Monitoring Phycocyanin with Landsat 8/Operational Land Imager Orange Contra-Band
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Sampling
2.2. Algal Pigments Concentration
2.3. Proximal Remote Sensing Reflectance below the Water Surface (rrs) Acquisition
2.4. OLI’ Spectral Band Simulation
2.5. PC Retrieval Assessment
3. Results
3.1. Orange Contra-Band
3.2. PC Retrieval from Simulated OLI Data
4. Discussion
4.1. Remote Sensing Models Evaluation
4.2. Importance of the Orange Contra-Band for Aquatic Systems
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dekker, A.G. Detection of the Optical Water Quality Parameters for Eutrophic Waters by High Resolution Remote Sensing. Ph.D. Thesis, Free University, Amsterdam, The Netherlands, 1993. [Google Scholar]
- Schalles, J.F.; Yacobi, Y.Z. Remote detection and seasonal patterns of phycocyanin, carotenoid and chlorophyll pigments in eutrophic waters. Arch. Hydobiol. Spec. Issues Advanc. Limnol. 2000, 55, 153–168. [Google Scholar]
- Simis, S.G.H.; Peters, S.W.M.; Gons, H.J. Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water. Limnol. Oceanogr. 2005, 50, 237–245. [Google Scholar] [CrossRef]
- Mishra, S.; Mishra, D.R.; Schluchter, W.M. A novel algorithm for predicting phycocyanin concentrations in cyanobacteria: A proximal hyperspectral remote sensing approach. Remote Sens. 2009, 1, 758–775. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Sengpiel, R.E.; Pascual, D.L.; Tedesco, L.P.; Wilson, J.S.; Soyeux, A. Using hyperspectral remote sensing to estimate chlorophyll-a and phycocyanin in a mesotrophic reservoir. Int. J. Remote Sens. 2010, 31, 4147–4162. [Google Scholar] [CrossRef]
- Ogashawara, I.; Mishra, D.R.; Mishra, S.; Curtarelli, M.P.; Stech, J.L. A performance review of reflectance based algorithms for predicting phycocyanin concentrations in inland waters. Remote Sens. 2013, 5, 4774–4798. [Google Scholar] [CrossRef] [Green Version]
- Gregor, J.; Maršálek, B.; Šípková, H. Detection and estimation of potentially toxic cyanobacteria in raw water at the drinking water treatment plant by in vivo fluorescence method. Water Res. 2007, 41, 228–234. [Google Scholar] [CrossRef]
- Catherine, A.; Escoffier, N.; Belhocine, A.; Nasri, A.B.; Hamlaoui, S.; Yéprémian, C.; Bernard, C.; Troussellier, M. On the use of the FluoroProbe®, a phytoplankton quantification method based on fluorescence excitation spectra for large-scale surveys of lakes and reservoirs. Water Res. 2012, 46, 1771–1784. [Google Scholar] [CrossRef]
- Riddick, C.A.L.; Hunter, P.D.; Domínguez Gómez, J.A.; Martinez-Vicente, V.; Présing, M.; Horváth, H.; Kovács, A.W.; Vörös, L.; Zsigmond, E.; Tyler, A.N. Optimal cyanobacterial pigment retrieval from ocean colour sensors in a highly turbid, optically complex lake. Remote Sens. 2019, 11, 1613. [Google Scholar] [CrossRef] [Green Version]
- Donlon, C.; Berruti, B.; Buongiorno, A.; Ferreira, M.H.; Féménias, P.; Frerick, J.; Goryl, P.; Klein, U.; Laur, H.; Mavrocordatos, C.; et al. The Global Monitoring for Environment and Security (GMES) Sentinel-3 mission. Remote Sens. Environ. 2012, 120, 37–57. [Google Scholar] [CrossRef]
- Castagna, A.; Simis, S.; Dierssen, H.; Vanhellemont, Q.; Sabbe, K.; Vyverman, W. Extending the operational land imager/landsat 8 for inland water research: Retrieval of an orange band from pan and ms bands. In Proceedings of the Ocean Optics Conference (Ocean Optics XXIV), Dubrovnik, Croatia, 7–12 October 2018. [Google Scholar]
- Castagna, A.; Simis, S.; Dierssen, H.; Vanhellemont, Q.; Sabbe, K.; Vyverman, W. Extending landsat 8: Retrieval of an orange contra-band for inland water quality applications. Remote Sens. 2020, 12, 637. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Mishra, D.R.; Ilango, N. Landsat 8 virtual orange band for mapping cyanobacterial blooms. Remote Sens. 2020, 12, 868. [Google Scholar] [CrossRef] [Green Version]
- Tedesco, L.; Clercin, N. Algal ecology, cyanobacteria toxicity and secondary metabolites production of the three eutrophic drinking water supply and recreational use reservoirs in central Indiana. In Veolia Water Research Project Final Report; CEES: Indianapolis, IN, USA, 2010; pp. 25–29. [Google Scholar]
- Arar, E.J. In vitro determination of chlorophylls a, b, c1 + c2 and pheopigments in marine and freshwater algae by visible spectrophotometry. In USEPA Method 446.0.; EPA: Washington, DC, USA, 1997; pp. 1–26. [Google Scholar]
- Jeffrey, S.W.; Humphrey, G.F. New Spectrophotometric Equation for Determining Chlorophyll A, B, C1 and C2. Biochem. Physiol. Pflanz 1975, 167, 194–204. [Google Scholar] [CrossRef]
- Sarada, R.; Pillai, M.G.; Ravishankar, G.A. Phycocyanin from Spirulina sp: Influence of processing of biomass on phycocyanin yield, analysis of efficacy of extraction methods and stability studies on phycocyanin. Process Biochem. 1999, 34, 795–801. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Schalles, J.F.; Hladik, C.M. Remote chlorophyll-a retrieval in turbid, productive estuaries: Chesapeake Bay case study. Remote Sens. Environ. 2007, 109, 464–472. [Google Scholar] [CrossRef]
- van der Meer, F. Physical principles of optical remote sensing. In Spatial Statistics for Remote Sensing; Stein, A., van der Meer, F., Gorte, B., Eds.; Kluwer Academic Publishers: Dordrecht, the Netherlands, 1999. [Google Scholar]
- Vanhellemont, Q.; Ruddick, K. Atmospheric correction of metre-scale optical satellite data for inland and coastal water applications. Remote Sens. Environ. 2018, 216, 586–597. [Google Scholar] [CrossRef]
- Vanhellemont, Q. Adaptation of the dark spectrum fitting atmospheric correction for aquatic applications of the Landsat and Sentinel-2 archives Remote Sens. Environ. 2019, 225, 175–192. [Google Scholar]
- Ruiz-Verdú, A.; Simis, S.G.H.; de Hoyos, C.; Gons, H.J.; Peña-Martínez, R. An evaluation of algorithms for the remote sensing of cyanobacterial biomass. Remote Sens. Environ. 2008, 112, 3996–4008. [Google Scholar] [CrossRef]
- Ogashawara, I. The use of sentinel-3 imagery to monitor cyanobacterial blooms. Environments 2019, 6, 60. [Google Scholar] [CrossRef] [Green Version]
- Allinger, L.E.; Reavie, E.D. The ecological history of Lake Erie as recorded by the phytoplankton community. J. Great Lakes Res. 2013, 39, 365–382. [Google Scholar] [CrossRef]
- Harke, M.J.; Davis, T.W.; Watson, S.B.; Gobler, C.J. Nutrient-Controlled Niche Differentiation of Western Lake Erie Cyanobacterial Populations Revealed via Metatranscriptomic Surveys. Environ. Sci. Technol. 2016, 50, 604–615. [Google Scholar] [CrossRef] [PubMed]
- Steffen, M.M.; Davis, T.W.; McKay, R.M.L.; Bullerjahn, G.S.; Krausfeldt, L.E.; Stough, J.M.A.; Neitzey, M.L.; Gilbert, N.E.; Boyer, G.L.; Johengen, T.H.; et al. Ecophysiological Examination of the Lake Erie Microcystis Bloom in 2014: Linkages between Biology and the Water Supply Shutdown of Toledo, OH. Environ. Sci. Technol. 2017, 51, 6745–6755. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Mishra, D.R.; Lee, Z.; Tucker, C.S. Quantifying cyanobacterial phycocyanin concentration in turbid productive waters: A quasi-analytical approach. Remote Sens. Environ. 2013, 133, 141–151. [Google Scholar] [CrossRef]
- Ogashawara, I.; Li, L. Removal of chlorophyll-a spectral interference for improved phycocyanin estimation from remote sensing reflectance. Remote Sens. 2019, 11, 1764. [Google Scholar] [CrossRef] [Green Version]
- Verpoorter, C.; Kutser, T.; Seekell, D.A.; Tranvik, L.J. A global inventory of lakes based on high-resolution satellite imagery. Geophys. Res. Lett. 2014, 41, 6396–6402. [Google Scholar] [CrossRef]
- Odermatt, D.; Kiselev, S.; Heege, T.; Kneubuhler, M.; Itten, K.I. Adjacency effect consideration and air/water constituent retrieval for Lake Constance. In Proceedings of the 2nd MERIS/(A)ATSR Workshop, Frascati, Italy, 22–26 September 2008; Lacoste, H., Ouwehand, L., Eds.; ESA-ESRIN: Frascati, Italy, 2018. [Google Scholar]
- Ogashawara, I.; Jechow, A.; Kiel, C.; Kohnert, K.; Berger, S.A.; Wollrab, S. Performance of the Landsat 8 provisional aquatic reflectance product for inland waters. Remote Sens. 2020, 12, 2410. [Google Scholar] [CrossRef]
- Michalak, A.M. Study role of climate change in extreme threats to water quality. Nature 2016, 535, 349–350. [Google Scholar] [CrossRef]
- Schaeffer, B.A.; Schaeffer, K.G.; Keith, D.; Lunetta, R.S.; Conmy, R.; Gould, R.W. Barriers to adopting satellite remote sensing for water quality management. Int. J. Remote Sens. 2013, 34, 7534–7544. [Google Scholar] [CrossRef]
- Clark, J.M.; Schaeffer, B.A.; Darling, J.A.; Urquhart, E.A.; Johnston, J.M.; Ignatius, A.R.; Myer, M.H.; Loftin, K.A.; Werdell, P.J.; Stumpf, R.P. Satellite monitoring of cyanobacterial harmful algal bloom frequency in recreational waters and drinking water sources. Ecol. Indic. 2017, 80, 84–95. [Google Scholar] [CrossRef] [PubMed]
PC (μg/L) | Chl-a (μg/L) | |
---|---|---|
Minimum | 8.36 | 6.26 |
Maximum | 290.33 | 123.23 |
Mean | 40.61 | 48.76 |
Variance | 1956.69 | 535.77 |
Standard Deviation | 44.23 | 23.14 |
Median | 21.23 | 45.82 |
25 percentile | 15.32 | 32.65 |
75 percentile | 43.86 | 63.75 |
Coefficient of Variation | 108.92 | 47.46 |
Best Fit | R2 | DF | p-Value | |
---|---|---|---|---|
Green:orange—n = 332 | Linear | 0.02 | 330 | 1 |
OLH—n = 332 | Geometric | <0.01 | 330 | 1 |
Orange:red—n = 332 | Geometric | 0.08 | 330 | 1 |
Green:orange—n = 72 | Geometric | 0.16 | 70 | <0.001 |
OLH—n = 72 | Geometric | 0.24 | 70 | <0.001 |
Orange:red—n = 72 | Logarithmic | <0.01 | 70 | 0.579 |
Green:orange—n = 35 | Geometric | 0.84 | 33 | <0.001 |
OLH—n = 35 | Geometric | 0.33 | 33 | <0.001 |
Orange:red—n = 35 | Geometric | 0.54 | 33 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogashawara, I.; Li, L.; Howard, C.; Druschel, G.K. Monitoring Phycocyanin with Landsat 8/Operational Land Imager Orange Contra-Band. Environments 2022, 9, 40. https://doi.org/10.3390/environments9030040
Ogashawara I, Li L, Howard C, Druschel GK. Monitoring Phycocyanin with Landsat 8/Operational Land Imager Orange Contra-Band. Environments. 2022; 9(3):40. https://doi.org/10.3390/environments9030040
Chicago/Turabian StyleOgashawara, Igor, Lin Li, Chase Howard, and Gregory K. Druschel. 2022. "Monitoring Phycocyanin with Landsat 8/Operational Land Imager Orange Contra-Band" Environments 9, no. 3: 40. https://doi.org/10.3390/environments9030040
APA StyleOgashawara, I., Li, L., Howard, C., & Druschel, G. K. (2022). Monitoring Phycocyanin with Landsat 8/Operational Land Imager Orange Contra-Band. Environments, 9(3), 40. https://doi.org/10.3390/environments9030040