Characterization of the Dynamics of Leachate Contamination Plumes in the Surroundings of the Hulene-B Waste Dump in Maputo, Mozambique
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Geophysical Studies (Electrical Resistivity)
3. Results and Discussion
3.1. Geophysical Studies—Electrical Resistivity
3.1.1. Profile 1: 2020 (a) and 2021 (b)
3.1.2. Profile 2 2020 (a) and 2021(b)
3.1.3. Profile 3 2020 (a) and 2021 (b)
3.1.4. Profile 4 in 2020 (a) and 2021 (b)
3.2. Spatial Distribution of Possible Leachate Plumes (2020–2021)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brahmi, S.; Baali, F.; Hadji, R.; Brahmi, S.; Hamad, A.; Rahal, O.; Zerrouki, H.; Saadali, B.; Hamed, Y. Assessment of groundwater and soil pollution by leachate using electrical resistivity and induced polarization imaging survey, case of Tebessa municipal landfill, NE Algeria. Arab. J. Geosci. 2021, 14, 1–13. [Google Scholar] [CrossRef]
- Ooi, J.; Woon, K.S. Simultaneous Greenhouse Gas Reduction and Cost Optimization of Municipal Solid Waste Management System in Malaysia. Chem. Eng. Trans. 2021, 83, 487–492. [Google Scholar] [CrossRef]
- Ferronato, N.; Torretta, V. Waste Mismanagement in Developing Countries: A Review of Global Issues. Int. J. Environ. Res. Public Health 2019, 16, 1060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nanda, S.; Berruti, F. Municipal solid waste management and landfilling technologies: A review. Environ. Chem. Lett. 2020, 19, 1433–1456. [Google Scholar] [CrossRef]
- Marino, A.; Pariso, P. Comparing European countries’ performances in the transition towards the Circular Economy. Sci. Total Environ. 2020, 729, 138142. [Google Scholar] [CrossRef]
- Koliyabandara, S.; Asitha, T.C.; Sudantha, L.; Siriwardana, C. Assessment of the impact of an open dumpsite on the surface water quality deterioration in Karadiyana, Sri Lanka. Environ. Nanotechnol. Monit. Manag. 2020, 14, 100371. [Google Scholar] [CrossRef]
- Morita, A.K.; Ibelli-Bianco, C.; Anache, J.A.; Coutinho, J.V.; Pelinson, N.S.; Nobrega, J.; Rosalem, L.M.; Leite, C.M.; Niviadonski, L.M.; Manastella, C.; et al. Pollution threat to water and soil quality by dumpsites and non-sanitary landfills in Brazil: A review. Waste Manag. 2021, 131, 163–176. [Google Scholar] [CrossRef]
- Wijekoon, P.; Koliyabandara, P.A.; Cooray, A.T.; Lam, S.S.; Athapattu, B.C.; Vithanage, M. Progress and prospects in mitigation of landfill leachate pollution: Risk, pollution potential, treatment and challenges. J. Hazard. Mater. 2021, 421, 126627. [Google Scholar] [CrossRef]
- Jayawardhana, Y.; Kumarathilaka, P.; Herath, I.; Vithanage, M. Municipal Solid Waste Biochar for Prevention of Pollution from Landfill Leachate. In Environmental Materials and Waste; Academic Press: Cambridge, MA, USA, 2016; pp. 117–148. [Google Scholar] [CrossRef]
- Wang, F.; Song, K.; He, X.; Peng, Y.; Liu, D.; Liu, J. Identification of Groundwater Pollution Characteristics and Health Risk Assessment of a Landfill in a Low Permeability Area. Int. J. Environ. Res. Public Health 2021, 18, 7690. [Google Scholar] [CrossRef]
- Kumar, G.; Reddy, K.R.; McDougall, J. Numerical modeling of coupled biochemical and thermal behavior of municipal solid waste in landfills. Comput. Geotech. 2020, 128, 103836. [Google Scholar] [CrossRef]
- Khattak, S.A.; Rashid, A.; Tariq, M.; Ali, L.; Gao, X.; Ayub, M.; Javed, A. Potential risk and source distribution of groundwater contamination by mercury in district Swabi, Pakistan: Application of multivariate study. Environ. Dev. Sustain. 2020, 23, 2279–2297. [Google Scholar] [CrossRef]
- Iddrisu, T.I.; Debrah, K.D. Consequences of Poor Landfill Management on the People of Gbalahi in the Sagnarigu Municipality of Northern Ghana. J. Geosci. Environ. Prot. 2021, 9, 211–224. [Google Scholar] [CrossRef]
- Tvedten, I.; Candiracci, S. Flooding our eyes with rubbish: Urban waste management in Maputo, Mozambique. Environ. Urban. 2018, 30, 631–646. [Google Scholar] [CrossRef]
- Serra, C. Da Problemática Ambiental à Mudança: Rumo à um Mundo Melhor; Editora Escolar: Lisboa, Portugal, 2012. [Google Scholar]
- Cendón, D.I.; Haldorsen, S.; Chen, J.; Hankin, S.; Nogueira, G.; Momade, F.; Achimo, M.; Muiuane, E.; Mugabe, J.; Stigter, T.Y. Hydrogeochemical aquifer characterization and its implication for groundwater development in the Maputo district, Mozambique. Quat. Int. 2019, 547, 113–126. [Google Scholar] [CrossRef]
- Vicente, E.M.; Jermy, C.A.; Schreiner, H.D. Urban geology of Maputo, Mocambique. Geol. Soc. 2006, 338, 1–13. Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.606.7220&rep=rep1&type=pdf (accessed on 28 January 2020).
- Bernardo, B.; Candeias, C.; Rocha, F. Application of Geophysics in geo-environmental diagnosis on the surroundings of the Hulene-B waste dump, Maputo, Mozambique. J. Afr. Earth Sci. 2021, 185, 104415. [Google Scholar] [CrossRef]
- Helene, L.P.I.; Moreira, C.A. Analysis of Leachate Generation Dynamics in a Closed Municipal Solid Waste Landfill by Means of Geophysical Data (DC Resistivity and Self-Potential Methods). Pure Appl. Geophys. Pageoph 2021, 178, 1355–1367. [Google Scholar] [CrossRef]
- Kayode, J.S.; Arifin, M.H.; Nawawi, M.N.M. Characterization of a Proposed Quarry Site using Multi-Electrode Electrical Resistivity Tomography. Sains Malays. 2019, 48, 945–963. [Google Scholar] [CrossRef]
- Lau, A.M.P.; Ferreira, F.J.F.; Stevanato, R.; Filho, E.F.D.R. Geophysical and physicochemical investigations of an area contaminated by tannery waste: A case study from southern Brazil. Environ. Earth Sci. 2019, 78, 1–16. [Google Scholar] [CrossRef]
- Bichet, V.; Grisey, E.; Aleya, L. Spatial characterization of leachate plume using electrical resistivity tomography in a landfill composed of old and new cells (Belfort, France). Eng. Geol. 2016, 211, 61–73. [Google Scholar] [CrossRef]
- Bernstone, C.; Dahlin, T.; Ohlsson, T.; Hogland, H. DC-resistivity mapping of internal landfill structures: Two pre-excavation surveys. Environ. Earth Sci. 2000, 39, 360–371. [Google Scholar] [CrossRef] [Green Version]
- Nassereddine, M.; Rizk, J.; Nasserddine, G. Soil Resistivity Structure and Its Implication on the Pole Grid Resistance for Transmission Lines. Int. J. Electr. Comput. Eng. 2013, 7, 19–23. [Google Scholar]
- Palalane, j.; Segala, I.; Opressa, I. Urbanização e Desenvolvimento Municipal em Moçambique: Gestão de Resíduos Sólidos. Instituto Brasileiro de Administração Municipal, Área de Desenvolvimento Urbano e Meio Ambiente, RJ, 2008, 12. Available online: https://www.scribd.com/document/419123335/Gestao-de-Residuos-Solidos-Em-Mocambique (accessed on 5 August 2021).
- Ferrão., D.A.G. Evaluation of Removal and Disposal of Solid Waste in Maputo City, Mozambique. Master’s Thesis, University of Cape Town, Cape Town, South Africa, 2006. Available online: http://hdl.handle.net/11427/4851 (accessed on 30 August 2021).
- Wang, X.-X.; Chang, Y.-B.; Deng, J.-Z.; Chen, J.-S. 3D spatial distribution of old landfills and groundwater pollution from electrical resistivity tomography with fuzzy set theory. Explor. Geophys. 2021, 1–9. [Google Scholar] [CrossRef]
- Dhakate, R.; Mogali, N.J.; Modi, D. Characterization of proposed waste disposal site of granite quarry pits near Hyderabad using hydro-geophysical and groundwater modeling studies. Environ. Earth Sci. 2021, 80, 1–20. [Google Scholar] [CrossRef]
- Adamo, N.; Al-Ansari, N.; Sissakian, V.; Laue, J.; Knutsson, S. Geophysical Methods and their Applications in Dam Safety Monitoring. J. Earth Sci. Geotech. Eng. 2020, 11, 291–345. [Google Scholar] [CrossRef]
- Sallwey, J.; Hettiarachchi, H.; Hülsmann, S. Challenges and opportunities in municipal solid waste management in Mozambique: A review in the light of nexus thinking. AIMS Environ. Sci. 2017, 4, 621–639. [Google Scholar] [CrossRef]
- Bandeira, J.; Paula, S. The Maputo Bay Ecosystem; Western Indian Ocean Marine Science Association (WIOMSA): Zanzibar Town, Tanzania, 2014; p. 427. Available online: https://www.biofund.org.mz/wp-content/uploads/2019/02/1550049666-Je02-036.pdf (accessed on 30 July 2021).
- INAM [Mozambique National Meteorological Institute]. Available online: https://www.inam.gov.mz/index.php/pt/ (accessed on 28 January 2020).
- Muchimbane, A.B.D. Estudo dos Indicadores da Contaminação das Aguas Subterrâneas por Sistemas de Saneamento in Situ–Distrito Urbano 4, Cidade de Maputo, Moçambique. Master’s Thesis, USP Instituto de Geociências, São Paulo, Brasil, 2010. [Google Scholar] [CrossRef]
- CIAT; World Bank. Climate-Smart Agriculture in Mozambique; International Center for Tropical Agriculture: Cali, Colombia, 2017; pp. 1–25. [Google Scholar]
- Nogueira, G.; Stigter, T.; Zhou, Y.; Mussa, F.; Juizo, D. Understanding groundwater salinization mechanisms to secure freshwater resources in the water-scarce city of Maputo, Mozambique. Sci. Total Environ. 2018, 661, 723–736. [Google Scholar] [CrossRef]
- Oliveira, J.T.; Dias, R.P.; Pereira, A. Cooperaça o Entre Portugal e Moçambique na Área das Geociencias 1986–2012; Laboratório Nacional de Energia e Geologia–LNEG: Amadora, Portugal, 2012; pp. 23–26. ISBN 978-989-675-026-8. Available online: https://repositorio.lneg.pt/bitstream/10400.9/3336/1/35652.pdf (accessed on 28 January 2020).
- Mama, C.N.; Nnaji, C.C.; Nnam, J.P.; Opata, O.C. Environmental burden of unprocessed solid waste handling in Enugu State, Nigeria. Environ. Sci. Pollut. Res. 2021, 28, 19439–19457. [Google Scholar] [CrossRef]
- Udosen, N.I. Geo-electrical modeling of leachate contamination at a major waste disposal site in south-eastern Nigeria. Model. Earth Syst. Environ. 2021, 1–10. [Google Scholar] [CrossRef]
- Touzani, M.; Mohsine, I.; Ouardi, J.; Kacimi, I.; Morarech, M.; El Bahajji, M.; Bouramtane, T.; Tiouiouine, A.; Yameogo, S.; El Mahrad, B. Mapping the Pollution Plume Using the Self-Potential Geophysical Method: Case of Oum Azza Landfill, Rabat, Morocco. Water 2021, 13, 961. [Google Scholar] [CrossRef]
- Dos Muchangos, A. Paisagens e Regiões Naturais, Maputo; Editora Escolar: Lisboa, Portugal, 1999; pp. 5–163. [Google Scholar]
- Arifin, M.H.; Kayode, J.S.; Khairel, M.; Abdul, I.; Abdullah, M.; Shahidah, M.N.; Azmi, A. Environmental hazard assessment of industrial and municipal waste materials with the applications of RES2-D method and 3-D Oasis Montaj modeling: A case study at Kepong, Kuala Lumpur, Peninsula Malaysia. J. Hazard. Mater. 2020, 406, 124282. [Google Scholar] [CrossRef]
- Geotomo. RES2DINV ver. 3.59—Rapid 2-D Resistivity & IP Inversion using the Least-Squares Method Wenner (α,β,γ), Dipole-Dipole, Inline Pole-Pole, Pole-Dipole, Equatorial Dipole-Dipole, Offset Pole-Dipole, Wenner-Schlumberger, Gradient and Non-Conventional Arrays, 2010, 1–148. Available online: http://epsc.wustl.edu/~epsc454/instruction-sheets/Res2dinv03.59.pdf (accessed on 28 January 2020).
- Ugbor, C.C.; Ikwuagwu, I.E.; Ogboke, O.J. 2D inversion of electrical resistivity investigation of contaminant plume around a dumpsite near Onitsha expressway in southeastern Nigeria. Sci. Rep. 2021, 11, 1–14. [Google Scholar] [CrossRef]
- Nta, S.A.; Ayotamuno, M.J.; Igoni, A.H.; Okparanma, R.N. Leachate Characterization from Municipal Solid Waste Dump Site and Its Adverse Impacts on Surface Water Quality Downstream—Uyo Village Road, Akwa Ibom State—Nigeria. J. Eng. Res. Rep. 2020, 13, 11–19. [Google Scholar] [CrossRef]
- Qiu, L.; Yang, Y.; Ma, L.; Qiao, J. Research on the Electrical Resistivity Characteristics of Statue Remolded Soil. IOP Conf. Series: Earth Environ. Sci. 2021, 692, 042076. [Google Scholar] [CrossRef]
- Ejiogu, B.C.; Opara, A.; Nwosu, E.I.; Nwofor, O.K.; Onyema, J.C.; Chinaka, J.C. Estimates of aquifer geo-hydraulic and vulnerability characteristics of Imo State and environs, Southeastern Nigeria, using electrical conductivity data. Environ. Monit. Assess. 2019, 191, 238. [Google Scholar] [CrossRef]
- Koda, E.; Tkaczyk, A.; Lech, M.; Osiński, P. Application of Electrical Resistivity Data Sets for the Evaluation of the Pollution Concentration Level within Landfill Subsoil. Appl. Sci. 2017, 7, 262. [Google Scholar] [CrossRef]
- Vasantrao, B.M.; Bhaskarrao, P.J.; Mukund, B.A.; Baburao, G.R.; Narayan, P.S. Comparative study of Wenner and Schlumberger electrical resistivity method for groundwater investigation: A case study from Dhule district (M.S.), India. Appl. Water Sci. 2017, 7, 4321–4340. [Google Scholar] [CrossRef] [Green Version]
- VOA. Desabamento de Lixeira Deixa 17 Mortos em Maputo. Voice of America News. 2018. Available online: https://www.voaportugues.com/a/desabamento-lixeira-17-mortos-maputo/4260624.html (accessed on 30 September 2021).
- Wu, Q.; Hu, W.; Wang, H.; Liu, P.; Wang, X.; Huang, B. Spatial distribution, ecological risk and sources of heavy metals in soils from a typical economic development area, Southeastern China. Sci. Total Environ. 2021, 780, 146557. [Google Scholar] [CrossRef]
- Ololade, O.O.; Mavimbela, S.; Oke, S.A.; Makhadi, R. Impact of Leachate from Northern Landfill Site in Bloemfontein on Water and Soil Quality: Implications for Water and Food Security. Sustainability 2019, 11, 4238. [Google Scholar] [CrossRef] [Green Version]
- Chaudhary, R.; Nain, P.; Kumar, A. Temporal variation of leachate pollution index of Indian landfill sites and associated human health risk. Environ. Sci. Pollut. Res. 2021, 28, 28391–28406. [Google Scholar] [CrossRef] [PubMed]
- Fatoba, J.O.; Eluwole, A.B.; Sanuade, O.A.; Hammed, O.S.; Igboama, W.N.; Amosun, J.O. Geophysical and geochemical assessments of the environmental impact of Abule-Egba landfill, southwestern Nigeria. Model. Earth Syst. Environ. 2020, 7, 695–701. [Google Scholar] [CrossRef]
- Barry, A.; Yameogo, S.; Ayach, M.; Jabrane, M.; Tiouiouine, A.; Nakolendousse, S.; Lazar, H.; Filki, A.; Touzani, M.; Mohsine, I. Mapping Contaminant Plume at a Landfill in a Crystalline Basement Terrain in Ouagadougou, Burkina Faso, Using Self-Potential Geophysical Technique. Water 2021, 13, 1212. [Google Scholar] [CrossRef]
- Harjito, S.; Gunawan, T.; Maskuri, M. Underground leachate distribution based on electrical resistivity tomography in Piyungan landfill, Bantul. Indones. J. Geogr. 2018, 50, 34–40. [Google Scholar] [CrossRef]
- El Mouine, Y.; El Hamdi, A.; Morarech, M.; Kacimi, I.; Touzani, M.; Mohsine, I.; Tiouiouine, A.; Ouardi, J.; Zouahri, A.; Yachou, H.; et al. Landfill Pollution Plume Survey in the Moroccan Tadla Using Spontaneous Potential. Water 2021, 13, 910. [Google Scholar] [CrossRef]
- Biosca, B.; Arévalo-Lomas, L.; Izquierdo-Díaz, M.; Díaz-Curiel, J. Detection of chlorinated contaminants coming from the manufacture of lindane in a surface detritic aquifer by electrical resistivity tomography. J. Appl. Geophys. 2021, 191, 104358. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bernardo, B.; Candeias, C.; Rocha, F. Characterization of the Dynamics of Leachate Contamination Plumes in the Surroundings of the Hulene-B Waste Dump in Maputo, Mozambique. Environments 2022, 9, 19. https://doi.org/10.3390/environments9020019
Bernardo B, Candeias C, Rocha F. Characterization of the Dynamics of Leachate Contamination Plumes in the Surroundings of the Hulene-B Waste Dump in Maputo, Mozambique. Environments. 2022; 9(2):19. https://doi.org/10.3390/environments9020019
Chicago/Turabian StyleBernardo, Bernardino, Carla Candeias, and Fernando Rocha. 2022. "Characterization of the Dynamics of Leachate Contamination Plumes in the Surroundings of the Hulene-B Waste Dump in Maputo, Mozambique" Environments 9, no. 2: 19. https://doi.org/10.3390/environments9020019
APA StyleBernardo, B., Candeias, C., & Rocha, F. (2022). Characterization of the Dynamics of Leachate Contamination Plumes in the Surroundings of the Hulene-B Waste Dump in Maputo, Mozambique. Environments, 9(2), 19. https://doi.org/10.3390/environments9020019