Stabilisation of Ozone in Water for Microbial Disinfection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ozone Concentration Measurement (Palintest®)
2.2. Water Characterisation
2.3. Preparation of Microorganisms
2.4. Disinfection
3. Results and Discussion
3.1. Impact of Water Composition on Ozone Retention
3.2. Effect of Detergent Concentration on Ozone Retention
3.3. Kinetics of Ozone Generation and Decomposition in Different Water Types
3.4. Effect of Temperature on Ozone Retention
3.5. Stain Removal Efficacy of Ozonated Washing
3.6. Analysis of Bacteria Concentration
3.7. Disinfection Efficiency of Ozonated Water
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CFU | Colony-forming units |
CPUR | Corrected pick-up rate |
DAA | Dodecyl tri-methyl ammonium acetate |
DDM | Dodecyl-β-d-maltoside |
DPD | N,N-diethyl-p-phenylenediamine |
BCSOT | Blue colouring, sunflower oil, and turmeric powder |
GTF | Gordon–Tomiyasu–Fukutomi |
HSB | Hoigné–Staehelin–Bader |
ICP | Inductive coupled plasma |
IR | Infrared spectroscopy |
SDS | Sodium dodecyl sulphate |
RTBM | Red temporary board marker |
TTC | 2,3,5-triphenyltetrazolium chloride |
UHQ | Ultra-high quality |
References
- Guzel-Seydim, Z.B.; Greene, A.K.; Seydim, A.C. Use of ozone in the food industry. LWT 2004, 37, 453–460. [Google Scholar] [CrossRef]
- Summerfelt, S.T.; Sharrer, M.J.; Tsukuda, S.M.; Gearheart, M. Process requirements for achieving full-flow disinfection of recirculating water using ozonation and UV irradiation. Aquac. Eng. 2009, 40, 17–27. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.; von Gunten, U. Advances in predicting organic contaminant abatement during ozonation of municipal wastewater effluent: Reaction kinetics, transformation products, and changes of biological effects. Environ. Sci. Water Res. Technol. 2016, 2, 421–442. [Google Scholar] [CrossRef]
- Dong, S.; Li, J.; Kim, M.-H.; Park, S.-J.; Eden, J.G.; Guest, J.S.; Nguyen, T.H. Human health trade-offs in the disinfection of wastewater for landscape irrigation: Microplasma ozonation vs. chlorination. Environ. Sci. Water Res. Technol. 2016, 3, 106–118. [Google Scholar] [CrossRef] [Green Version]
- Malik, S.N.; Ghosh, P.C.; Vaidya, A.N.; Mudliar, S.N. Hybrid ozonation process for industrial wastewater treatment: Principles and applications: A review. J. Water Process Eng. 2020, 35, 101193. [Google Scholar] [CrossRef]
- Morrison, C.; Atkinson, A.; Zamyadi, A.; Kibuye, F.; McKie, M.; Hogard, S.; Mollica, P.; Jasim, S.; Wert, E.C. Critical Review and Research Needs of Ozone Applications Related to Virus Inactivation: Potential Implications for SARS-CoV-2. Ozone Sci. Eng. 2021, 43, 2–20. [Google Scholar] [CrossRef]
- Körlü, A. Use of Ozone in the Textile Industry. In Textile Industry and Environment; IntechOpen: London, UK, 2019. [Google Scholar]
- Martinelli, M.; Giovannangeli, F.; Rotunno, S.; Trombetta, C.; Montomoli, E. Water and air ozone treatment as an alternative sanitizing technology. J. Prev. Med. Hyg. 2017, 58, E48–E52. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.-G.; Yousef, A.E.; Dave, S. Application of Ozone for Enhancing the Microbiological Safety and Quality of Foods: A Review. J. Food Prot. 1999, 62, 1071–1087. [Google Scholar] [CrossRef]
- Eriksson, M. Ozone Chemistry in Aqueous Solution: Ozone Decomposition and Stabilization. Doctoral Dissertation, Department of Chemistry, Royal Institute of Technology Stockholm, Stockholm, Sweden, 2005. [Google Scholar]
- Rosenblum, J.; Ge, C.; Bohrerova, Z.; Yousef, A.; Lee, J. Ozonation as a clean technology for fresh produce industry and environment: Sanitizer efficiency and wastewater quality. J. Appl. Microbiol. 2012, 113, 837–845. [Google Scholar] [CrossRef]
- Ward, D.B.; Tizaoui, C.; Slater, M.J. Ozone-Loaded Solvents for use in Water Treatment. Ozone Sci. Eng. 2003, 25, 485–495. [Google Scholar] [CrossRef]
- Okada, F.; Nay, K. Electrolysis for Ozone Water Production; Electrolysis: London, UK, 2012. [Google Scholar]
- Rice, R.G.; Debrum, M.; Cardis, D.; Tapp, C. The Ozone Laundry Handbook: A Comprehensive Guide for the Proper Application of Ozone in the Commercial Laundry Industry. Ozone Sci. Eng. 2009, 31, 339–347. [Google Scholar] [CrossRef]
- Finch, G.R.; Smith, D.W.; Stiles, M.E. Dose—Response of Escherichia coli in ozone demand-free phosphate buffer. Water Res. 1988, 22, 1563–1570. [Google Scholar] [CrossRef]
- Hunt, N.K.; Mariñas, B.J. Kinetics of Escherichia coli inactivation with ozone. Water Res. 1997, 31, 1355–1362. [Google Scholar] [CrossRef]
- Magbanua, B.S.; Savant, G.; Truax, D.D. Combined Ozone and Ultraviolet Inactivation of Escherichia coli. J. Environ. Sci. Health Part A 2006, 41, 1043–1055. [Google Scholar] [CrossRef]
- Sevimli, M.F.; Sarikaya, H.Z. Ozone treatment of textile effluents and dyes: Effect of applied ozone dose, pH and dye concentration. J. Chem. Technol. Biotechnol. 2002, 77, 842–850. [Google Scholar] [CrossRef]
- Powar, A.S.; Perwuelz, A.; Behary, N.; Hoang, L.; Aussenac, T. Application of Ozone Treatment for the Decolorization of the Reactive-Dyed Fabrics in a Pilot-Scale Process—Optimization through Response Surface Methodology. Sustainability 2020, 12, 471. [Google Scholar] [CrossRef] [Green Version]
- Santos, L.; Silva, E.; Oliveira, F.; Rodrigues, L.; Neves, P.; Meira, C.; Moreira, G.; Lobato, G.; Nascimento, C.; Gerhardt, M.; et al. Ozonized Water in Microbial Control: Analysis of the Stability, In Vitro Biocidal Potential, and Cytotoxicity. Biology 2021, 10, 525. [Google Scholar] [CrossRef]
- Neral, B. Quality of the household ozone laundering. Ind. Textila 2018, 69, 304–309. [Google Scholar]
- Palintest Ozone Meter User Manual. 2020. Available online: https://palintest.fr/application/files/7915/1845/7366/Ozone_meter_instructions.pdf (accessed on 12 May 2021).
- Bader, H.; Hoigné, J. Determination of ozone in water by the indigo method. Water Res. 1981, 15, 449–456. [Google Scholar] [CrossRef]
- Beloti, V.; Barros, M.A.; De Freitas, J.C.; Nero, L.A.; De Souza, J.A.; Santana, E.H.; Franco, B.D. Frequency of 2,3,5-triphenyltetrazolium chloride (TTC) non-reducing bacteria in pasteurized milk. Rev. Microbiol. 1999, 30, 137–140. [Google Scholar] [CrossRef]
- Dip-Slides UK (2021) Dip-Slides UK (2021) BT2 Dipslide|Nutrient with TTC|High Quality. Available online: https://dip-slides.com/microbiological-dipslides/9-ttc-nutrient-ttc-nutrient-dipslides-box-of-10.html (accessed on 2 September 2021).
- Acero, J.L.; Von Gunten, U. Influence of Carbonate on the Ozone/Hydrogen Peroxide Based Advanced Oxidation Process for Drinking Water Treatment. Ozone Sci. Eng. 2000, 22, 305–328. [Google Scholar] [CrossRef]
- ThermoFisher Scientific Safety Data Sheet: Sodium Carbonate. Revision No. 11. Revision Date 22/12/2020. 2020. Available online: https://thermofishervn.com/images/products/MSDS/10861.pdf (accessed on 2 September 2021).
- ThermoFisher Scientific, Safety Data Sheet: Potassium Carbonate Anhydrous. Revision No. 11. Revision Date 01/01/2021. 2021. Available online: https://www.fishersci.co.uk/chemicalProductData_uk/wercs?itemCode=10647612&lang=EN (accessed on 2 September 2021).
- Langlais, B.; Reckhow, D.A.; Brink, D.R. Ozone in Water Treatment: Application and Engineering; Lewis Publishers: New York, NY, USA, 1991; p. 558. [Google Scholar]
- Wang, Y.-H.; Chen, Q.-Y. Anodic Materials for Electrocatalytic Ozone Generation. Int. J. Electrochem. 2013, 2013, 128248. [Google Scholar] [CrossRef]
- Tomiyasu, H.; Fukutomi, H.; Gordon, G. Kinetics and mechanism of ozone decomposition in basic aqueous solution. Inorg. Chem. 1985, 24, 2962–2966. [Google Scholar] [CrossRef]
- Greenwood, N.N.; Earnshaw, A. Chemistry of the Elements; Elsevier: Amsterdam, The Netherlands, 2012; ISBN 0080501095. [Google Scholar]
- Bulanin, K.; Bulanin, M.; Tsyganenko, A. Infrared spectra of 18O-enriched ozones in liquid oxygen solution. Chem. Phys. 1996, 203, 127–136. [Google Scholar] [CrossRef]
- Bulanin, K.M.; Alexeev, A.V.; Bystrov, D.S.; Lavalley, J.C.; Tsyganenko, A.A. IR Study of Ozone Adsorption on SiO2. J. Phys. Chem. 1994, 98, 5100–5103. [Google Scholar] [CrossRef]
- Staehelin, J.; Buehler, R.E.; Hoigne, J. ChemInform Abstract: Ozone decomposition in water studied by pulse radiolysis. 2. hydroxyl and hydrogen tetroxide (HO4) as chain intermediates. J. Phys. Chem. 1984, 88, 5999–6004. [Google Scholar] [CrossRef]
- Heidt, L.J.; Landi, V.R. Ozone and Ozonide Production and Stabilization in Water. J. Chem. Phys. 1964, 41, 176–178. [Google Scholar] [CrossRef]
- Batakliev, T.; Georgiev, V.; Anachkov, M.; Rakovsky, S.; Zaikov, G.E. Ozone decomposition. Interdiscip. Toxicol. 2014, 7, 47. [Google Scholar] [CrossRef] [Green Version]
- Miles, A.A.; Misra, S.S.; Irwin, J.O. The estimation of the bactericidal power of the blood. Epidemiol. Infect. 1938, 38, 732–749. [Google Scholar] [CrossRef] [Green Version]
- Epelle, E.I.; Macfarlane, A.; Cusack, M.; Burns, A.; Thissera, B.; Mackay, W.; Rateb, M.E.; Yaseen, M. Bacterial and fungal disinfection via ozonation in air. J. Microbiol. Methods 2022, 194, 106431. [Google Scholar] [CrossRef]
- US EPA Guidelines, OCSPP 810.2200: Disinfectants for Use on Hard Surfaces—Efficacy Data Recommendations. Available online: https://www.regulations.gov/document?D=EPA-HQ-OPPT-2009-0150-0021 (accessed on 2 September 2021).
- BS EN 16616:2015-10 Chemical Disinfectants and Antiseptics—Chemical-Thermal Textile Disinfection—Test Method and Requirements. 2015. Available online: https://shop.bsigroup.com/products/chemical-disinfectants-and-antiseptics-chemical-thermal-textile-disinfection-test-method-and-requirements-phase-2-step-2/standard (accessed on 12 May 2021).
Water Type | Ca (mg/L) | K (mg/L) | Mg (mg/L) | Na (mg/L) | Cl− (mg/L) | SO42− (mg/L) | NO3− (mg/L) |
---|---|---|---|---|---|---|---|
ACS water | 6.801 | 0.415 | 0.754 | 4.827 | 6.44 | 11.24 | 0.00 |
Mineral water | 46.945 | 0.969 | 17.141 | 12.466 | 17.23 | 20.66 | 13.95 |
Water Type/Composition | pH | Conductivity, σ (mS) |
---|---|---|
ACS water | 7.16 | 0.10 |
Mineral water | 8.07 | 0.46 |
Distilled water | 7.13 | 0.00 |
UHQ water | 7.30 | 0.00 |
0.25 g detergent in 900 mL mineral water | 8.90 | 0.78 |
0.50 g detergent in 900 mL mineral water | 9.16 | 1.13 |
0.75 g detergent in 900 mL mineral water | 9.37 | 1.39 |
0.1 g Na2CO3 in 900 mL mineral water | 9.56 | 0.59 |
2.0 g Na2CO3 in 900 mL mineral water | 10.89 | 4.14 |
0.1 g Na2CO3 in 900 mL UHQ water | 10.71 | 0.37 |
2.0 g Na2CO3 in 900 mL UHQ water | 11.27 | 3.95 |
0.1 g Na2CO3 in 900 mL ACS water | 10.54 | 0.34 |
2.0 g Na2CO3 in 900 mL ACS water | 11.27 | 4.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Epelle, E.I.; Macfarlane, A.; Cusack, M.; Burns, A.; Amaeze, N.; Richardson, K.; Mackay, W.; Rateb, M.E.; Yaseen, M. Stabilisation of Ozone in Water for Microbial Disinfection. Environments 2022, 9, 45. https://doi.org/10.3390/environments9040045
Epelle EI, Macfarlane A, Cusack M, Burns A, Amaeze N, Richardson K, Mackay W, Rateb ME, Yaseen M. Stabilisation of Ozone in Water for Microbial Disinfection. Environments. 2022; 9(4):45. https://doi.org/10.3390/environments9040045
Chicago/Turabian StyleEpelle, Emmanuel I., Andrew Macfarlane, Michael Cusack, Anthony Burns, Ngozi Amaeze, Kenny Richardson, William Mackay, Mostafa E. Rateb, and Mohammed Yaseen. 2022. "Stabilisation of Ozone in Water for Microbial Disinfection" Environments 9, no. 4: 45. https://doi.org/10.3390/environments9040045
APA StyleEpelle, E. I., Macfarlane, A., Cusack, M., Burns, A., Amaeze, N., Richardson, K., Mackay, W., Rateb, M. E., & Yaseen, M. (2022). Stabilisation of Ozone in Water for Microbial Disinfection. Environments, 9(4), 45. https://doi.org/10.3390/environments9040045