Impact of Old Pb Mining and Metallurgical Production in Soils from the Linares Mining District (Spain)
Abstract
:1. Introduction
- To evaluate the degree of pollution of the study areas (five selected sites included in the Linares mining district);
- To provide a vision into the threat that these pollutants may pose to the environment and the human health in the study site applying risk assessment methodologies;
- To discuss the selection of appropriate technologies for the remediation of the contaminated soil.
2. Materials and Methods
2.1. Study Area
2.2. Soil Properties
2.3. Sequential Extraction
2.4. ICP-OES Analysis
2.5. Risk Assessment
3. Results and Discussion
3.1. Edaphic and Mineralogical Soil Characterization
3.2. Geochemical Soil Composition and Assessment of Pollution Levels
3.3. Sequential Extraction
3.4. Risk Assessment
3.5. Soil Washing and Phytoremediation Options
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kicińska, A. Environmental risk related to presence and mobility of As, Cd and Tl in soils in the vicinity of a metallurgical plant–Long-term observations. Chemosphere 2019, 236, 124308. [Google Scholar] [CrossRef] [PubMed]
- Izydorczyk, G.; Mikula, K.; Skrzypczak, D.; Moustakas, K.; Witek-Krowiak, A.; Chojnacka, K. Potential environmental pollution from copper metallurgy and methods of management. Environ. Res. 2021, 197, 111050. [Google Scholar] [CrossRef] [PubMed]
- Reyes, A.; Thiombane, M.; Panico, A.; Daniele, L.; Lima, A.; Di Bonito, M.; De Vivo, B. Source patterns of potentially toxic elements (PTEs) and mining activity contamination level in soils of Taltal city (northern Chile). Environ. Geochem. Health 2020, 42, 2573–2594. [Google Scholar] [CrossRef] [PubMed]
- Gruszecka-Kosowska, A.; Kicińska, A. Long-Term Metal-Content Changes in Soils on the Olkusz Zn–Pb Ore-Bearing Area, Poland. Int. J. Environ. Res. 2017, 11, 359–376. [Google Scholar] [CrossRef] [Green Version]
- Rapant, S.; Dietzová, Z.; Cicmanová, S. Environmental and health risk assessment in abandoned mining area, Zlata Idka, Slovakia. Environ. Geol. 2006, 51, 387–397. [Google Scholar] [CrossRef]
- Wu, W.; Qu, S.; Nel, W.; Ji, J. The impact of natural weathering and mining on heavy metal accumulation in the karst areas of the Pearl River Basin, China. Sci. Total Environ. 2020, 734, 139480. [Google Scholar] [CrossRef]
- Perlatti, F.; Martins, E.P.; de Oliveira, D.P.; Ruiz, F.; Asensio, V.; Rezende, C.F.; Otero, X.L.; Ferreira, T.O. Copper release from waste rocks in an abandoned mine (NE, Brazil) and its impacts on ecosystem environmental quality. Chemosphere 2021, 262, 127843. [Google Scholar] [CrossRef]
- Gallego, J.R.; Esquinas, N.; Rodríguez-Valdés, E.; Menéndez-Aguado, J.M.; Sierra, C. Comprehensive waste characterization and organic pollution co-occurrence in a Hg and As mining and metallurgy brownfield. J. Hazard. Mater. 2015, 300, 561–571. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E.; Ilahi, I. Environmental Chemistry and Ecotoxicology of Hazardous Heavy Metals: Environmental Persistence, Toxicity, and Bioaccumulation. J. Chem. 2019, 2019, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Hogan, M.C. Heavy Metal. Encyclopedia of Earth; Monosson, E., Cleveland, C., Eds.; Heavy Meta: Washington, DC, USA, 2021. [Google Scholar]
- Kabata-Pendias, A. Trace Elements in Soils and Plants; Routledge: London, UK, 2011; ISBN 9781420093681. [Google Scholar]
- Gadd, G.M. Transformation and Mobilization of Metals, Metalloids, and Radionuclides by Microorganisms. In Biophysico-Chemical Processes of Heavy Metals and Metalloids in Soil Environments; Wiley: Hoboken, NJ, USA, 2007; pp. 53–96. ISBN 9780471737780. [Google Scholar]
- Gál, J.; Hursthouse, A.; Cuthbert, S. Bioavailability of arsenic and antimony in soils from an abandoned mining area, Glendinning (SW Scotland). J. Environ. Sci. Heal. Part 2007, 42, 1263–1274. [Google Scholar] [CrossRef]
- Rocco, C.; Seshadri, B.; Adamo, P.; Bolan, N.S.; Mbene, K.; Naidu, R. Impact of waste-derived organic and inorganic amendments on the mobility and bioavailability of arsenic and cadmium in alkaline and acid soils. Environ. Sci. Pollut. Res. 2018, 25, 25896–25905. [Google Scholar] [CrossRef]
- Cerqueira, B.; Covelo, E.F.; Andrade, M.L.; Vega, F.A. Retention and Mobility of Copper and Lead in Soils as Influenced by Soil Horizon Properties. Pedosphere 2011, 21, 603–614. [Google Scholar] [CrossRef]
- Borda, M.J.; Sparks, D.L. Mobility of Trace Elements in Soil Environments; Violante, A., Huang, P.M., Gadd, G.M., Eds.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2008. [Google Scholar]
- US EPA. Risk Assessment Guidance for Superfund. Human Health Evaluation Manual Part A, Interim Final. USA Environ. Prot. Agency 1989, 1, 300. [Google Scholar]
- US EPA. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites; U.S. Environmental Protection Agency: Washington, DC, USA, 2002; pp. 1–187. [Google Scholar]
- Wuana, R.A.; Okieimen, F.E. Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation. ISRN Ecol. 2011, 2011, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Yao, Z.; Li, J.; Xie, H.; Yu, C. Review on Remediation Technologies of Soil Contaminated by Heavy Metals. Proc. Environ. Sci. 2012, 16, 722–729. [Google Scholar] [CrossRef] [Green Version]
- Boente, C.; Baragaño, D.; García-González, N.; Forján, R.; Colina, A.; Gallego, J.R. A holistic methodology to study geochemical and geomorphological control of the distribution of potentially toxic elements in soil. Catena 2022, 208, 105730. [Google Scholar] [CrossRef]
- Sierra, C.; Martínez, J.; Menéndez-Aguado, J.M.; Afif, E.; Gallego, J.R. High intensity magnetic separation for the clean-up of a site polluted by lead metallurgy. J. Hazard. Mater. 2013, 248–249, 194–201. [Google Scholar] [CrossRef]
- Sierra, C.; Menéndez-Aguado, J.M.; Afif, E.; Carrero, M.; Gallego, J.R. Feasibility study on the use of soil washing to remediate the As-Hg contamination at an ancient mining and metallurgy area. J. Hazard. Mater. 2011, 196, 93–100. [Google Scholar] [CrossRef]
- Dermont, G.; Bergeron, M.; Mercier, G.; Richer-Lafleche, M. Soil washing for metal removal: A review of physical/chemical technologies and field applications. J. Hazard. Mater. 2008, 152, 1–31. [Google Scholar] [CrossRef]
- Sierra, C.; Gallego, J.R.; Afif, E.; Menéndez-Aguado, J.M.; González-Coto, F. Analysis of soil washing effectiveness to remediate a brownfield polluted with pyrite ashes. J. Hazard. Mater. 2010, 180, 602–608. [Google Scholar] [CrossRef]
- Boente, C.; Sierra, C.; Rodríguez-Valdés, E.; Menéndez-Aguado, J.M.; Gallego, J.R. Soil washing optimization by means of attributive analysis: Case study for the removal of potentially toxic elements from soil contaminated with pyrite ash. J. Clean. Prod. 2017, 142, 2693–2699. [Google Scholar] [CrossRef]
- Wills, B.; Finch, J. Mineral Processing Technology:An Introduction to the Practical Aspects of Ore Treatment and Mineral Recovery; Elsevier: Amsterdam, The Netherlands, 2015; ISBN 0750644508. [Google Scholar]
- Lee, J.H. An overview of phytoremediation as a potentially promising technology for environmental pollution control. Biotechnol. Bioproc. Eng. 2013, 18, 431–439. [Google Scholar] [CrossRef]
- Khan, F.I.; Husain, T.; Hejazi, R. An overview and analysis of site remediation technologies. J. Environ. Manag. 2004, 71, 95–122. [Google Scholar] [CrossRef] [PubMed]
- Lorestani, B.; Yousefi, N.; Cheraghi, M.; Farmany, A. Phytoextraction and phytostabilization potential of plants grown in the vicinity of heavy metal-contaminated soils: A case study at an industrial town site. Environ. Monit. Assess. 2013, 185, 10217–10223. [Google Scholar] [CrossRef] [PubMed]
- Cheraghi, M.; Lorestani, B.; Khorasani, N.; Yousefi, N.; Karami, M. Findings on the phytoextraction and phytostabilization of soils contaminated with heavy metals. Biol. Trace Elem. Res. 2011, 144, 1133–1141. [Google Scholar] [CrossRef] [PubMed]
- Vernon, R. The Linares lead mining district: The English connection. Re Met. 2009, 13, 1–10. [Google Scholar]
- Arboledas Martínez, L. Minería y Metalurgia Romana en el sur de la Península Ibérica: Sierra Morena Oriental; Archaeopress: Oxford, UK, 2020. [Google Scholar]
- Gutiérrez-Guzmán, F. Las Minas de Linares: Apuntes Históricos; El Colegio Oficial de Ingenieros Técnicos y Grados en Minas y Energía de Linares: Linares, Spain, 1999. [Google Scholar]
- Azcárate, J.E. Mapa Geológico y Memoria Explicativa de la Hoja 905, Escala 1:50; Instituto Geológico y Minero de España: Madrid, Spain, 1977. [Google Scholar]
- Lillo, J. Geology and Geochemistry of Linares-La Carolina Pb-Ore field (Southeastern border of the Hesperian Massif). Ph.D. Thesis, University of Leeds, Leeds, UK, 1992. [Google Scholar]
- Lillo, J. Hydrothermal alteration in the Linares-La Carolina Ba-Pb-Zn-Cu-(Ag) vein district, Spain: Mineralogical data from El Cobre vein. Trans. Inst. Min. Metall. Sect. Appl. Earth Sci. 2002, 111, 114–118. [Google Scholar] [CrossRef]
- Martínez López, J.; Llamas Borrajo, J.; De Miguel García, E.; Rey Arrans, J.; Hidalgo Estévez, M.C.; Sáez Castillo, A.J. Multivariate analysis of contamination in the mining district of Linares (Jaén, Spain). Appl. Geochem. 2008, 23, 2324–2336. [Google Scholar] [CrossRef]
- Martínez, J. Caracterización Geoquímica y Ambiental de los Suelos en el Sector Minero de Linares. Ph.D. Thesis, University of Linares, Linares, Spain, 2002. [Google Scholar]
- Martínez, J.; Rey, J.; Hidalgo, M.C.; Benavente, J. Characterizing abandoned mining dams by geophysical (ERI) and geochemical methods: The linares-la carolina district (Southern Spain). Water Air. Soil Pollut. 2012, 223, 2955–2968. [Google Scholar] [CrossRef]
- Schulte, E.E.; Hopkins, B.G. Estimation of soil organic matter by weight loss-on-ignition. In Soil Organic Matter: Analysis and Interpretation; Wiley: Hoboken, NJ, USA, 2015; pp. 21–31. ISBN 9780891189411. [Google Scholar]
- Klute, A. (Ed.) Nitrogen-total. In Methods of Soil Analyses; Soil Science Society of America: Madison, WI, USA, 1996; pp. 595–624. [Google Scholar]
- Mehlich, A. Mehlich 3 Soil Test Extractant: A Modification of Mehlich 2 Extractant. Commun. Soil Sci. Plant Anal. 1984, 15, 1409–1416. [Google Scholar] [CrossRef]
- Monterroso, C.; Álvarez, E.; Marcos, M.L. Evaluation of Mehilich 3 reagent as a multielement extractant in mine soils. Land Degrad. Dev. 1999, 10, 35–47. [Google Scholar] [CrossRef]
- Pansu, M.; Gautheyrou, J. Handbook of Soil Analysis: Mineralogical, Organic and Inorganic Methods; Springer: Berlin/Heidelberg, Germany, 2006; ISBN 9783540312116. [Google Scholar]
- Gee, G.W.; Bauder, J.W. Particle-size analysis. In Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods; Wiley: Hoboken, NJ, USA, 2018; pp. 383–411. ISBN 9780891188643. [Google Scholar]
- Müller, G. Index of geoaccumulation in sediments of the Rhine River. Geol. J. 1969, 2, 108–118. [Google Scholar]
- Ure, A.M.; Quevauviller, P.; Muntau, H.; Griepink, B. Speciation of heavy metal in soils and sediments. An account ofthe improvement and harmonisation of extraction techniques undertaken under the auspices of the BCR of the Commission of the European Communities. Int. J. Environ. Anal. Chem. 1993, 51, 135–152. [Google Scholar] [CrossRef]
- ISO Soil Quality. Extraction of Trace elements Soluble in Aqua Regia; ISO 114661995(E); ISO: Geneva, Switzerland, 1995. [Google Scholar]
- Pueyo, M.; Mateu, J.; Rigol, A.; Vidal, M.; López-Sánchez, J.F.; Rauret, G. Use of the modified BCR three-step sequential extraction procedure for the study of trace element dynamics in contaminated soils. Environ. Pollut. 2008, 152, 330–341. [Google Scholar] [CrossRef] [PubMed]
- Larios, R.; Fernández-Martínez, R.; Rucandio, I. Comparison of three sequential extraction procedures for fractionation of arsenic from highly polluted mining sediments. Anal. Bioanal. Chem. 2012, 402, 2909–2921. [Google Scholar] [CrossRef]
- Zhao, S.; Feng, C.; Yang, Y.; Niu, J.; Shen, Z. Risk assessment of sedimentary metals in the Yangtze Estuary: New evidence of the relationships between two typical index methods. J. Hazard. Mater. 2012, 241–242, 164–172. [Google Scholar] [CrossRef]
- BOE Real Decreto 9/2005 por el que se establece la relación de actividades potencialmente contaminantes del suelo y los criterios y estándares para la declaración de suelos contaminados. Gov. Spain 2005, 15, 1833–1843.
- Carlon, C. Derivation Methods of Soil Screening Values in Europe. a Review and Evaluation of National Procedures towards Harmonisation; Office for Official Publications of the European Communities: Luxembourg, 2007; ISBN 9789279052385. [Google Scholar]
- Gil-Díaz, M.; Alonso, J.; Rodríguez-Valdés, E.; Pinilla, P.; Lobo, M.C. Reducing the mobility of arsenic in brownfield soil using stabilised zero-valent iron nanoparticles. J. Environ. Sci. Health. Tox. Hazard. Subst. Environ. Eng. 2014, 49, 1361–1369. [Google Scholar] [CrossRef]
- US EPA. Revised Interim Soil Lead Guidance for CERCLA Sites and RCRA Corrective Action Facilities. OSWER Dir. 1994, 9355, 4–12. [Google Scholar]
- Zagorodni, A.A. Ion Exchange Materials: Properties and Applications; Elsevier: Amsterdam, The Netherlands, 2007; ISBN 9780080445526. [Google Scholar]
- Martínez, J.; Llamas, J.F.; De Miguel, E.; Rey, J.; Hidalgo, M.C.; Sáez-Castillo, A.J. Determination of geochemical back ground in a metal mining site: Example of the mining district of Linares (south Spain). J. Geochem. Explor. 2007, 94, 19–29. [Google Scholar] [CrossRef]
- Ottonello, G. Principles of Geochemistry; Columbia University Press: New York, NY, USA, 2000. [Google Scholar]
- Sponza, D.; Karaoglu, N. Environmental geochemistry and pollution studies of Aliaga metal industry district. Environ. Int. 2002, 27, 541–553. [Google Scholar] [CrossRef]
- Alloway, B.J. Heavy Metals in Soils; Springer: Berlin/Heidelberg, Germany, 2013; ISBN 978-94-010-4586-5. [Google Scholar]
- Antunes, M.; Santos, A.; Valente, T.; Albuquerque, T. Spatial Mobility of U and Th in a U-enriched Area (Central Portugal). Appl. Sci. 2020, 10, 7866. [Google Scholar] [CrossRef]
- Boente, C.; Gerassis, S.; Albuquerque, M.T.D.; Taboada, J.; Gallego, J.R. Local versus Regional Soil Screening Levels to Identify Potentially Polluted Areas. Math. Geosci. 2020, 52, 381–396. [Google Scholar] [CrossRef]
- Bartholomew, C.J.; Li, N.; Li, Y.; Dai, W.; Nibagwire, D.; Guo, T. Characteristics and health risk assessment of heavy metals in street dust for children in Jinhua, China. Environ. Sci. Pollut. Res. 2020, 27, 5042–5055. [Google Scholar] [CrossRef] [PubMed]
- Zhong, M.; Jiang, L. Refining health risk assessment by incorporating site-specific background concentration and bioaccessibility data of Nickel in soil. Sci. Total Environ. 2017, 581–582, 866–873. [Google Scholar] [CrossRef]
- Boente, C.; Albuquerque, M.T.D.; Gallego, J.R.; Pawlowsky-Glahn, V.; Egozcue, J.J. Compositional baseline assessments to address soil pollution: An application in Langreo, Spain. Sci. Total Environ. 2022, 812, 152383. [Google Scholar] [CrossRef]
- Filgueiras, A.V.; Lavilla, I.; Bendicho, C. Chemical sequential extraction for metal partitioning in environmental solid samples. J. Environ. Monit. 2002, 4, 823–857. [Google Scholar] [CrossRef]
- Saleem, M.; Iqbal, J.; Shah, M.H. Geochemical speciation, anthropogenic contamination, risk assessment and source identification of selected metals in freshwater sediments—A case study from Mangla Lake, Pakistan. Environ. Nanotechnol. Monit. Manag. 2015, 4, 27–36. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Wang, Y.; Shen, Z.; Niu, J.; Tang, Z. Distribution and speciation of heavy metals in sediments from the mainstream, tributaries, and lakes of the Yangtze River catchment of Wuhan, China. J. Hazard. Mater. 2009, 166, 1186–1194. [Google Scholar] [CrossRef]
- Li, Y.; Hu, J.; Wu, W.; Liu, S.; Li, M.; Yao, N.; Chen, J.; Ye, L.; Wang, Q.; Zhou, Y. Application of IEUBK model in lead risk assessment of children aged 61–84 months old in central China. Sci. Total Environ. 2016, 541, 673–682. [Google Scholar] [CrossRef]
- Dean, J.R.; Elom, N.I.; Entwistle, J.A. Use of simulated epithelial lung fluid in assessing the human health risk of Pb in urban street dust. Sci. Total Environ. 2017, 579, 387–395. [Google Scholar] [CrossRef] [PubMed]
- Triantafyllidou, S.; Le, T.; Gallagher, D.; Edwards, M. Reduced risk estimations after remediation of lead (Pb) in drinking water at two US school districts. Sci. Total Environ. 2014, 466–467, 1011–1021. [Google Scholar] [CrossRef] [PubMed]
- Bolan, N.; Kunhikrishnan, A.; Thangarajan, R.; Kumpiene, J.; Park, J.; Makino, T.; Kirkham, M.B.; Scheckel, K. Remediation of heavy metal(loid)s contaminated soils-To mobilize or to immobilize? J. Hazard. Mater. 2014, 266, 141–166. [Google Scholar] [CrossRef] [PubMed]
- Radziemska, M.; Bęś, A.; Gusiatin, Z.M.; Cerdà, A.; Jeznach, J.; Mazur, Z.; Brtnický, M. Assisted phytostabilization of soil from a former military area with mineral amendments. Ecotoxicol. Environ. Saf. 2020, 188, 109934. [Google Scholar] [CrossRef]
- Rosario, K.; Iverson, S.L.; Henderson, D.A.; Chartrand, S.; McKeon, C.; Glenn, E.P.; Maier, R.M. Bacterial Community Changes during Plant Establishment at the San Pedro River Mine Tailings Site. J. Environ. Qual. 2007, 36, 1249–1259. [Google Scholar] [CrossRef]
- Jefferson, L.V. Implications of plant density on the resulting community structure of mine site land. Restor. Ecol. 2004, 12, 429–438. [Google Scholar] [CrossRef]
- Mendez, M.O.; Maier, R.M. Phytostabilization of mine tailings in arid and semiarid environments-An emerging remediation technology. Environ. Health Perspect. 2008, 116, 278–283. [Google Scholar] [CrossRef] [Green Version]
- Del Río-Celestino, M.; Font, R.; Moreno-Rojas, R.; De Haro-Bailón, A. Uptake of lead and zinc by wild plants growing on contaminated soils. Ind. Crops Prod. 2006, 24, 230–237. [Google Scholar] [CrossRef]
- Conesa, H.M.; Faz, Á.; Arnaldos, R. Heavy metal accumulation and tolerance in plants from mine tailings of the semiarid Cartagena-La Unión mining district (SE Spain). Sci. Total Environ. 2006, 366, 1–11. [Google Scholar] [CrossRef]
- Conesa, H.M.; Robinson, B.H.; Schulin, R.; Nowack, B. Growth of Lygeum spartum in acid mine tailings: Response of plants developed from seedlings, rhizomes and at field conditions. Environ. Pollut. 2007, 145, 700–707. [Google Scholar] [CrossRef]
- Sierra, C.; Boado, C.; Saavedra, A.; Ordóñez, C.; Gallego, J.R. Origin, patterns and anthropogenic accumulation of potentially toxic elements (PTEs) in surface sediments of the Avilés estuary (Asturias, northern Spain). Mar. Pollut. Bull. 2014, 86, 530–538. [Google Scholar] [CrossRef] [PubMed]
Soil Property | Square | ||||
---|---|---|---|---|---|
12 | 24 | 25 | 38 | 51 | |
Organic matter (%) | 0.95 | 1.00 | 1.32 | 0.74 | 0.72 |
Total N (%) | 0.24 | 0.26 | 0.19 | 0.17 | 0.21 |
C/N | 2.27 | 2.27 | 3.95 | 2.52 | 2.01 |
pH (water 1:2.5) | 7.46 | 6.87 | 7.50 | 8.17 | 7.97 |
Electrical conductivity (dS m−1) | 0.03 | 1.33 | 0.14 | 0.91 | 0.06 |
Available P Mehlich 3 (mg kg−1) | 2.82 | 1.61 | 1.27 | 7.69 | 2.94 |
Extractable K (cmolc kg−1) | 0.24 | 0.29 | 0.32 | 0.81 | 0.22 |
Extractable Ca (cmolc kg−1) | 6.12 | 6.28 | 8.48 | 21.27 | 6.54 |
Extractable Mg (cmolc kg−1) | 1.18 | 1.21 | 1.15 | 2.97 | 2.35 |
Extractable Na (cmolc kg−1) | 6.70 | 3.58 | 7.54 | 10.29 | 9.11 |
Extractable Al (cmolc kg−1) | 0.10 | 0.15 | 0.05 | 0.02 | 0.09 |
ECEC (cmolc kg−1) | 14.33 | 11.50 | 17.53 | 35.34 | 18.30 |
Element Concentration (mg kg−1) | ||||||
---|---|---|---|---|---|---|
As | Cd | Cu | Pb | Zn | ||
Square | 12 | 18.5 | 0.7 | 67 | 5158 | 33 |
24 | 139.5 | 18.7 | 357 | 4244 | 694 | |
25 | 84.8 | 3.4 | 381 | 35899 | 473 | |
38 | 134.5 | 2.8 | 587 | 9872 | 7468 | |
51 | 41.6 | 1.8 | 722 | 9870 | 143 | |
Reference value | Clarke | 5 | 0.15 | 70 | 16 | 132 |
Acid rocks | 1.5 | 0.1 | 30 | 2 | 60 | |
Background granite | 18.5 | 0.2 | 34 | 1149 | 98 | |
Background Triassic | 18 | 0,2 | 68 | 1442 | 64 | |
Maximum permissible | <20 | <2 | <50 | <100 | <200 | |
Intervention value | >50 | >7 | >300 | >300 | >600 |
Zone | Particle Size (μm) | Wt % | Concentration (mg kg−1) | Igeo (Clarke) | Igeo (background) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
As | Cd | Cu | Pb | Zn | As | Cd | Cu | Pb | Zn | As | Cd | Cu | Pb | Zn | |||
12 | 2000–1000 | 20.69 | 26 | 0.3 | 32.2 | 2220 | 16 | 3.3 | 2.4 | 1.8 | 9.8 | -0.5 | 1.4 | 2 | 2.8 | 3.6 | 0 |
1000–500 | 24.14 | 12 | 0.4 | 49 | 4430 | 21 | |||||||||||
500–250 | 18.97 | 24 | 0.3 | 71.4 | 5759 | 30 | |||||||||||
250–125 | 10.34 | 19 | 0.4 | 102.2 | 7487 | 48 | |||||||||||
125–63 | 6.90 | 30 | 0.8 | 159.6 | 10481 | 67 | |||||||||||
<63 | 3.45 | 74 | 1.2 | 362.6 | 20963 | 144 | |||||||||||
24 | 2000–1000 | 16.13 | 56 | 13.1 | 189.3 | 1665 | 414 | 6.1 | 7.1 | 3.3 | 9.4 | 2.6 | 4.2 | 6.7 | 4.3 | 3.2 | 3 |
1000–500 | 16.13 | 65 | 12.7 | 249.3 | 3323 | 589 | |||||||||||
500–250 | 17.74 | 108 | 21.8 | 341.3 | 4319 | 795 | |||||||||||
250–125 | 12.90 | 196 | 19.6 | 487.3 | 5615 | 800 | |||||||||||
125–63 | 8.06 | 269 | 26.1 | 598 | 7861 | 1032 | |||||||||||
<63 | 12.90 | 503 | 31.4 | 1020 | 15722 | 1174 | |||||||||||
25 | 2000–1000 | 13.11 | 65 | 2.9 | 267 | 21645 | 302 | 5 | 4.8 | 3.5 | 12.2 | 2.5 | 3.2 | 4.4 | 3.6 | 5.7 | 3.6 |
1000–500 | 14.75 | 77 | 3.3 | 226 | 27056 | 428 | |||||||||||
500–250 | 14.75 | 77 | 3.3 | 292 | 35173 | 550 | |||||||||||
250–125 | 14.75 | 90 | 3.3 | 405 | 45725 | 659 | |||||||||||
125–63 | 11.48 | 149 | 4.8 | 834 | 64015 | 813 | |||||||||||
<63 | 6.56 | 246 | 6.5 | 1210 | 115227 | 1149 | |||||||||||
38 | 2000–1000 | 21.67 | 214 | 7 | 188 | 14513 | 10080 | 5 | 4.6 | 1.7 | 9.8 | 7.3 | 3.2 | 4.2 | 1.8 | 3.3 | 8.4 |
1000–500 | 25.00 | 168 | 5.1 | 133 | 11610 | 9450 | |||||||||||
500–250 | 18.33 | 63 | 2 | 52 | 6995 | 6300 | |||||||||||
250–125 | 13.33 | 43 | 1.5 | 42 | 5805 | 5760 | |||||||||||
125–63 | 3.33 | 78 | 3 | 76 | 19586 | 10890 | |||||||||||
<63 | 1.67 | 249 | 5.4 | 346 | 20985 | 32040 | |||||||||||
51 | 2000–1000 | 12.96 | 28 | 0.4 | 93 | 6760 | 96 | 4.1 | 1.8 | 2.4 | 10.3 | 0.7 | 2.2 | 1.4 | 2.5 | 3.8 | 1.8 |
1000–500 | 14.81 | 36 | 0.5 | 87 | 7970 | 178 | |||||||||||
500–250 | 20.37 | 48 | 0.5 | 108 | 8230 | 166 | |||||||||||
250–125 | 14.81 | 64 | 0.6 | 108 | 10990 | 216 | |||||||||||
125–63 | 11.11 | 56 | 0.5 | 177 | 17584 | 234 | |||||||||||
<63 | 5.56 | 128 | 0.8 | 568 | 30772 | 330 |
Square | 12 | 24 | 25 | 38 | 51 | ||
---|---|---|---|---|---|---|---|
Element (%) | As | F1 | 1.2 | 2 | 0 | 19.2 | 0.4 |
F2 | 45.3 | 44.1 | 25.2 | 24.7 | 10.9 | ||
F3 | 2.3 | 1.1 | 0 | 2.4 | 2 | ||
F4 | 51.2 | 52.8 | 74.8 | 53.6 | 86.7 | ||
ICF | 0.95 | 0.89 | 0.34 | 0.86 | 0.15 | ||
Cd | F1 | <DL | 58.3 | 51.2 | 21.2 | <DL | |
F2 | <DL | 21.1 | 19.5 | 27.3 | <DL | ||
F3 | <DL | 4 | 7.3 | 9.1 | <DL | ||
F4 | <DL | 16.6 | 22 | 42.4 | <DL | ||
ICF | - | 5.02 | 3.55 | 1.36 | - | ||
Cu | F1 | 20.6 | 24.1 | 18.5 | 0 | 12.5 | |
F2 | 18.8 | 26.8 | 26.6 | 21 | 21 | ||
F3 | 20.7 | 20.2 | 15.3 | 58.8 | 16.2 | ||
F4 | 39.9 | 28.9 | 39.6 | 20.3 | 50.4 | ||
ICF | 1.51 | 2.46 | 1.53 | 3.93 | 0.99 | ||
Pb | F1 | 66.1 | 46 | 40.8 | 35.6 | 35.5 | |
F2 | 26.6 | 29 | 51.9 | 48.3 | 48.1 | ||
F3 | 3.4 | 16.6 | 3.8 | 7.9 | 7.9 | ||
F4 | 3.9 | 8.4 | 3.5 | 8.2 | 8.5 | ||
ICF | 24.64 | 10.9 | 27.57 | 11.2 | 10.76 | ||
Zn | F1 | 22.6 | 51.2 | 15.8 | 44.9 | 13.9 | |
F2 | 14.7 | 29.7 | 29.7 | 41.7 | 17.7 | ||
F3 | 16.9 | 9.8 | 13 | 7.1 | 5.6 | ||
F4 | 45.8 | 9.3 | 41.5 | 6.4 | 62.7 | ||
ICF | 1.18 | 9.75 | 1.41 | 14.64 | 0.59 | ||
GCF | 28.3 | 24 | 30.8 | 30.6 | 12.5 |
Industrial Scenario | Residential/Recreational | Natural Soil (Agricultural Use) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CR | HQ | CR | HQ | CR | HQ | |||||||
Square | As | Cd | Cu | Zn | As | Cd | Cu | Zn | As | Cd | Cu | Zn |
12 | 1.19 × 10−5 | 8.31 × 10−4 | 1.68 × 10−3 | 1.11 × 10−4 | 3.01 × 10−5 | 1.00 × 10−2 | 2.21 × 10−2 | 1.45 × 10−3 | 6.54 × 10−4 | 4.80 × 10−3 | 4.27 × 10−1 | 1.80 × 10−2 |
24 | 3.64 × 10−5 | 1.40 × 10−2 | 4.94 × 10−3 | 1.28 × 10−3 | 2.27 × 10−5 | 2.67 × 10−2 | 1.17 × 10−2 | 3.04 × 10−3 | 4.93 × 10−3 | 7.58 | 3.01 | 7.79 × 10−1 |
25 | 2.21 × 10−5 | 2.54 × 10−3 | 5.28 × 10−3 | 8.72 × 10−4 | 1.38 × 10−4 | 4.86 × 10−2 | 1.25 × 10−1 | 2.07 × 10−2 | 3.00 × 10−3 | 1.56 | 2.33 | 1.73 × 10−1 |
38 | 3.51 × 10−5 | 2.09 × 10−3 | 8.12 × 10−3 | 1.38 × 10−2 | 2.19 × 10−4 | 4.00 × 10−2 | 1.93 × 10−1 | 3.27 × 10−1 | 4.75 × 10−3 | 5.30 × 10−1 | 9.27 × 10−2 | 1.57 × 10−1 |
51 | 1.09 × 10−5 | 1.35 × 10−3 | 1.00 × 10−2 | 2.63 × 10−4 | 6.78 × 10−5 | 2.57 × 10−2 | 2.37 × 10−1 | 6.25 × 10−3 | 1.47 × 10−3 | 1.23 × 10−2 | 3.40 | 4.46 × 10−2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boente, C.; Sierra, C.; Martínez, J.; Rodríguez-Valdés, E.; Afif, E.; Rey, J.; Antunes, I.M.H.R.; Gallego, J.L.R. Impact of Old Pb Mining and Metallurgical Production in Soils from the Linares Mining District (Spain). Environments 2022, 9, 24. https://doi.org/10.3390/environments9020024
Boente C, Sierra C, Martínez J, Rodríguez-Valdés E, Afif E, Rey J, Antunes IMHR, Gallego JLR. Impact of Old Pb Mining and Metallurgical Production in Soils from the Linares Mining District (Spain). Environments. 2022; 9(2):24. https://doi.org/10.3390/environments9020024
Chicago/Turabian StyleBoente, Carlos, Carlos Sierra, Julián Martínez, Eduardo Rodríguez-Valdés, Elías Afif, Javier Rey, Isabel Margarida Horta Ribeiro Antunes, and José Luis Rodríguez Gallego. 2022. "Impact of Old Pb Mining and Metallurgical Production in Soils from the Linares Mining District (Spain)" Environments 9, no. 2: 24. https://doi.org/10.3390/environments9020024
APA StyleBoente, C., Sierra, C., Martínez, J., Rodríguez-Valdés, E., Afif, E., Rey, J., Antunes, I. M. H. R., & Gallego, J. L. R. (2022). Impact of Old Pb Mining and Metallurgical Production in Soils from the Linares Mining District (Spain). Environments, 9(2), 24. https://doi.org/10.3390/environments9020024