Simplified Method for the Determination of Total Kjeldahl Nitrogen in Wastewater
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schindler, D.W. Evolution of Phosphorus Limitation in Lakes. Science 1977, 195, 260–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kane, D.D.; Conroy, J.D.; Peter Richards, R.; Baker, D.B.; Culver, D.A. Re-Eutrophication of Lake Erie: Correlations between Tributary Nutrient Loads and Phytoplankton Biomass. J. Great Lakes Res. 2014, 40, 496–501. [Google Scholar] [CrossRef]
- Stow, C.A.; Cha, Y.; Johnson, L.T.; Confesor, R.; Richards, R.P. Long-Term and Seasonal Trend Decomposition of Maumee River Nutrient Inputs to Western Lake Erie. Environ. Sci. Technol. 2015, 49, 3392–3400. [Google Scholar] [CrossRef] [PubMed]
- Davis, T.W.; Bullerjahn, G.S.; Tuttle, T.; McKay, R.M.; Watson, S.B. Effects of Increasing Nitrogen and Phosphorus Concentrations on Phytoplankton Community Growth and Toxicity during Planktothrix Blooms in Sandusky Bay, Lake Erie. Environ. Sci. Technol. 2015, 49, 7197–7207. [Google Scholar] [CrossRef] [PubMed]
- Newell, S.E.; Davis, T.W.; Johengen, T.H.; Gossiaux, D.; Burtner, A.; Palladino, D.; McCarthy, M.J. Reduced Forms of Nitrogen Are a Driver of Non-Nitrogen-Fixing Harmful Cyanobacterial Blooms and Toxicity in Lake Erie. Harmful Algae 2019, 81, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Chaffin, J.D.; Bridgeman, T.B. Organic and Inorganic Nitrogen Utilization by Nitrogen-Stressed Cyanobacteria during Bloom Conditions. J. Appl. Phycol. 2014, 26, 299–309. [Google Scholar] [CrossRef]
- Chaffin, J.D.; Bridgeman, T.B.; Bade, D.L. Nitrogen Constrains the Growth of Late Summer Cyanobacterial Blooms in Lake Erie. Adv. Microbiol. 2013, 3, 16–26. [Google Scholar] [CrossRef] [Green Version]
- Chaffin, J.D.; Bridgeman, T.B.; Bade, D.L.; Mobilian, C.N. Summer Phytoplankton Nutrient Limitation in Maumee Bay of Lake Erie during High-Flow and Low-Flow Years. J. Great Lakes Res. 2014, 40, 524–531. [Google Scholar] [CrossRef]
- Glibert, P.M.; Harrison, J.; Heil, C.; Seitzinger, S. Escalating Worldwide Use of Urea—A Global Change Contributing to Coastal Eutrophication. Biogeochemistry 2006, 77, 441–463. [Google Scholar] [CrossRef]
- Monchamp, M.-E.; Pick, F.R.; Beisner, B.E.; Maranger, R. Nitrogen Forms Influence Microcystin Concentration and Composition via Changes in Cyanobacterial Community Structure. PLoS ONE 2014, 9, e85573. [Google Scholar] [CrossRef] [PubMed]
- Belisle, B.S.; Steffen, M.M.; Pound, H.L.; Watson, S.B.; DeBruyn, J.M.; Bourbonniere, R.A.; Boyer, G.L.; Wilhelm, S.W. Urea in Lake Erie: Organic Nutrient Sources as Potentially Important Drivers of Phytoplankton Biomass. J. Great Lakes Res. 2016, 42, 599–607. [Google Scholar] [CrossRef] [Green Version]
- Robertson, D.; Saad, D.A. Nutrient Inputs to the Laurentian Great Lakes by Source and Watershed Estimated Using SPARROW Watershed Models1. JAWRA J. Am. Water Resour. Assoc. 2011, 47, 1011–1033. [Google Scholar] [CrossRef] [PubMed]
- Palenik, B.; Henson, S.E. The Use of Amides and Other Organic Nitrogen Sources by the Phytoplankton Emiliania Huxleyi. Limnol. Oceanogr. 1997, 42, 1544–1551. [Google Scholar] [CrossRef] [Green Version]
- Antia, N.J.; Berland, B.R.; Bonin, D.J.; Maestrini, S.Y. Comparative Evaluation of Certain Organic and Inorganic Sources of Nitrogen for Phototrophic Growth of Marine Microalgae. J. Mar. Biol. Assoc. U. K. 1975, 55, 519–539. [Google Scholar] [CrossRef]
- Seitzinger, S.P.; Sanders, R.W. Contribution of Dissolved Organic Nitrogen from Rivers to Estuarine Eutrophication. Mar. Ecol. Prog. Ser. 1997, 159, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Gobler, C.J.; Burkholder, J.M.; Davis, T.W.; Harke, M.J.; Johengen, T.; Stow, C.; Van de Waal, D. The Dual Role of Nitrogen Supply in Controlling the Growth and Toxicity of Cyanobacterial Blooms. Harmful Algae 2016, 54, 87–97. [Google Scholar] [CrossRef]
- Sáez-Plaza, P.; Navas, M.J.; Wybraniec, S.; Michałowski, T.; Asuero, A.G. An Overview of the Kjeldahl Method of Nitrogen Determination. Part II. Sample Preparation, Working Scale, Instrumental Finish, and Quality Control. Crit. Rev. Anal. Chem. 2013, 43, 224–272. [Google Scholar] [CrossRef]
- Available online: https://www.nemi.gov/methods/method_summary/9893/ (accessed on 15 March 2022).
- Schulz, C.; MacDonald, D.; Haukebo, T.; Nelson, D. Green Total Nitrogen Test Method—A Simple Alternative for TKN Analysis in Wastewater. Proc. Water Environ. Fed. 2009, 2009, 4714–4720. [Google Scholar] [CrossRef]
- Smart, M.M.; Reid, F.A.; Jones, J.R. A Comparison of a Persulfate Digestion and the Kjeldahl Procedure for Determination of Total Nitrogen in Freshwater Samples. Water Res. 1981, 15, 919–921. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Sample preservation. In Methods for Chemical Analysis of Water and Wastes; EPA-600/4-79-020; U.S. Environmental Protection Agency: Cincinnati, OH, USA, 1983; pp. xv–xx. [Google Scholar]
- Available online: https://www.hach.com/simplified-tkn-s-tkn-tntplus-vial-test-0-16-mg-l-n-25-tests/product?id=7640209881#:~:text=Hach%20Method%2010242%20is%20compliant,the%20need%20to%20clean%20glassware (accessed on 15 March 2022).
- Brayton, S.V. Acid Digestions Using the Hach DigesdahlR Digestion Apparatus: Sample Preparation for Protein and Elemental Analysis; Technical Information Series—Booklet No. 14; Hach Company: Loveland, CO, USA, 1992. [Google Scholar]
- Schlueter, A. Nitrate Interference in Total Kjeldahl Nitrogen Determinations and its Removal by Anion Exchange Resins; USEPA Interagency. Energy-Environment Research and Development Program Report; 1977. Available online: https://cfpub.epa.gov/si/si_public_record_Report.cfm?Lab=ORD&dirEntryID=43817 (accessed on 15 March 2022).
- Rus, D.L.; Patton, C.J.; Mueller, D.K.; Crawford, C.G. Assessing Total Nitrogen in Surface-Water Samples—Precision and Bias of Analytical and Computational Methods; Scientific Investigations Report; U.S. Geological Survey: Reston, VA, USA, 2013; p. 48.
Theoretical TKN (ppm) | s-TKNTM Method (Percentage Error) | EPA Method (Percentage Error) | s-TKNTM Method (Percentage Recovered) | Standard Method (Percentage Recovered) |
---|---|---|---|---|
2 | 1 | 1 | 99 | 99 |
4 | 2 | 7 | 98 | 93 |
8 | 3 | 4 | 97 | 96 |
10 | 3 | 5 | 97 | 95 |
12 | 2 | 5 | 98 | 95 |
Average recovery rate | 98 | 96 |
Theoretical TKN (ppm) | s-TKNTM Method (Percentage Error) | s-TKNTM Method (Percentage Recovered) |
---|---|---|
2 | 2 | 98 |
4 | 5 | 95 |
8 | 5 | 95 |
10 | 1 | 101 |
12 | 2 | 98 |
14 | 1 | 99 |
16 | 3 | 98 |
Average recovery rate | 97 |
Theoretical TKN (ppm) | s-TKNTM Method (Percentage Error) | Standard Method (Percentage Error) | s-TKNTM Method (Percentage Recovered) | Standard Method (Percentage Recovered) |
---|---|---|---|---|
2 | 4 | 5 | 105 | 95 |
4 | 5 | 1 | 105 | 101 |
8 | 2 | 1 | 102 | 99 |
10 | 3 | 6 | 103 | 106 |
12 | 2 | 2 | 98 | 102 |
14 | 5 | 5 | 105 | 105 |
16 | 3 | 2 | 103 | 98 |
Average recovery rate | 104 | 100 |
Theoretical Nitrate (ppm) | Theoretical TKN (ppm) | Theoretical TN (ppm) | Standard Method (Percentage Recovered) | s-TKNTM Method (Percentage Recovered) |
---|---|---|---|---|
8 | 0 | 8 | NA | NA |
0 | 8 | 8 | 94 | 101 |
8 | 8 | 16 | 93 | 95 |
6 | 6 | 12 | 98 | 98 |
4 | 4 | 8 | 96 | 100 |
2 | 6 | 8 | 89 | 100 |
6 | 2 | 8 | 81 | 100 |
2 | 2 | 4 | 94 | 96 |
Average recovery rate | 92 | 99 |
Theoretical Nitrate (ppm) | Theoretical TKN (ppm) | Theoretical TN (ppm) | Percentage Error (TN) | RSD (TN) | Percentage Error (Nitrate) | RSD (Nitrate) |
---|---|---|---|---|---|---|
8 | 0 | 8 | 1.2 | 2.2 | 3.0 | 0.5 |
0 | 8 | 8 | 1.3 | 1.4 | NA | NA |
8 | 8 | 16 | 1.9 | 1.3 | 2.0 | 0.5 |
6 | 6 | 12 | 0.3 | 1.6 | 4.0 | 0.7 |
4 | 4 | 8 | 3.0 | 3.4 | 2.0 | 0.8 |
2 | 6 | 8 | 0.8 | 0.6 | 4.0 | 0.7 |
6 | 2 | 8 | 1.1 | 0.9 | 1.0 | 0.4 |
2 | 2 | 4 | 1.8 | 2.0 | 11 | 0.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hicks, T.D.; Kuns, C.M.; Raman, C.; Bates, Z.T.; Nagarajan, S. Simplified Method for the Determination of Total Kjeldahl Nitrogen in Wastewater. Environments 2022, 9, 55. https://doi.org/10.3390/environments9050055
Hicks TD, Kuns CM, Raman C, Bates ZT, Nagarajan S. Simplified Method for the Determination of Total Kjeldahl Nitrogen in Wastewater. Environments. 2022; 9(5):55. https://doi.org/10.3390/environments9050055
Chicago/Turabian StyleHicks, Tristan D., Caleb M. Kuns, Chandrashekar Raman, Zane T. Bates, and Subhalakshmi Nagarajan. 2022. "Simplified Method for the Determination of Total Kjeldahl Nitrogen in Wastewater" Environments 9, no. 5: 55. https://doi.org/10.3390/environments9050055
APA StyleHicks, T. D., Kuns, C. M., Raman, C., Bates, Z. T., & Nagarajan, S. (2022). Simplified Method for the Determination of Total Kjeldahl Nitrogen in Wastewater. Environments, 9(5), 55. https://doi.org/10.3390/environments9050055