Contaminated Sites. Int. J. Phytoremediat. 2018, 20, 384–397. [Google Scholar] [CrossRef]
- Santos, A.E.; Cruz-Ortega, R.; Meza-Figueroa, D.; Romero, F.M.; Sanchez-Escalante, J.J.; Maier, R.M.; Neilson, J.W.; Alcaraz, L.D.; Freaner, F.E.M. Plants from the Abandoned Nacozari Mine Tailings: Evaluation of Their Phytostabilization Potential. PeerJ 2017, 5, e3280. [Google Scholar] [CrossRef] [Green Version]
- Mahar, A.; Wang, P.; Ali, A.; Awasthi, M.K.; Lahori, A.H.; Wang, Q.; Li, R.; Zhang, Z. Challenges and Opportunities in the Phytoremediation of Heavy Metals Contaminated Soils: A Review. Ecotoxicol. Environ. Saf. 2016, 126, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Agnello, A.C.; Bagard, M.; van Hullebusch, E.D.; Esposito, G.; Huguenot, D. Comparative Bioremediation of Heavy Metals and Petroleum Hydrocarbons Co-Contaminated Soil by Natural Attenuation, Phytoremediation, Bioaugmentation and Bioaugmentation-Assisted Phytoremediation. Sci. Total Environ. 2016, 563–564, 693–703. [Google Scholar] [CrossRef]
- Cristaldi, A.; Conti, G.O.; Jho, E.H.; Zuccarello, P.; Grasso, A.; Copat, C.; Ferrante, M. Phytoremediation of Contaminated Soils by Heavy Metals and PAHs. A Brief Review. Environ. Technol. Innov. 2017, 8, 309–326. [Google Scholar] [CrossRef]
- Taiwo, A.M.; Gbadebo, A.M.; Oyedepo, J.A.; Ojekunle, Z.O.; Alo, O.M.; Oyeniran, A.A.; Onalaja, O.J.; Ogunjimi, D.; Taiwo, O.T. Bioremediation of Industrially Contaminated Soil Using Compost and Plant Technology. J. Hazard. Mater. 2016, 304, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Mani, D.; Kumar, C.; Kumar Patel, N. Integrated Micro-Biochemical Approach for Phytoremediation of Cadmium and Zinc Contaminated Soils. Ecotoxicol. Environ. Saf. 2015, 111, 86–95. [Google Scholar] [CrossRef]
- Robinson, B.H.; Anderson, C.W.N.; Dickinson, N.M. Phytoextraction: Where’s the Action? J. Geochem. Explor. 2015, 151, 34–40. [Google Scholar] [CrossRef]
- Nedjimi, B. Phytoremediation: A Sustainable Environmental Technology for Heavy Metals Decontamination. SN Appl. Sci. 2021, 3, 286. [Google Scholar] [CrossRef]
- Bolan, N.S.; Park, J.H.; Robinson, B.; Naidu, R.; Huh, K.Y. Phytostabilization. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2011; Volume 112, pp. 145–204. ISBN 978-0-12-385538-1. [Google Scholar]
- Solís-Dominguez, F.A.; White, S.A.; Hutter, T.B.; Amistadi, M.K.; Root, R.A.; Chorover, J.; Maier, R.M. Response of Key Soil Parameters during Compost-Assisted Phytostabilization in Extremely Acidic Tailings: Effect of Plant Species. Environ. Sci. Technol. 2012, 46, 1019–1027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sylvain, B.; Mikael, M.-H.; Florie, M.; Emmanuel, J.; Marilyne, S.; Sylvain, B.; Domenico, M. Phytostabilization of As, Sb and Pb by Two Willow Species (S. viminalis and S. purpurea) on Former Mine Technosols. CATENA 2016, 136, 44–52. [Google Scholar] [CrossRef] [Green Version]
- Clemente, R.; Pardo, T.; Madejón, P.; Madejón, E.; Bernal, M.P. Food Byproducts as Amendments in Trace Elements Contaminated Soils. Food Res. Int. 2015, 73, 176–189. [Google Scholar] [CrossRef]
- Bolan, N.; Kunhikrishnan, A.; Thangarajan, R.; Kumpiene, J.; Park, J.; Makino, T.; Kirkham, M.B.; Scheckel, K. Remediation of Heavy Metal(Loid)s Contaminated Soils—To Mobilize or to Immobilize? J. Hazard. Mater. 2014, 266, 141–166. [Google Scholar] [CrossRef]
- Al Souki, K.S.; Louvel, B.; Douay, F.; Pourrut, B. Assessment of Miscanthus x Giganteus Capacity to Restore the Functionality of Metal-Contaminated Soils: Ex Situ Experiment. Appl. Soil Ecol. 2017, 115, 44–52. [Google Scholar] [CrossRef]
- Nsanganwimana, F.; Waterlot, C.; Louvel, B.; Pourrut, B.; Douay, F. Metal, Nutrient and Biomass Accumulation during the Growing Cycle of Miscanthus Established on Metal-Contaminated Soils. J. Plant Nutr. Soil Sci. 2016, 179, 257–269. [Google Scholar] [CrossRef]
- Delplanque, M.; Collet, S.; Del Gratta, F.; Schnuriger, B.; Gaucher, R.; Robinson, B.; Bert, V. Combustion of Salix Used for Phytoextraction: The Fate of Metals and Viability of the Processes. Biomass Bioenergy 2013, 49, 160–170. [Google Scholar] [CrossRef]
- Kuppens, T.; Van Dael, M.; Vanreppelen, K.; Thewys, T.; Yperman, J.; Carleer, R.; Schreurs, S.; Van Passel, S. Techno-Economic Assessment of Fast Pyrolysis for the Valorization of Short Rotation Coppice Cultivated for Phytoextraction. J. Clean. Prod. 2015, 88, 336–344. [Google Scholar] [CrossRef] [Green Version]
- Cundy, A.B.; Bardos, R.P.; Puschenreiter, M.; Mench, M.; Bert, V.; Friesl-Hanl, W.; Müller, I.; Li, X.N.; Weyens, N.; Witters, N.; et al. Brownfields to Green Fields: Realising Wider Benefits from Practical Contaminant Phytomanagement Strategies. J. Environ. Manag. 2016, 184, 67–77. [Google Scholar] [CrossRef] [Green Version]
- Cundy, A.B.; Bardos, R.P.; Church, A.; Puschenreiter, M.; Friesl-Hanl, W.; Müller, I.; Neu, S.; Mench, M.; Witters, N.; Vangronsveld, J. Developing Principles of Sustainability and Stakeholder Engagement for “Gentle” Remediation Approaches: The European Context. J. Environ. Manag. 2013, 129, 283–291. [Google Scholar] [CrossRef]
- Quintelas-sabaris, C.; Marchand, L.; Kidd, P.; Friesl-Hanl, W.; Puschenreiter, M.; Kumpiene, J.; Muller, I.; Neu, S.; Janssen, J.O.; Vangronsveld, J.; et al. Assessing Phytotoxicity of Trace Element-Contaminated Soils Phytomanaged with Gentle Remediation Options at Ten European Field Trials. In Proceedings of the 14th International Conference on the Biogeochemistry of Trace Elements (ICOBTE 2017), Zurich, Switzerland, 16–20 July 2017. [Google Scholar]
- Vamerali, T.; Bandiera, M.; Lucchini, P.; Dickinson, N.M.; Mosca, G. Long-Term Phytomanagement of Metal-Contaminated Land with Field Crops: Integrated Remediation and Biofortification. Eur. J. Agron. 2014, 53, 56–66. [Google Scholar] [CrossRef]
- Kumpiene, J.; Antelo, J.; Brännvall, E.; Carabante, I.; Ek, K.; Komárek, M.; Söderberg, C.; Wårell, L. In Situ Chemical Stabilization of Trace Element-Contaminated Soil—Field Demonstrations and Barriers to Transition from Laboratory to the Field—A Review. Appl. Geochem. 2019, 100, 335–351. [Google Scholar] [CrossRef]
- Surriya, O.; Sarah Saleem, S.; Waqar, K.; Gul Kazi, A. Chapter 1—Phytoremediation of Soils: Prospects and Challenges. In Soil Remediation and Plants; Hakeem, K.R., Sabir, M., Öztürk, M., Mermut, A.R., Eds.; Academic Press: San Diego, CA, USA, 2015; pp. 1–36. ISBN 978-0-12-799937-1. [Google Scholar]
- Midhat, L.; Ouazzani, N.; Esshaimi, M.; Ouhammou, A.; Mandi, L. Assessment of Heavy Metals Accumulation by Spontaneous Vegetation: Screening for New Accumulator Plant Species Grown in Kettara Mine-Marrakech, Southern Morocco. Int. J. Phytoremediat. 2017, 19, 191–198. [Google Scholar] [CrossRef]
- Santos, E.S.; Abreu, M.M.; Macías, F.; de Varennes, A. Chemical Quality of Leachates and Enzymatic Activities in Technosols with Gossan and Sulfide Wastes from the São Domingos Mine. J. Soils Sediments 2016, 16, 1366–1382. [Google Scholar] [CrossRef]
- Baker, A. Accumulators and Excluders Strategies in Response of Plants to Heavy Metals. J. Plant Nutr. 1981, 3, 643–654. [Google Scholar] [CrossRef]
- Farago, M.E.; Cole, M.; Xiao, X.; Vaz, M.C. Preliminary Assessment of Metal Bioavailability to Plants in the Neves Corvo Area of Portugal. Chem. Speciat. Bioavailab. 1992, 4, 19–27. [Google Scholar] [CrossRef] [Green Version]
- Malik, Z.; Ravindran, K.; Sathiyaraj, G. Phytoremediation: A novel strategy and eco- friendly green technology for removal of toxic metals. Int. J. Agric. Environ. Res. 2017, 3, 1–18. [Google Scholar]
- Reeves, R.D.; Baker, A.J.M.; Jaffré, T.; Erskine, P.D.; Echevarria, G.; Ent, A. van der A Global Database for Plants That Hyperaccumulate Metal and Metalloid Trace Elements. New Phytol. 2018, 218, 407–411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angulo-Bejarano, P.I.; Puente-Rivera, J.; Cruz-Ortega, R. Metal and Metalloid Toxicity in Plants: An Overview on Molecular Aspects. Plants 2021, 10, 635. [Google Scholar] [CrossRef] [PubMed]
- DalCorso, G.; Fasani, E.; Manara, A.; Visioli, G.; Furini, A. Heavy Metal Pollutions: State of the Art and Innovation in Phytoremediation. Int. J. Mol. Sci. 2019, 20, 3412. [Google Scholar] [CrossRef] [Green Version]
- Baker, A.; Ernst, W.; Ent, A.; Malaisse, F.; Ginocchio, R. Metallophytes: The unique biological resource, its ecology and conservational status in Europe, Central Africa and Latin America. In Ecology of Industrial Pollution; Cambridge University Press: Cambridge, UK, 2010; pp. 7–40. ISBN 978-0-511-80556-1. [Google Scholar]
- Amna; Ali, N.; Masood, S.; Mukhtar, T.; Kamran, M.A.; Rafique, M.; Munis, M.F.H.; Chaudhary, H.J. Differential Effects of Cadmium and Chromium on Growth, Photosynthetic Activity, and Metal Uptake of Linum Usitatissimum in Association with Glomus Intraradices. Environ. Monit. Assess. 2015, 187, 311. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Yang, Y.; Mi, J.; Liu, R.; Hou, H.; Zhang, S. Effects of Vegetation Pattern and Spontaneous Succession on Remediation of Potential Toxic Metal-Polluted Soil in Mine Dumps. Sustainability 2019, 11, 397. [Google Scholar] [CrossRef] [Green Version]
- Mendez, M.O.; Maier, R.M. Phytostabilization of Mine Tailings in Arid and Semiarid Environments—An Emerging Remediation Technology. Environ. Health Perspect. 2008, 116, 278–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whiting, S.N.; Reeves, R.; Baker, A. Conserving Biodiversity: Mining, Metallophytes and Land Reclamation. Min. Environ. Manag. 2002, 10, 11–16. [Google Scholar]
- Abreu, M.M.; Santos, E.S.; Magalhães, M.C.F.; Nabais, C. Fases Portadoras Do Arsénio Em Solos Da Área Mineira de São Domingos e Em Solos Não Contaminados Do Pomarão e Serra Do Caldeirão. Rev. Ciências Agrárias 2009, 32, 155–169. [Google Scholar]
- Abreu, M.M.; Tavares, M.T.; Batista, M.J. Potential Use of Erica andevalensis and Erica australis in Phytoremediation of Sulphide Mine Environments: São Domingos, Portugal. J. Geochem. Explor. 2008, 96, 210–222. [Google Scholar] [CrossRef] [Green Version]
- Márquez-García, B.; Pérez-López, R.; Ruíz-Chancho, M.J.; López-Sánchez, J.F.; Rubio, R.; Abreu, M.M.; Nieto, J.M.; Córdoba, F. Arsenic Speciation in Soils and Erica andevalensis Cabezudo & Rivera and Erica Australis L. from São Domingos Mine Area, Portugal. J. Geochem. Explor. 2012, 119–120, 51–59. [Google Scholar] [CrossRef]
- Márquez-García, B.; Horemans, N.; Cuypers, A.; Guisez, Y.; Córdoba, F. Antioxidants in Erica andevalensis: A Comparative Study between Wild Plants and Cadmium-Exposed Plants under Controlled Conditions. Plant Physiol. Biochem. 2011, 49, 110–115. [Google Scholar] [CrossRef]
- Andráš, P.; Turisová, I.; Buccheri, G.; de Matos, J.M.X.; Dirner, V. Comparison of Heavy-Metal Bioaccumulation Properties in Pinus Sp. and Quercus Sp. in Selected European Cu Deposits. Web Ecol. 2016, 16, 81–87. [Google Scholar] [CrossRef] [Green Version]
- Henriques, F.S.; Fernandes, J. Metal Uptake and Distribution in Rush (Juncus conglomeratus L.) Plants Growing in Pyrites Mine Tailings at Lousal, Portugal. Sci. Total Environ. 1991, 102, 253–260. [Google Scholar] [CrossRef]
- Fangueiro, D.; Kidd, P.S.; Alvarenga, P.; Beesley, L.; de Varennes, A. Chapter 10—Strategies for Soil Protection and Remedi-ation. In Soil Pollution; Duarte, A.C., Cachada, A., Rocha-Santos, T., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 251–281. ISBN 978-0-12-849873-6. [Google Scholar]
- Garbisu, C.; Alkorta, I.; Kidd, P.; Epelde, L.; Mench, M. Keep and Promote Biodiversity at Polluted Sites under Phytomanagement. Environ. Sci. Pollut. Res. 2020, 27, 44820–44834. [Google Scholar] [CrossRef]
- Zhou, R.; Liu, X.; Luo, L.; Zhou, Y.; Wei, J.; Chen, A.; Tang, L.; Wu, H.; Deng, Y.; Zhang, F.; et al. Remediation of Cu, Pb, Zn and Cd-Contaminated Agricultural Soil Using a Combined Red Mud and Compost Amendment. Int. Biodeterior. Biodegrad. 2017, 118, 73–81. [Google Scholar] [CrossRef]
- Santos, E.S.; Abreu, M.M.; Nabais, C.; Magalhães, M.C.F. Trace Element Distribution in Soils Developed on Gossan Mine Wastes and Cistus Ladanifer L. Tolerance and Bioaccumulation. J. Geochem. Explor. 2012, 123, 45–51. [Google Scholar] [CrossRef]
- Santos, E.; Abreu, M.; Macias-Vázquez, I.F.; Varennes, A. Improvement of Chemical and Biological Properties of Gossan Mine Wastes Following Application of Amendments and Growth of Cistus ladanifer L. J. Geochem. Explor. 2014, 147, 173–181. [Google Scholar] [CrossRef]
- Xiong, J.; Madejón, P.; Madejón, E.; Cabrera, F. Assisted Natural Remediation of a Trace Element-Contaminated Acid Soil: An Eight-Year Field Study. Pedosphere 2015, 25, 250–262. [Google Scholar] [CrossRef] [Green Version]
- Clemente, R.; Walker, D.J.; Bernal, M.P. Uptake of Heavy Metals and As by Brassica Juncea Grown in a Contaminated Soil in Aznalcóllar (Spain): The Effect of Soil Amendments. Environ. Pollut. 2005, 138, 46–58. [Google Scholar] [CrossRef] [PubMed]
- Clemente, R.; Almela, C.; Bernal, M.P. A Remediation Strategy Based on Active Phytoremediation Followed by Natural Attenuation in a Soil Contaminated by Pyrite Waste. Environ. Pollut. 2006, 143, 397–406. [Google Scholar] [CrossRef]
- Madejón, P.; Marañón, T.; Navarro-Fernández, C.M.; Domínguez, M.T.; Alegre, J.M.; Robinson, B.; Murillo, J.M. Potential of Eucalyptus camaldulensis for phytostabilization and biomonitoring of trace-element contaminated soils. PLoS ONE 2017, 12, e0180240. [Google Scholar] [CrossRef] [Green Version]
- García-Carmona, M.; García-Robles, H.; Turpín Torrano, C.; Fernández Ondoño, E.; Lorite Moreno, J.; Sierra Aragón, M.; Martín Peinado, F.J. Residual Pollution and Vegetation Distribution in Amended Soils 20 years after a Pyrite Mine Tailings Spill (Aznalcóllar, Spain). Sci. Total Environ. 2019, 650, 933–940. [Google Scholar] [CrossRef]
- Benidire, L.; Madline, A.; Pereira, S.I.A.; Castro, P.M.L.; Boularbah, A. Synergistic Effect of Organo-Mineral Amendments and Plant Growth-Promoting Rhizobacteria (PGPR) on the Establishment of Vegetation Cover and Amelioration of Mine Tailings. Chemosphere 2021, 262, 127803. [Google Scholar] [CrossRef] [PubMed]
- Buta, M.; Blaga, G.; Paulette, L.; Păcurar, I.; Roșca, S.; Borsai, O.; Grecu, F.; Sînziana, P.E.; Negrușier, C. Soil Reclamation of Abandoned Mine Lands by Revegetation in Northwestern Part of Transylvania: A 40-Year Retrospective Study. Sustainability 2019, 11, 3393. [Google Scholar] [CrossRef] [Green Version]
- Clemente, R.; Walker, D.J.; Pardo, T.; Martínez-Fernández, D.; Bernal, M.P. The Use of a Halophytic Plant Species and Organic Amendments for the Remediation of a Trace Elements-Contaminated Soil under Semi-Arid Conditions. J. Hazard. Mater. 2012, 223–224, 63–71. [Google Scholar] [CrossRef]
- Kumpiene, J.; Guerri, G.; Landi, L.; Pietramellara, G.; Nannipieri, P.; Renella, G. Microbial Biomass, Respiration and Enzyme Activities after in Situ Aided Phytostabilization of a Pb- and Cu-Contaminated Soil. Ecotoxicol. Environ. Saf. 2009, 72, 115–119. [Google Scholar] [CrossRef]
- Pardo, T.; Bernal, M.P.; Clemente, R. Phytostabilisation of Severely Contaminated Mine Tailings Using Halophytes and Field Addition of Organic and Inorganic Amendments. Chemosphere 2017, 178, 556–564. [Google Scholar] [CrossRef]
- Madejón, E.; Madejón, P.; Burgos, P.; Pérez de Mora, A.; Cabrera, F. Trace Elements, PH and Organic Matter Evolution in Contaminated Soils under Assisted Natural Remediation: A 4-Year Field Study. J. Hazard. Mater. 2009, 162, 931–938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madejón, P.; Pérez-de-Mora, A.; Burgos, P.; Cabrera, F.; Lepp, N.W.; Madejón, E. Do Amended, Polluted Soils Require Re-Treatment for Sustainable Risk Reduction?—Evidence from Field Experiments. Geoderma 2010, 159, 174–181. [Google Scholar] [CrossRef]
- Burgos, P.; Pérez-de-Mora, A.; Madejón, P.; Cabrera, F.; Madejón, E. Trace Elements in Wild Grasses: A Phytoavailability Study on a Remediated Field. Environ. Geochem. Health 2008, 30, 109–114. [Google Scholar] [CrossRef]
- Soler-Rovira, P.; Madejón, E.; Madejón, P.; Plaza, C. In Situ Remediation of Metal-Contaminated Soils with Organic Amendments: Role of Humic Acids in Copper Bioavailability. Chemosphere 2010, 79, 844–849. [Google Scholar] [CrossRef] [PubMed]
- Pérez-de-Mora, A.; Madejón, P.; Burgos, P.; Cabrera, F.; Lepp, N.W.; Madejón, E. Phytostabilization of Semiarid Soils Residually Contaminated with Trace Elements Using By-Products: Sustainability and Risks. Environ. Pollut. 2011, 159, 3018–3027. [Google Scholar] [CrossRef] [Green Version]
- Madejón, P.; Domínguez, M.T.; Gil-Martínez, M.; Navarro-Fernández, C.M.; Montiel-Rozas, M.M.; Madejón, E.; Murillo, J.M.; Cabrera, F.; Marañón, T. Evaluation of Amendment Addition and Tree Planting as Measures to Remediate Contaminated Soils: The Guadiamar Case Study (SW Spain). CATENA 2018, 166, 34–43. [Google Scholar] [CrossRef]
- Del Mar Montiel-Rozas, M.; López-García, Á.; Kjøller, R.; Madejón, E.; Rosendahl, S. Organic Amendments Increase Phylogenetic Diversity of Arbuscular Mycorrhizal Fungi in Acid Soil Contaminated by Trace Elements. Mycorrhiza 2016, 26, 575–585. [Google Scholar] [CrossRef] [Green Version]
- Del Mar Montiel-Rozas, M.; Panettieri, M.; Madejón, P.; Madejón, E. Carbon Sequestration in Restored Soils by Applying Organic Amendments. Land Degrad. Dev. 2016, 27, 620–629. [Google Scholar] [CrossRef]
- Lebrun, M.; Miard, F.; Nandillon, R.; Hattab-Hambli, N.; Scippa, G.S.; Bourgerie, S.; Morabito, D. Eco-Restoration of a Mine Technosol According to Biochar Particle Size and Dose Application: Study of Soil Physico-Chemical Properties and Phytostabilization Capacities of Salix Viminalis. J. Soils Sediments 2018, 18, 2188–2202. [Google Scholar] [CrossRef]
- Alvarenga, P.; de Varennes, A.; Cunha-Queda, A.C. The Effect of Compost Treatments and A Plant Cover with Agrostis Tenuis on the Immobilization/Mobilization of Trace Elements in a Mine-Contaminated Soil. Int. J. Phytoremediat. 2014, 16, 138–154. [Google Scholar] [CrossRef]
- Alvarenga, P.; Ferreira, C.; Mourinha, C.; Palma, P.; de Varennes, A. Chemical and Ecotoxicological Effects of the Use of Drinking-Water Treatment Residuals for the Remediation of Soils Degraded by Mining Activities. Ecotoxicol. Environ. Saf. 2018, 161, 281–289. [Google Scholar] [CrossRef]
- Al-Lami, M.K.; Oustriere, N.; Gonzales, E.; Burken, J.G. Amendment-Assisted Revegetation of Mine Tailings: Improvement of Tailings Quality and Biomass Production. Int. J. Phytoremediat. 2019, 21, 425–434. [Google Scholar] [CrossRef]
- Galende, M.A.; Becerril, J.M.; Barrutia, O.; Artetxe, U.; Garbisu, C.; Hernández, A. Field Assessment of the Effectiveness of Organic Amendments for Aided Phytostabilization of a Pb–Zn Contaminated Mine Soil. J. Geochem. Explor. 2014, 145, 181–189. [Google Scholar] [CrossRef]
- Zornoza, R.; Acosta, J.A.; Faz, A.; Bååth, E. Microbial Growth and Community Structure in Acid Mine Soils after Addition of Different Amendments for Soil Reclamation. Geoderma 2016, 272, 64–72. [Google Scholar] [CrossRef]
- Zornoza, R.; Acosta, J.A.; Martínez-Martínez, S.; Faz, A.; Bååth, E. Main Factors Controlling Microbial Community Structure and Function after Reclamation of a Tailing Pond with Aided Phytostabilization. Geoderma 2015, 245–246, 1–10. [Google Scholar] [CrossRef]
- Alvarenga, P.; Palma, P.; Gonçalves, A.P.; Fernandes, R.M.; de Varennes, A.; Vallini, G.; Duarte, E.; Cunha-Queda, A.C. Organic Residues as Immobilizing Agents in Aided Phytostabilization: (II) Effects on Soil Biochemical and Ecotoxicological Characteristics. Chemosphere 2009, 74, 1301–1308. [Google Scholar] [CrossRef]
- Lwin, C.S.; Seo, B.-H.; Kim, H.-U.; Owens, G.; Kim, K.-R. Application of Soil Amendments to Contaminated Soils for Heavy Metal Immobilization and Improved Soil Quality—A Critical Review. Soil Sci. Plant Nutr. 2018, 64, 156–167. [Google Scholar] [CrossRef]
- Alam, M.; Hussain, Z.; Khan, A.; Khan, M.A.; Rab, A.; Asif, M.; Shah, M.A.; Muhammad, A. The Effects of Organic Amendments on Heavy Metals Bioavailability in Mine Impacted Soil and Associated Human Health Risk. Sci. Hortic. 2020, 262, 109067. [Google Scholar] [CrossRef]
- Madejón, P.; Burgos, P.; Cabrera, F.; Madejón, E. Phytostabilization of Amended Soils Polluted with Trace Elements Using the Mediterranean Shrub: Rosmarinus Officinalis. Int. J. Phytoremediat. 2009, 11, 542–557. [Google Scholar] [CrossRef] [Green Version]
- Palansooriya, K.N.; Shaheen, S.M.; Chen, S.S.; Tsang, D.C.W.; Hashimoto, Y.; Hou, D.; Bolan, N.S.; Rinklebe, J.; Ok, Y.S. Soil Amendments for Immobilization of Potentially Toxic Elements in Contaminated Soils: A Critical Review. Environ. Int. 2020, 134, 105046. [Google Scholar] [CrossRef] [PubMed]
- Alvarenga, P.; Gonçalves, A.P.; Fernandes, R.M.; de Varennes, A.; Vallini, G.; Duarte, E.; Cunha-Queda, A.C. Organic Residues as Immobilizing Agents in Aided Phytostabilization: (I) Effects on Soil Chemical Characteristics. Chemosphere 2009, 74, 1292–1300. [Google Scholar] [CrossRef] [Green Version]
- Clemente, R.; Hartley, W.; Riby, P.; Dickinson, N.M.; Lepp, N.W. Trace Element Mobility in a Contaminated Soil Two Years after Field-Amendment with a Greenwaste Compost Mulch. Environ. Pollut. 2010, 158, 1644–1651. [Google Scholar] [CrossRef]
- Pardo, T.; Clemente, R.; Bernal, M.P. Effects of Compost, Pig Slurry and Lime on Trace Element Solubility and Toxicity in Two Soils Differently Affected by Mining Activities. Chemosphere 2011, 84, 642–650. [Google Scholar] [CrossRef]
- Karami, N.; Clemente, R.; Moreno-Jiménez, E.; Lepp, N.W.; Beesley, L. Efficiency of Green Waste Compost and Biochar Soil Amendments for Reducing Lead and Copper Mobility and Uptake to Ryegrass. J. Hazard. Mater. 2011, 191, 41–48. [Google Scholar] [CrossRef]
- Garcia Sánchez, M.; Siles, J.; Cajthaml, T.; García-Romera, I.; Tlustoš, P.; Száková, J. Effect of Digestate and Fly Ash Applications on Soil Functional Properties and Microbial Communities. Eur. J. Soil Biol. 2015, 71, 1–12. [Google Scholar] [CrossRef]
- Garaiyurrebaso, O.; Garbisu, C.; Blanco, F.; Lanzén, A.; Martín, I.; Epelde, L.; Becerril, J.M.; Jechalke, S.; Smalla, K.; Grohmann, E.; et al. Long-Term Effects of Aided Phytostabilisation on Microbial Communities of Metal-Contaminated Mine Soil. FEMS Microbiol. Ecol. 2017, 93, fiw252. [Google Scholar] [CrossRef]
- Brown, S.L.; Chaney, R.L. Use of Amendments to Restore Ecosystem Function to Metal Mining-Impacted Sites: Tools to Evaluate Efficacy. Curr. Pollut. Rep. 2016, 2, 91–102. [Google Scholar] [CrossRef] [Green Version]
- Touceda-González, M.; Álvarez-López, V.; Prieto-Fernández, Á.; Rodríguez-Garrido, B.; Trasar-Cepeda, C.; Mench, M.; Puschenreiter, M.; Quintela-Sabarís, C.; Macías-García, F.; Kidd, P.S. Aided Phytostabilisation Reduces Metal Toxicity, Improves Soil Fertility and Enhances Microbial Activity in Cu-Rich Mine Tailings. J. Environ. Manag. 2017, 186, 301–313. [Google Scholar] [CrossRef]
- Touceda-González, M.; Prieto-Fernández, Á.; Renella, G.; Giagnoni, L.; Sessitsch, A.; Brader, G.; Kumpiene, J.; Dimitriou, I.; Eriksson, J.; Friesl-Hanl, W.; et al. Microbial Community Structure and Activity in Trace Element-Contaminated Soils Phytomanaged by Gentle Remediation Options (GRO). Environ. Pollut. 2017, 231, 237–251. [Google Scholar] [CrossRef]
- Sharma, A.; Nagpal, A.K. Soil Amendments: A Tool to Reduce Heavy Metal Uptake in Crops for Production of Safe Food. Rev. Environ. Sci. Biotechnol. 2018, 17, 187–203. [Google Scholar] [CrossRef]
- Madejón, P.; Domínguez, M.T.; Madejón, E.; Cabrera, F.; Marañón, T.; Murillo, J.M. Soil-Plant Relationships and Contamination by Trace Elements: A Review of Twenty Years of Experimentation and Monitoring after the Aznalcóllar (SW Spain) Mine Accident. Sci. Total Environ. 2018, 625, 50–63. [Google Scholar] [CrossRef] [Green Version]
- Venegas, A.; Rigol, A.; Vidal, M. Viability of Organic Wastes and Biochars as Amendments for the Remediation of Heavy Metal-Contaminated Soils. Chemosphere 2015, 119, 190–198. [Google Scholar] [CrossRef]
- Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on Waste and Repealing Certain Directives (Text with EEA Relevance). 2008. Available online: https://www.legislation.gov.uk/eudr/2008/98 (accessed on 28 June 2021).
- De Mora, A.P.; Ortega-Calvo, J.J.; Cabrera, F.; Madejón, E. Changes in Enzyme Activities and Microbial Biomass after “in Situ” Remediation of a Heavy Metal-Contaminated Soil. Appl. Soil Ecol. 2005, 28, 125–137. [Google Scholar] [CrossRef]
- Pérez-de-Mora, A.; Burgos, P.; Madejón, E.; Cabrera, F.; Jaeckel, P.; Schloter, M. Microbial Community Structure and Function in a Soil Contaminated by Heavy Metals: Effects of Plant Growth and Different Amendments. Soil Biol. Biochem. 2006, 38, 327–341. [Google Scholar] [CrossRef]
- Burgos, P.; Madejón, P.; Cabrera, F.; Madejón, E. By-Products as Amendment to Improve Biochemical Properties of Trace Element Contaminated Soils: Effects in Time. Int. Biodeterior. Biodegrad. 2010, 64, 481–488. [Google Scholar] [CrossRef]
- De Varennes, A.; Abreu, M.M.; Qu, G.; Cunha-Queda, C. Enzymatic Activity of a Mine Soil Varies According to Vegetation Cover and Level of Compost Applied. Int. J. Phytoremediat. 2010, 12, 371–383. [Google Scholar] [CrossRef]
- Pardo, T.; Clemente, R.; Alvarenga, P.; Bernal, M.P. Efficiency of Soil Organic and Inorganic Amendments on the Remediation of a Contaminated Mine Soil: II. Biological and Ecotoxicological Evaluation. Chemosphere 2014, 107, 101–108. [Google Scholar] [CrossRef]
- Hinojosa, M.B.; Carreira, J.A.; Rodríguez-Maroto, J.M.; García-Ruíz, R. Effects of Pyrite Sludge Pollution on Soil Enzyme Activities: Ecological Dose–Response Model. Sci. Total Environ. 2008, 396, 89–99. [Google Scholar] [CrossRef] [PubMed]
- Pardo, T.; Bernal, M.; Clemente, R. Efficiency of Soil Organic and Inorganic Amendments on the Remediation of a Contaminated Mine Soil: I. Effects on Trace Elements and Nutrients Solubility and Leaching Risk. Chemosphere 2014, 107, 121–128. [Google Scholar] [CrossRef]
- Nakamaru, Y.M.; Martín Peinado, F.J. Effect of Soil Organic Matter on Antimony Bioavailability after the Remediation Process. Environ. Pollut. 2017, 228, 425–432. [Google Scholar] [CrossRef]
- Cruz, N.C.; Rodrigues, S.M.; Carvalho, L.; Duarte, A.C.; Pereira, E.; Römkens, P.F.A.M.; Tarelho, L.A.C. Ashes from Fluidized Bed Combustion of Residual Forest Biomass: Recycling to Soil as a Viable Management Option. Environ. Sci. Pollut. Res. 2017, 24, 14770–14781. [Google Scholar] [CrossRef]
- Cruz, N.C.; Silva, F.C.; Kodra, A.S.; Pereira, A.A.M.; Gomes, A.P.; Tarelho, L.A.C.; Rodrigues, S.M. Biomass Ash-Based Materials to Be Used as Soil Improvers: From Laboratory to Field Experiments of LIFE No_Waste Project. In Proceedings of the 27th European Biomass Conference and Exhibition, Lisbon, Portugal, 27–31 May 2019; pp. 1481–1486. [Google Scholar] [CrossRef]
- Cruz, N.C.; Silva, F.C.; Tarelho, L.A.C.; Rodrigues, S.M. Critical Review of Key Variables Affecting Potential Recycling Applications of Ash Produced at Large-Scale Biomass Combustion Plants. Resour. Conserv. Recycl. 2019, 150, 104427. [Google Scholar] [CrossRef]
- Modolo, R.C.E.; Silva, T.; Senff, L.; Tarelho, L.A.C.; Labrincha, J.A.; Ferreira, V.M.; Silva, L. Bottom Ash from Biomass Combustion in BFB and Its Use in Adhesive-Mortars. Fuel Process. Technol. 2015, 129, 192–202. [Google Scholar] [CrossRef]
- Silva, F.C.; Cruz, N.C.; Tarelho, L.A.C.; Rodrigues, S.M. Use of Biomass Ash-Based Materials as Soil Fertilisers: Critical Review of the Existing Regulatory Framework. J. Clean. Prod. 2019, 214, 112–124. [Google Scholar] [CrossRef]
- Varennes, A.; Cunha-Queda, C.; Guiwei, Q. Amendment of an Acid Mine Soil with Compost and Polyacrylate Polymers Enhances Enzymatic Activities but May Change the Distribution of Plant Species. Water Air Soil Pollut. 2009, 208, 91–100. [Google Scholar] [CrossRef]
- Anawar, H.; Akter, F.; Solaiman, Z.; Strezov, V. Biochar: An Emerging Panacea for Remediation of Soil Contaminants from Mining, Industry and Sewage Wastes. Pedosphere 2015, 25, 654–665. [Google Scholar] [CrossRef]
- Lebrun, M.; Macri, C.; Miard, F.; Hattab-Hambli, N.; Motelica-Heino, M.; Morabito, D.; Bourgerie, S. Effect of Biochar Amendments on As and Pb Mobility and Phytoavailability in Contaminated Mine Technosols Phytoremediated by Salix. J. Geochem. Explor. 2017, 182, 149–156. [Google Scholar] [CrossRef] [Green Version]
- Hartley, W.; Dickinson, N.M.; Riby, P.; Lepp, N.W. Arsenic Mobility in Brownfield Soils Amended with Green Waste Compost or Biochar and Planted with Miscanthus. Environ. Pollut. 2009, 157, 2654–2662. [Google Scholar] [CrossRef] [PubMed]
- Beesley, L.; Moreno-Jiménez, E.; Gomez-Eyles, J.L. Effects of Biochar and Greenwaste Compost Amendments on Mobility, Bioavailability and Toxicity of Inorganic and Organic Contaminants in a Multi-Element Polluted Soil. Environ. Pollut. 2010, 158, 2282–2287. [Google Scholar] [CrossRef] [PubMed]
- Paradelo, R.; Eden, M.; Martínez, I.; Keller, T.; Houot, S. Soil Physical Properties of a Luvisol Developed on Loess after 15 Years of Amendment with Compost. Soil Tillage Res. 2019, 191, 207–215. [Google Scholar] [CrossRef]
- Parra, A.; Zornoza, R.; Conesa, E.; Gómez-López, M.D.; Faz, A. Evaluation of the Suitability of Three Mediterranean Shrub Species for Phytostabilization of Pyritic Mine Soils. CATENA 2016, 136, 59–65. [Google Scholar] [CrossRef]
- Somerville, P.D.; May, P.B.; Livesley, S.J. Effects of Deep Tillage and Municipal Green Waste Compost Amendments on Soil Properties and Tree Growth in Compacted Urban Soils. J. Environ. Manag. 2018, 227, 365–374. [Google Scholar] [CrossRef]
- Alvarenga, P.; Palma, P.; Goncalves, A.; Baião, N.; Fernandes, R.; de Varennes, A.; Vallini, G.; Duarte, E.; Cunha-Queda, A.C. Assessment of Chemical, Biochemical and Ecotoxicological Aspects in a Mine Soil Amended with Sludge of Either Urban or Industrial Origin. Chemosphere 2008, 72, 1774–1781. [Google Scholar] [CrossRef] [Green Version]
- Santos, E.S.; Magalhães, M.C.F.; Abreu, M.M.; Macías, F. Effects of Organic/Inorganic Amendments on Trace Elements Dispersion by Leachates from Sulfide-Containing Tailings of the São Domingos Mine, Portugal. Time Evaluation. Geoderma 2014, 226–227, 188–203. [Google Scholar] [CrossRef] [Green Version]
- Santos, E.S.; Abreu, M.M.; Macías, F. Rehabilitation of Mining Areas through Integrated Biotechnological Approach: Technosols Derived from Organic/Inorganic Wastes and Autochthonous Plant Development. Chemosphere 2019, 224, 765–775. [Google Scholar] [CrossRef]
- Rostami, S.; Azhdarpoor, A. The Application of Plant Growth Regulators to Improve Phytoremediation of Contaminated Soils: A Review. Chemosphere 2019, 220, 818–827. [Google Scholar] [CrossRef] [PubMed]
- Epelde, L.; Becerril, J.M.; Alkorta, I.; Garbisu, C. Adaptive Long-Term Monitoring of Soil Health in Metal Phytostabilization: Ecological Attributes and Ecosystem Services Based on Soil Microbial Parametersxs. Int. J. Phytoremediat. 2014, 16, 971–981. [Google Scholar] [CrossRef]
- Karan, S.K.; Samadder, S.R.; Maiti, S.K. Assessment of the Capability of Remote Sensing and GIS Techniques for Monitoring Reclamation Success in Coal Mine Degraded Lands. J. Environ. Manag. 2016, 182, 272–283. [Google Scholar] [CrossRef]
Canada * | Finland ** | Portugal *** | ||||
---|---|---|---|---|---|---|
Agricultural Use | Industrial Use | Lower Guideline | Higher Guideline | Agricultural Use | Industrial Use | |
As (mg kg−1) | 12 | 12 | 50 | 100 | 11 | 18 |
Cu (mg kg−1) | 63 | 91 | 150 | 200 | 140 | 230 |
Pb (mg kg−1) | 70 | 600 | 200 | 750 | 45 | 120 |
Zn (mg kg−1) | 200 | 360 | 250 | 400 | 340 | 340 |
As | Cu | Pb | Zn | Reference | |||||
---|---|---|---|---|---|---|---|---|---|
(mg kg−1) | (mg kg−1) | (mg kg−1) | (mg kg−1) | ||||||
Mine | Min. | Max. | Min. | Max. | Min. | Max. | Min. | Max. | |
São Domingos (PT) | 65 | 4366 | 27.4 | 6204.7 | 80.1 | >10,000 | 16 | 8760 | [94] |
37.2 | 1291 | 87.3 | 1829 | 234.2 | 12,218 | 103.8 | 713.7 | [92] | |
711 | 3030 | 203 | 342 | 666 | 9210 | 36 | 186 | [97] | |
2643 * | 226 * | 7343 * | 43.83 * | [96] | |||||
1600 | 3000 | 231 | 379 | 3100 | 9200 | 115 | 200 | [97] | |
871 | 3180 | 67 | 1310 | 425 | 5300 | 80 | 857 | [98] | |
32 | 5598 | 19 | 1928 | 19 | 14,041 | 68 | 2140 | [49] | |
711 | 1800 | 203 | 379 | 666 | 5008 | 113 | 186 | [54] | |
Aljustrel (PT) | n.a. | 565 | 226 | 1800 | 301 | 3500 | 140 | 945 | [43] |
6 | 3936 | 10 | 5414 | 13 | 2000 | 22 | 20,000 | [88] | |
6 | 3936 | 10 | 5414 | 13 | 2000 | 22 | 20,000 | [82] | |
n.a. | 362 * | 1250 * | 254 * | [58] | |||||
Lousal/Caveira (PT) | 597 | 6377 | 292 | 7013 | 126 | 7481 | 871 | 12,930 | [91] |
62 | 662 | 79 | 325 | 95 | 2280 | 166 | 878 | [97] | |
198 | 426 | 232 | 245 | 432 | 721 | 350 | 497 | [54] | |
133 | 1300 | 196 | 2800 | 932 | 48,000 | 193 | 785 | [54] | |
180 * | 231 * | 302 * | 180 * | [99] | |||||
Rio Tinto (ES) | 13 | 142 | 62 | 586 | 49 | 265 | 79 | 215 | [100] |
50 | 77 | 153 | 495 | 168 | 598 | 302 | 795 | [101] | |
13 | 204 | 47 | 586 | 34 | 598 | 66 | 795 | [102] | |
106 | 181 | 62.6 | 72.1 | 104 | 159 | 79.1 | 104 | [46] | |
581 | 1452 | 226 | 1391 | 826 | 2093 | 112 | 1501 | [103] | |
89 | 1300 | 291 | 399 | 254 | 2722 | 65 | 265 | [45] | |
19 | 994 | 27 | 1160 | 41 | 4890 | 95 | 897 | [104] | |
2 | 15,195 | 20 | 3090 | 18 | 6350 | 45 | 870 | [105] | |
203 | 621 | 326 | 752 | 864 | 2395 | 314 | 570 | [106] | |
Tharsis (ES) | 400 | 658 | 402 | 977 | 689 | 2017 | 184 | 295 | [107] |
3 | 6290 | 4 | 690 | 14 | 24,820 | 16 | 420 | [105] | |
569 | 668 | 957 | 1827 | 1904 | 2679 | 467 | 973 | [45] | |
569 | 668 | 957 | 1827 | 1904 | 2679 | 467 | 973 | [45] |
Plant(s) | Study Location | Main Features | Reference |
---|---|---|---|
Erica australis L. and Nerium oleander L. | Río Tinto (Huelva, Spain), soils with extreme acidity and elevated concentrations of PTEs (e.g., Cu, Cd, Pb) | E. australis was indicated to be used in early stages of phytostabilization programs, ideally to improve the soils/substrate physical and chemical properties and favor the establishment of less tolerant species, such as N. oleander | [53] |
Erica andevalensis | Río Tinto mine tailings with very high As, Cu, Fe and Pb concentrations (up to 4114, 1050, 71,900 and 15,614 μg/g dry weight, respectively | The ability of E. andevalensis to grow in these contaminated substrates, makes it a good candidate to be used in the phytostabilization of Rio tinto mine tailings | [46] |
Several species of the genera Erica, Quercus, Lavandula, Cistus, Genista, and Cytisus | Río Tinto (Huelva, Spain) | Río Tinto mine flora is made of Fe, Cu, Zn, Ni, As, and Pb excluders, although some analyzed species can be considered Mn accumulators | [103] |
Pinus pinaster Aiton, Quercus rotundifolia Lam. | São Domingos mine, with high concentrations of Pb, Zn, As, and Sb | The overall low translocation factors evidence their ability to be used in phytostabilization projects | [94] |
Cistus ladanifer L. | Technosols with gossan and sulfide wastes from the São Domingos mine | The application of a gossan/Technosol layer over sulfide wastes allowed C. ladanifer germination, but plant survival was not good after 50 days | [28] |
Cistus ladanifer L. | São Domingos mine soils, with high total As and Pb concentratios, and in gossan mine wastes | Tolerance mechanisms of C. ladanifer to As- and Pb-contaminated soils is due to an effective antioxidant enzyme-based defense system. C. ladanifer is suitable for the phytostabilization of mine soils with similar characteristics | [96,176,177] |
Cistus ladanifer L. | Brancanes, Caveira, Chança, Lousal, Neves Corvo and São Domingos mines | C. ladanifer plants are able to survive in mining areas with polymetallic contamination at different element concentrations in total and available fractions, avoiding the accumulators of the majority of the analyzed elements | [54] |
Erica andevalensis Cabezudo & Rivera and Erica australis L. | São Domingos mine, with high As concentrations (194–7924 mg kg−1 soil DW) | Both plants species are well-adapted to the high As concentrations in soils, with different tolerance mechanisms | [51,169] |
E. australis, E. andevalensis, Lavandula luisierra, Daphne gnidium, Rumex induratus, Ulex eriocladus, Juncus, and Genista hirsutus | São Domingos mine tailings, with high concentrations of As, Ag, Cr, Hg, Sn, Sb, Fe, and Zn | Considering the tolerance of the referred plants, they are recommended for the rehabilitation and recovery of this type of degraded mining areas | [47] |
Erica andevalensis and Erica australis | São Domingos mine, acid soils highly contaminated with Pb, As and Sb (also Cu and Zn in some sites) | E. andevalensis grows in soil with pH 3–4, while E. australis is only found in soils with pH > 3.5. Their extreme tolerance suggests their use in the recovery of sulfide mine areas | [168] |
Cistus ladanifer L. | Aljustrel mine soils, with low pH and elevated concentrations of Mn, Cu, Pb and Zn | C. ladanifer evidenced the capacity to grow in contaminated soils, being a Cu and Pb excluder and Zn indicator, making it a good candidate to be used in the phytostabilization of similar mining areas | [43] |
Several species of the genera Erica, Quercus, Lavandula, Cistus, Genista, and Cytisus | Río Tinto (Huelva, Spain), soils with extreme acidity and elevated concentrations of PTEs | Río Tinto mine flora is made up of Fe, Cu, Zn, Ni, As, and Pb excluders, although some analyzed species can be considered Mn accumulators | [103] |
Cynodon dactylon (L.) Pers. | Field experiment installed at the Aznalcóllar soils affected by a toxic mine spill (low pH, contamination with As Zn, Cu, Pb, and Cd) | Dominant species of grass in all treatments of contaminated soils with different amendments application | [178] |
Brassica juncea (L.) Czern. | Aznalcóllar soils affected by a toxic mine spill (low pH, contamination with As Zn, Cu, Pb, and Cd) | Successful installation of plant cover in a 4-year field experiment | [179,180] |
Eucalyptus camaldulensis | Guadiamar valley, affected by the Aznalcóllar toxic mine spill | E. camaldulensis tolerated elevated PTE concentrations in soil, present low bioaccumulation coefficients for those elements, and had fast growth and a deep root system, and are therefore suitable for phytostabilization | [181] |
Lamarckia aurea (L.) Moench and Trifolium campestre Schreb | Guadiamar Green Corridor (SW, Spain) 18 years after the Aznalcóllar toxic spill (contamination with Cu, Zn, Cd, As and Pb) | These plants were dominant in severely contaminated soil. High Cu and Cd potential toxic concentrations in aerial parts, which indicate plant adaptation mechanisms to live in severely polluted soils | [182] |
Type of Amendment(s) | Origin of the Soil/Main Contaminants | Lab or Field Experiment/Doses | Main Outcomes | References |
---|---|---|---|---|
Four different amendments: municipal waste compost, biosolid compost, leonardite (a low grade coal rich in humic acids) and a litter | Soil from the Aznalcóllar mine spill accident (acid, elevated concentrations of Cd, Cu and Zn) | In situ experiment (in containers), 100 Mg ha−1 of each material in one year (Mora et al. 2005) and 50 Mg ha−1 12 months later (Pérez-de-Mora et al. 2006) | The amendments increased soil pH and carbon content and diminished soluble PTEs concentrations. The organic amendments increased soils biological indicators (enzymes activities and microbial biomass) | [221,222] |
Organic amendment: biosolid compost (BC) and the inorganic amendment: sugar beet lime (SL), a residual material from sugar beet processing | Soil from the Aznalcóllar mine spill accident (acid, elevated concentrations of As, Cd, Cu and Zn) | In situ experiment (in containers), 100 Mg ha−1 of each material in one year (Mora et al. 2005) and 50 Mg ha−1 12 months later (Pérez-de-Mora et al. 2006) | Four to six years after the initial amendment applications, the results indicate that the need for re-treatment is amendment- and element-dependent | [192] |
Biosolid compost (BC), sugar beet lime (SL), and a combination of leonardite (LE), plus sugar beet lime (LESL) | Soil from the Aznalcóllar mine spill accident (acid, elevated concentrations of Cd, Cu and Zn) | In situ experiment in soil plots, two consecutive years of application (2002 and 2003): SL 30 Mg ha−1 yr−1, BC 30 Mg ha−1 yr−1, and a mixture of 25 Mg ha−1 of LE mixed with 10 Mg ha−1 of SL | A 4-year study was undertaken, CaCl2-extractable metal concentrations decreased and were similar in all treatments | [188,190] |
Organic amendment: biosolid compost (BC) and the inorganic amendment: sugar beet lime (SL), a residual material from sugar beet processing | Study site at the Aznalcóllar mine spill accident (acid, elevated concentrations of Cd, Cu and Zn) | In situ experiment in soil plots, two consecutive years of application: SL 30 t ha−1 yr−1 and BC 30 t ha−1 yr−1 (the experiment started in 2002, continued to be monitored) | In general, the amendments increased soil pH and total organic carbon (15 years after treatment). The available PTEs concentrations (CaCl2 extraction) decreased drastically with time in all cases. Seven tree species were established | [193] |
Biosolid compost (BC), fresh “alperujo” (AL), the solid by-product from the extraction of olive oil), and sugarbeet lime (SL), | Two different soils from the Aznalcóllar polluted area (pH 3.32 and 7.76) | Microcosms under controlled conditions, 40-week-period (doses were calculated to be similar to those applied in the field experiments (approximately 30 t ha−1) | pH increased in the acidic soil, by the addition of the alkaline by-products (SL and BC), decreasing PTEs availability and slight improving the biochemical status during the first weeks of incubation. In neutral soil, the addition of by-products did not cause any change | [223] |
Sewage sludge (SS), compost produced from the organic fraction of municipal solid waste (MSWC), and agricultural wastes compost (AWC) | Soils from the Aljustrel mine (acid soils, with elevated concentrations of Cu, Pb and Zn) | Greenhouse experiment with 25, 50 and 100 Mg ha−1 of SS, and similar application rates of the other materials to equalize the organic matter added | Better results with 50 Mg ha−1 of the amendments: improvement in the soils physicochemical properties, decrease in PTEs extractability, increase in plant biomass, and better responses from the ecotoxicological indicators and soil enzymatic activities | [57,58] |
Sewage sludge (SS), sugar beet sludge (SBS), or of a combination of both | Highly acidic (pH 3.6) metal-contaminated soil, from the Aljustrel mine (Cu, Pb and Zn) | Greenhouse experiment. SS was applied at 100 and 200 Mg ha−1 (dry weight basis), and the SBS at 7 Mg ha−1. Sown with Lolium perenne. | SS, particularly in combination with SBS, corrected soil acidity, while improving other soil physicochemical properties, decrease CaCl2-extratable Cu, Pb and Zn, while decreasing soil ecotoxicity response and soil enzymatic activities | [242] |
Mixed municipal solid waste compost (MMSWC) and green waste-derived compost (GWC) as immobilizing | Soils from the Aljustrel mine (acid soils, with elevated concentrations of Cu, Pb and Zn) | Semi-field experiment, outdoors. Application ratio was 50 Mg ha−1 for both composts, but GWC was additionally limed and supplemented with mineral fertilizers. Sown with Agrostis tenuis | Both treatments had an equivalent capacity to raise soil organic matter and pH, allowing the establishment of a plant cover, and effectively decreasing bioavailable Cu and Zn Amended soil had higher soil enzymatic activities, especially in the presence of plants | [197] |
Drinking water treatment residuals (DWTR) | Soils from the Aljustrel mine (acid soils, with elevated concentrations of Cu, Pb and Zn) | Greenhouse experiment, with the equivalent to 48, 96 and 144 Mg DM ha−1, with and without lime application (CaCO3 11 Mg DM ha−1) | The highest application doses of DWTR with lime, allowed a reduction in mine ecotoxicity indicators, beside the expectable improvement in soil physicochemical properties and PTEs extractability | [198] |
Biomass-ash based material (e.g., granules) from the pulp and paper industry and biologic sludges from paper mill wastewater treatment plant | Soils from the Aljustrel mine (acid soils, with elevated concentrations of Cu, Pb and Zn) | Pot experiment. Biomass ash (A) and biological sludge (S), in different granular formulations (90% A + 10% S, and 70% A + 30% S w/w, dry weight basis: dw) were added to soil (2.5, 5.0 and 10% (w/w, dry matter), with and without the application of municipal solid waste compost (MSWC) (dose equivalent to 50 t ha−1) | Soil pH increased to neutral values and Cu and Zn CaCl2 extractability decreased. Some soil enzymatic activities increased, and soil-water extract toxicity decreased, however phytotoxicity to Agrostis tenuis Sibth. was observed | [81] |
Cow manure, compost, dry matter basis, and lime | Site affected by the toxic spill of pyrite residue at Aznalcóllar, extremely acidic values (mean pH 4.1). Elevated concentrations of As, Zn, Cu, Pb, Cd) | Field experiment, 4-year, in situ phytoremediation, cow manure (36 t ha−1), compost (13.6 t ha−1), dry matter basis, and lime (up to 64 t ha−1) growing two successive crops of Brassica juncea (L.) Czern. | The success of active phytoremediation followed by natural attenuation was evident, by the correction of soil pH, the lowering of extractable PTEs and plant establishment | [180] |
Pig slurry (PS) and olive mil-waste compost (C); in combination with hydrated lime (HL) | Mine spoil soil from the mining area of La Unión-Cartagena (Murcia, SE Spain), acid (pH 3.5), high concentrations of As, Pb (14 532 mg kg−1) and Zn | Mesocosm experiment, in columns, initial dose of 60 t ha−1 C and 60 m3 ha−1 PS, respectively, and a second addition, 2 weeks later, of 30 t ha−1 and 30 m3 ha−1 of de same materials with 15.5 t ha−1 of HL, (equal available N provided), sown wit Lolium perenne | The amendments (especially the compost) successfully reduced PTEs solubility modifying pH, and slightly reduced the direct and indirect soil toxicity to plants, invertebrates and microorganisms but with the risk of N leaching in some treatments | [225,227] |
Olive mil-waste compost, fresh pig slurry, and hydrated lime | Mine soil highly contaminated with PTEs, from the mining area of La Unión-Cartagena | Field experiment, 2.5-year, 60 t ha−1 compost, 60 m3 ha−1 fresh pig slurry, and hydrated lime (2.3 t ha−1) plantation with Atriplex halimus | Globally, a successful phytostabilization experiment, with improvement in soil health considering chemical, microbial and ecotoxicity indicators | [129] |
Rockwool industrial waste, agriculture wastes (plant remains + strawberry substrate) and wastes from liquor distillation of Arbutus unedo L. fruits | Sulfide mine wastes from the São Domingos mine (acidic, high electrical conductivity and total PTEs concentrations (As and Pb) | Greenhouse pot experiments (13 months) to evaluate the effect of two amendment mixture doses (30 or 75 Mg/ha) containing distinct organic and inorganic wastes from: green agriculture (plant remains + strawberry substrate at 2:3 m/m), Arbutus unedo L. and Ceratonia siliqua L. fruit spirit distillation; and rockwool used for strawberry crops. Limestone rock wastes were also used at 55 Mg/ha to raise the mine wastes pH to ≈ 4 | The leachate characteristics were not influenced by amendment doses, but they all presented low concentrations of PTEs after 13 months. The same materials were used to design Technosols, to make an alkaline barrier to isolate sulfide-rich wastes, and plant Lavandula pedunculata and Cistus ladanifer | [243,244]. |
Three different nanoparticles (NPs) were applied: hydroxyapatite (HANPs), (ii) hematite (HMNPs) and (iii) maghemite (MNPs) | Soil from São Domingos mine, developed over spoils and mining sulfide-rich wastes, mainly composed of gossaneous materials and host rocks (Spolic Technosols) | Incubation experiment. Stock suspensions were prepared of each NPs, 5 g NPs/L (100 mL stock suspensions were added per 10 g of soil) | Phosphate and iron oxide NPs were efficiency to reduce PTEs mobility in mine soils, some more efficient to As and others to Pb | [29] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mourinha, C.; Palma, P.; Alexandre, C.; Cruz, N.; Rodrigues, S.M.; Alvarenga, P. Potentially Toxic Elements’ Contamination of Soils Affected by Mining Activities in the Portuguese Sector of the Iberian Pyrite Belt and Optional Remediation Actions: A Review. Environments 2022, 9, 11. https://doi.org/10.3390/environments9010011
Mourinha C, Palma P, Alexandre C, Cruz N, Rodrigues SM, Alvarenga P. Potentially Toxic Elements’ Contamination of Soils Affected by Mining Activities in the Portuguese Sector of the Iberian Pyrite Belt and Optional Remediation Actions: A Review. Environments. 2022; 9(1):11. https://doi.org/10.3390/environments9010011
Chicago/Turabian StyleMourinha, Clarisse, Patrícia Palma, Carlos Alexandre, Nuno Cruz, Sónia Morais Rodrigues, and Paula Alvarenga. 2022. "Potentially Toxic Elements’ Contamination of Soils Affected by Mining Activities in the Portuguese Sector of the Iberian Pyrite Belt and Optional Remediation Actions: A Review" Environments 9, no. 1: 11. https://doi.org/10.3390/environments9010011
APA StyleMourinha, C., Palma, P., Alexandre, C., Cruz, N., Rodrigues, S. M., & Alvarenga, P. (2022). Potentially Toxic Elements’ Contamination of Soils Affected by Mining Activities in the Portuguese Sector of the Iberian Pyrite Belt and Optional Remediation Actions: A Review. Environments, 9(1), 11. https://doi.org/10.3390/environments9010011