Bactericidal Properties of Low-Density Polyethylene (LDPE) Modified with Commercial Additives Used for Food Protection in the Food Industry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Material Processing
2.3. Bactericidal Properties
2.4. Mechanical, Rheological and Optical Properties
2.4.1. Mechanical Properties under Static Stretching
2.4.2. Mass Melt Flow Rate, MFR
2.4.3. Light Transmittance
2.4.4. Haze Tests
2.5. Statistical Analysis
3. Results
3.1. Films
3.2. Antibacterial Properties
3.3. Mechanical, Rheological and Optical Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Geyer, R.; Jambeck, J.R.; Law, K.L. Producción, uso y destino de todos los plásticos jamás fabricados. Sci. Adv. 2017, 3, 1207–1221. [Google Scholar]
- DeFrates, K.G.; Moore, R.; Borgesi, J.; Lin, G.; Mulderig, T.; Beachley, V.; Hu, X. Protein-based fiber materials in medicine: A review. Nanomaterials 2018, 8, 457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, T.W.; Frelka, N.; Shen, Z.; Chew, A.K.; Banick, J.; Grey, S.; Kim, M.S.; Dumesic, J.A.; Van Lehn, R.C.; Huber, G.W. Recycling of multilayer plastic packaging materials by solvent-targeted recovery and precipitation. Sci. Adv. 2020, 6, eaba7599. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.Y.; Fu, J.; He, Y. A review of 3D printing technologies for soft polymer materials. Adv. Funct. Mater. 2020, 30, 2000187. [Google Scholar] [CrossRef]
- Walczak, M.; Caban, J. Tribological characteristics of polymer materials used for slide bearings. Open Eng. 2021, 11, 624–629. [Google Scholar] [CrossRef]
- Ramdas, V.M.; Mandree, P.; Mgangira, M.; Mukaratirwa, S.; Lalloo, R.; Ramchuran, S. Review of current and future bio-based stabilisation products (enzymatic and polymeric) for road construction materials. Transp. Geotech. 2021, 27, 100458. [Google Scholar] [CrossRef]
- Badia, X.; Gil, A.; Shepherd, J.; Guarga, L. Access to Orphan Drugs (ODS) in Spain Compared with EU4 Countries: Inequity and Lack of Price Transparency Across Europe. Value Health 2017, 20, A665. [Google Scholar] [CrossRef] [Green Version]
- Geyer, R.; Letcher, T.M. Plastic Waste and Recycling. In Chapter 2—Production, Use, and Fate of Synthetic Polymers; Academic Press: Cambridge, UK, 2020; pp. 13–32. [Google Scholar]
- Adhikary, T.; Kumar, D.H. Advances in Postharvest Packaging Systems of Fruits and Vegetable; IntechOpen: London, UK, 2021. [Google Scholar]
- Eichelter, J.; Wilhelm, H.; Mautner, A.; Schafler, E.; Eder, A.; Bismarck, A. High-velocity stretching of polyolefin tapes. Polym. Test. 2020, 81, 106228. [Google Scholar] [CrossRef]
- Alberti, M.G.; Gálvez, J.C.; Enfedaque, A.; Castellanos, R. Influence of high temperature on the fracture properties of polyolefin fibre reinforced concrete. Materials 2021, 14, 601. [Google Scholar] [CrossRef]
- Gadhave, R.V.; Vineeth, S.K.; Gadekar, P.T. Polymers and polymeric materials in COVID-19 pandemic: A review. Open J. Polym. Chem. 2020, 10, 66. [Google Scholar] [CrossRef]
- Corrêa, H.L.; Corrêa, D.G. Polymer applications for medical care in the COVID-19 pandemic crisis: Will we still speak ill of these materials? Front. Mater. 2020, 7, 283. [Google Scholar] [CrossRef]
- Mallakpour, S.; Azadi, E.; Hussain, C.M. Protection, disinfection, and immunization for healthcare during the COVID-19 pandemic: Role of natural and synthetic macromolecules. Sci. Total Environ. 2021, 776, 145989. [Google Scholar] [CrossRef]
- Yougbare, S.; Chang, T.K.; Tan, S.H.; Kuo, J.C.; Hsu, P.H.; Su, C.Y.; Kuo, T.R. Antimicrobial gold nanoclusters: Recent developments and future perspectives. Int. J. Mol. Sci. 2019, 20, 2924. [Google Scholar] [CrossRef] [Green Version]
- Argyri, A.A.; Doulgeraki, A.I.; Varla, E.G.; Bikouli, V.C.; Natskoulis, P.I.; Haroutounian, S.A.; Chorianopoulos, N.G. Evaluation of plant origin essential oils as herbal biocides for the protection of caves belonging to natural and cultural heritage sites. Microorganisms 2021, 9, 1836. [Google Scholar] [CrossRef]
- Caldeira, A.T. Green mitigation strategy for cultural heritage using bacterial biocides. In Microorganisms in the Deterioration and Preservation of Cultural Heritage; Springer: Neuchatel, Switzerland, 2021; pp. 137–154. [Google Scholar]
- Spirescu, V.A.; Chircov, C.; Grumezescu, A.M.; Andronescu, E. Polymeric nanoparticles for antimicrobial therapies: An up-to-date overview. Polymers 2021, 13, 724. [Google Scholar] [CrossRef]
- Ribeiro, A.I.; Dias, A.M.; Zille, A. Synergistic effects between metal nanoparticles and commercial antimicrobial agents: A Review. ACS Appl. Nano Mater. 2022, 5, 3030–3064. [Google Scholar] [CrossRef]
- Liu, B.; Sun, H.; Lee, J.W.; Yang, J.; Wang, J.; Li, Y.; Guo, X. Achieving highly efficient all-polymer solar cells by green-solvent-processing under ambient atmosphere. Energy Environ. Sci. 2021, 14, 4499–4507. [Google Scholar] [CrossRef]
- Settier-Ramírez, L.; López-Carballo, G.; Gavara, R.; Hernández-Muñoz, P. Broadening the antimicrobial spectrum of nisin-producing Lactococcus lactis subsp. Lactis to Gram-negative bacteria by means of active packaging. Int. J. Food Microbiol. 2021, 339, 109007. [Google Scholar] [CrossRef]
- Dubey, K.A.; Bhardwaj, Y.K. High-performance polymer-matrix composites: Novel routes of synthesis and interface-structure-property correlations. In Handbook on Synthesis Strategies for Advanced Materials; Springer: Singapore; Mumbai, India, 2021; pp. 1–25. [Google Scholar]
- Kolbeck, S.; Hilgarth, M.; Vogel, R.F. Proof of concept: Predicting the onset of meat spoilage by an integrated oxygen sensor spot in MAP packages. Lett. Appl. Microbiol. 2021, 73, 39–45. [Google Scholar] [CrossRef]
- Jo, Y.; Garcia, C.V.; Ko, S.; Lee, W.; Shin, G.H.; Choi, J.C.; Kim, J.T. Characterization and antibacterial properties of nanosilver-applied polyethylene and polypropylene composite films for food packaging applications. Food Biosci. 2018, 23, 83–90. [Google Scholar] [CrossRef]
- Omerović, N.; Djisalov, M.; Živojević, K.; Mladenović, M.; Vunduk, J.; Milenković, I.; Vidić, J. Antimicrobial nanoparticles and biodegradable polymer composites for active food packaging applications. Compr. Rev. Food Sci. Food Saf. 2021, 20, 2428–2454. [Google Scholar] [CrossRef]
- Garavand, F.; Cacciotti, I.; Vahedikia, N.; Rehman, A.; Tarhan, Ö.; Akbari-Alavijeh, S.; Jafari, S.M. A comprehensive review on the nanocomposites loaded with chitosan nanoparticles for food packaging. Crit. Rev. Food Sci. Nutr. 2022, 62, 1383–1416. [Google Scholar] [CrossRef]
- Sokolik, C.G.; Lellouche, J.P. Hybrid-silica nanoparticles as a delivery system of the natural biocide carvacrol. RSC Adv. 2018, 8, 36712–36721. [Google Scholar] [CrossRef] [Green Version]
- Rezvani, E.; Rafferty, A.; McGuinness, C.; Kennedy, J. Adverse effects of nanosilver on human health and the environment. Acta Biomater. 2019, 94, 145–159. [Google Scholar] [CrossRef]
- Al-Jumaili, A.; Kumar, A.; Bazaka, K.; Jacob, M.V. Plant secondary metabolite-derived polymers: A potential approach to develop antimicrobial films. Polymers 2018, 10, 515. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Cicek, N.; Levin, D.B.; Logsetty, S.; Liu, S. Bacteria-triggered release of a potent biocide from core-shell polyhydroxyalkanoate (PHA)-based nanofibers for wound dressing applications. J. Biomater. Sci. Polym. Ed. 2020, 31, 394–406. [Google Scholar] [CrossRef]
- Pawłowska, A.; Stepczyńska, M. Natural biocidal compounds of plant origin as biodegradable materials modifiers. J. Polym. Environ. 2021, 30, 1683–1708. [Google Scholar] [CrossRef]
- O’Connor, P.M.; Kuniyoshi, T.M.; Oliveira, R.P.; Hill, C.; Ross, R.P.; Cotter, P.D. Antimicrobials for food and feed; a bacteriocin perspective. Curr. Opin. Biotechnol. 2020, 61, 160–167. [Google Scholar] [CrossRef]
- Nurdianti, L.; Rusdiana, T.; Sopyan, I.; Putriana, N.A.; Aiman, H.R.; Fajria, T.R. Characteristic comparison of an intraoral thin film containing astaxanthin nanoemulsion using sodium alginate and gelatin polymers. Turk. J. Pharm. Sci. 2021, 18, 289. [Google Scholar] [CrossRef]
- Shah, A.A.; Wu, J.; Qian, C.; Liu, Z.; Mobashar, M.; Tao, Z.; Zhong, X. Ensiling of whole-plant hybrid pennisetum with natamycin and Lactobacillus plantarum impacts on fermentation characteristics and meta-genomic microbial community at low temperature. J. Sci. Food Agric. 2020, 100, 3378–3385. [Google Scholar] [CrossRef]
- Davidson, P.M.; Harrison, M.A. Resistance and adaptation to food antimicrobials, sanitizers, and other process controls. Food Technol. 2002, 56, 69–78. [Google Scholar]
- Akhila, P.P.; Sunooj, K.V.; Navaf, M.; Aaliya, B.; Sudheesh, C.; Sasidharan, A.; Khaneghah, A.M. Application of innovative packaging technologies to manage fungi and mycotoxin contamination in agricultural products: Current status, challenges, and perspectives. Toxicon 2022, 214, 18–29. [Google Scholar] [CrossRef] [PubMed]
- Mo, X.; Peng, X.; Liang, X.; Fang, S.; Xie, H.; Chen, J.; Meng, Y. Development of antifungal gelatin-based nanocomposite films functionalized with natamycin-loaded zein/casein nanoparticles. Food Hydrocoll. 2021, 113, 106506. [Google Scholar] [CrossRef]
- Anari, H.N.B.; Majdinasab, M.; Shaghaghian, S.; Khalesi, M. Development of a natamycin-based non-migratory antimicrobial active packaging for extending shelf-life of yogurt drink (Doogh). Food Chem. 2022, 366, 130606. [Google Scholar] [CrossRef]
- Arthur, T.D.; Cavera, V.L.; Chikindas, M.L. On bacteriocin delivery systems and potential applications. Future Microbiol. 2014, 9, 235–248. [Google Scholar] [CrossRef]
- Barbosa, A.A.T.; de Melo, M.R.; da Silva, C.M.R.; Jain, S.; Dolabella, S.S. Nisin resistance in Gram-positive bacteria and approaches to circumvent resistance for successful therapeutic use. Crit. Rev. Microbiol. 2021, 47, 376–385. [Google Scholar] [CrossRef]
- Shin, J.M.; Gwak, J.W.; Kamarajan, P.; Fenno, J.C.; Rickard, A.H.; Kapila, Y.L. Biomedical applications of nisin. J. Appl. Microbiol. 2016, 120, 1449–1465. [Google Scholar] [CrossRef] [Green Version]
- Zehetmeyer, G.; Meira, S.M.M.; Scheibel, J.M.; de Oliveira, R.V.B.; Brandelli, A.; Soares, R.M.D. Influence of melt processing on biodegradable nisin-PBAT films intended for active food packaging applications. J. Appl. Polym. Sci. 2016, 133, 43212. [Google Scholar] [CrossRef]
- Wang, H.; Yang, B.; Sun, H. Pectin-Chitosan polyelectrolyte complex nanoparticles for encapsulation and controlled release of nisin. Am. J. Polym. Sci. Technol. 2017, 3, 82–88. [Google Scholar] [CrossRef]
- Agustín-Sáenz, C.; Martín-Ugarte, E.; Jorcin, J.B.; Imbuluzqueta, G.; Santa Coloma, P.; Izagirre-Etxeberria, U. Effect of organic precursor in hybrid sol–gel coatings for corrosion protection and the application on hot dip galvanised steel. J. Sol-Gel Sci. Technol. 2019, 89, 264–283. [Google Scholar] [CrossRef]
- Ayers, S.; Crawley, R.; Button, S.; Thornton, A.; Field, A.P.; Flood, C.; Smith, H. Evaluation of expressive writing for postpartum health: A randomised controlled trial. J. Behav. Med. 2018, 41, 614–626. [Google Scholar] [CrossRef] [Green Version]
- Shiroodi, S.G.; Nesaei, S.; Ovissipour, M.; Al-Qadiri, H.M.; Rasco, B.; Sablani, S. Biodegradable polymeric films incorporated with nisin: Characterization and efficiency against Listeria monocytogenes. Food Bioprocess Technol. 2016, 9, 958–969. [Google Scholar] [CrossRef]
- Gumienna, M.; Górna, B. Antimicrobial food packaging with biodegradable polymers and bacteriocins. Molecules 2021, 26, 3735. [Google Scholar] [CrossRef]
- Rai, M.; Ingle, A.P.; Paralikar, P.; Gupta, I.; Medici, S.; Santos, C.A. Recent advances in use of silver nanoparticles as antimalarial agents. Int. J. Pharm. 2017, 526, 254–270. [Google Scholar] [CrossRef]
- ISO 22196:2011; Measurement of Antibacterial Activity on Plastics and Other Non-Porous Surfaces. ISO: Geneva, Switzerland, 2011.
- ISO 291:2008; Plastics—Standard Atmospheres for Conditioning and Testing. ISO: Geneva, Switzerland, 2008.
- ISO 527-1:2019; Plastics—Determination of Tensile Properties—Part 1: General Principles. ISO: Geneva, Switzerland, 2019.
- ISO 527-2:2012; Plastics—Determination of Tensile Properties—Part 2: Test Conditions for Moulding and Extrusion Plastics. ISO: Geneva, Switzerland, 2012.
- ISO: 1133-1:2011; Plastics—Determination of the Melt Mass-Flow Rate (MFR) and Melt Volume-Flow Rate (MVR) of Hermoplastic—Part 1: Standard Method. ISO: Geneva, Switzerland, 2011.
- ISO 13468-1:2019; Plastics—Determination of the Total Luminous Transmittances of Transparent Materials–Part 1: Single-Beam Instrument. ISO: Geneva, Switzerland, 2019.
- ASTM D 1003; Standard Test Method for Haze and Luminous Transmittance of transparent Plastics. ASTM: West Conshohocken, PA, USA, 2013.
- JIS Z 2801; Test for Antimicrobial Activity of Plastics. ISO: Geneva, Switzerland.
- Orlo, E.; Russo, C.; Nugnes, R.; Lavorgna, M.; Isidori, M. Natural methoxyphenol compounds: Antimicrobial activity against foodborne pathogens and food spoilage bacteria, and role in antioxidant processes. Foods 2021, 10, 1807. [Google Scholar] [CrossRef]
- Khazaei Monfared, Y.; Mahmoudian, M.; Cecone, C.; Caldera, F.; Zakeri-Milani, P.; Matencio, A.; Trotta, F. Stabilization and anticancer enhancing activity of the peptide nisin by cyclodextrin-based nanosponges against colon and breast cancer Cells. Polymers 2022, 14, 594. [Google Scholar] [CrossRef]
- Gedarawatte, S.T.; Ravensdale, J.T.; Al-Salami, H.; Dykes, G.A.; Coorey, R. Antimicrobial efficacy of nisin-loaded bacterial cellulose nanocrystals against selected meat spoilage lactic acid bacteria. Carbohydr. Polym. 2021, 251, 117096. [Google Scholar] [CrossRef]
- Alirezalu, K.; Yaghoubi, M.; Poorsharif, L.; Aminnia, S.; Kahve, H.I.; Pateiro, M.; Munekata, P.E. Antimicrobial polyamide-alginate casing incorporated with nisin and ε-polylysine nanoparticles combined with plant extract for inactivation of selected bacteria in nitrite-free frankfurter-type sausage. Foods 2021, 10, 1003. [Google Scholar] [CrossRef]
- Janczak, K.; Kosmalska, D.; Kaczor, D.; Raszkowska-Kaczor, A.; Wedderburn, L.; Malinowski, R. Bactericidal and fungistatic properties of LDPE modified with a biocide containing metal nanoparticles. Materials 2021, 14, 4228. [Google Scholar] [CrossRef]
- Kosmalska, D.; Janczak, K.; Raszkowska-Kaczor, A.; Stasiek, A.; Ligor, T. Polylactide as a substitute for conventional polymers—biopolymer processing under varying extrusion conditions. Environments 2022, 9, 57. [Google Scholar] [CrossRef]
- Holcapkova, P.; Hurajova, A.; Bazant, P.; Pummerova, M.; Sedlarik, V. Thermal stability of bacteriocin nisin in polylactide-based films. Polym. Degrad. Stab. 2018, 158, 31–39. [Google Scholar] [CrossRef]
- Jin, T.Z.; Liu, L. Roles of green polymer materials in active packaging. In Innovative Uses of Agricultural Products and Byproducts; American Chemical Society: Washington, DC, USA, 2020; pp. 83–107. [Google Scholar]
- Czaja-Jagielska, N.; Praiss, A.; Walenciak, M.; Zmyślona, D.; Sankowska, N. Biodegradable packaging based on PLA with antimicrobial properties. LogForum 2020, 16, 279–286. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, X.; Yang, C.; Xi, T.; Zhao, J.; Liu, L.; Yang, K. New strategy to delay food spoilage: Application of new food contact material with antibacterial function. J. Mater. Sci. Technol. 2021, 70, 59–66. [Google Scholar] [CrossRef]
- Puszczykowska, N.; Rytlewski, P.; Macko, M.; Fiedurek, K.; Janczak, K. Riboflavin as a biodegradable functional additive for thermoplastic polymers. Environments 2022, 9, 56. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Temperature (°C) | 23 ± 1 |
Humidity, RH (%) | 50 ± 5 |
Test speed (mm/min.) | 50 |
Length of the measurement section, L0 (mm) | 50 |
Sample width (mm) | 10 |
Sample | E. coli | S. aureus |
---|---|---|
0 | 1.2 × 104 (1600) e | 1.1 × 104 (1700) f |
Nt1 | 7.0 × 102 (90) c | 2.5 × 103 (280) d |
Nt3 | 4.0 × 101 (10) a | 3.0 (1) a |
Nt5 | 3.0 × 101 (5) a | 6.0 (2) b |
Ns1 | 1.0 × 103 (200) d | 5.6 × 103 (300) e |
Ns3 | 3.3 × 102 (60) c | 8.7 × 102 (70) c |
Ns5 | 6.0 × 101 (8) b | 4 (2) ab |
σ (MPa) | ε (%) | MFR (g/10 min.) | T (%) | H (%) | |
---|---|---|---|---|---|
0 | 11.9 (0.05) | 596.7 (2.08) | 2.1 (0.06) | 91.5 (0.10) | 40.7 (0.20) |
Nt1 | 11.8 (0.05) | 588.0 (2.00) * | 2.2 (0.06) | 91.2 (0.06) | 51.3 (0.15) * |
Nt3 | 11.8 (0.06) | 572.0 (2.00) * | 2.2 (0) | 90.4 (0.06) * | 66.2 (0.10) * |
Nt5 | 11.7 (0.07) | 564.0 (2.00) * | 2.3 (0.1) | 88.4 (0.20) * | 73.2 (0.59) * |
Ns1 | 11.8 (0.04) | 596.7 (2.52) | 2.1 (0) | 91.8 (0.35) | 41.0 (0.10) |
Ns3 | 11.8 (0.04) | 582.8 (1.53) * | 2.2 (0.06) | 91.1 (0.87) | 46.0 (1.10) * |
Ns5 | 11.8 (0.04) | 579.3 (3.06) * | 2.3 (0.06) | 91.4 (0.15) | 48.3 (0.61) * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janczak, K.; Bajer, K.; Malinowski, R.; Wedderburn, L.; Kosmalska, D.; Królikowski, B. Bactericidal Properties of Low-Density Polyethylene (LDPE) Modified with Commercial Additives Used for Food Protection in the Food Industry. Environments 2022, 9, 84. https://doi.org/10.3390/environments9070084
Janczak K, Bajer K, Malinowski R, Wedderburn L, Kosmalska D, Królikowski B. Bactericidal Properties of Low-Density Polyethylene (LDPE) Modified with Commercial Additives Used for Food Protection in the Food Industry. Environments. 2022; 9(7):84. https://doi.org/10.3390/environments9070084
Chicago/Turabian StyleJanczak, Katarzyna, Krzysztof Bajer, Rafał Malinowski, Lauren Wedderburn, Daria Kosmalska, and Bogusław Królikowski. 2022. "Bactericidal Properties of Low-Density Polyethylene (LDPE) Modified with Commercial Additives Used for Food Protection in the Food Industry" Environments 9, no. 7: 84. https://doi.org/10.3390/environments9070084
APA StyleJanczak, K., Bajer, K., Malinowski, R., Wedderburn, L., Kosmalska, D., & Królikowski, B. (2022). Bactericidal Properties of Low-Density Polyethylene (LDPE) Modified with Commercial Additives Used for Food Protection in the Food Industry. Environments, 9(7), 84. https://doi.org/10.3390/environments9070084