Pre-Columbian Archeological Textiles: A Source of Pseudomonas aeruginosa with Virulence Attributes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterization of Archeological Textiles
2.2. P. aeruginosa Isolates
2.3. Biofilm Formation on Glass and Polypropylene
2.4. Pyocyanin Quantification
2.5. Proteolytic Activity
2.6. Hemolysis
2.7. Antimicrobial Susceptibility Testing
2.8. Bioadhesion and Biofilm Formation on Archeological Textiles
2.9. Statistical Analysis
3. Results and Discussion
3.1. Characteristics of Archeological Fabrics
3.2. Virulence of P. aeruginosa Isolated from Pre-Columbian Textiles
3.3. Degradation of Archeological Textiles by P. aeruginosa
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kerr, K.G.; Snelling, A.M. Pseudomonas aeruginosa: a formidable and ever-present adversary. J. Hosp. Infect. 2009, 73, 338–344. [Google Scholar] [CrossRef]
- Lister, P.D.; Wolter, D.J.; Hanson, N.D. Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin. Microbiol. Rev. 2009, 22, 582–610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silby, M.W.; Winstanley, C.; Godfrey, S.A.; Levy, S.B.; Jackson, R.W. Pseudomonas genomes: diverse and adaptable. FEMS Microbiol. Rev. 2011, 35, 652–680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gellatly, S.L.; Hancock, R.E. Pseudomonas aeruginosa: new insights into pathogenesis and host defences. Pathog. Dis. 2013, 67, 159–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Delden, C. Virulence factors in Pseudomonas aeruginosa. In Pseudomonas. Virulence and Gene Regulation; Ramnos, J.L., Ed.; Springer Science and Business Media: New York, NY, USA, 2004; pp. 3–47. [Google Scholar] [CrossRef]
- Grosso-Becerra, M.V.; Santos-Medellín, C.; González-Valdez, A.; Méndez, J.L.; Delgado, G.; Morales-Espinosa, R.; Servín-González, L.; Alcaraz, L.D.; Soberón-Chávez, G. Pseudomonas aeruginosa clinical and environmental isolates constitute a single population with high phenotypic diversity. BMC Genom. 2014, 15, 318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Römling, U.; Wingender, J.; Müller, H.; Tümmler, B. A major Pseudomonas aeruginosa clone common to patients and aquatic habitats. Appl. Environ. Microbiol. 1994, 60, 1734–1738. [Google Scholar] [PubMed]
- Foght, J.M.; Westlake, D.W.; Johnson, W.M.; Ridgway, H.F. Environmental gasoline-utilizing isolates and clinical isolates of Pseudomonas aeruginosa are taxonomically indistinguishable by chemotaxonomic and molecular techniques. Microbiol. 1996, 142, 2333–2340. [Google Scholar] [CrossRef] [Green Version]
- Bouhaddioui, B.; Ben Slama, K.; Gharbi, S.; Boudabous, A. Epidemiology of clinical and environmental Pseudomonas aeruginosa strains. Ann. Microbiol. 2002, 52, 223–235. [Google Scholar] [CrossRef] [Green Version]
- Maroui, I.; Barguigua, A.; Aboulkacem, A.; Elhafa, H.; Ouarrak, K.; Sbiti, M.; Louzi, L.; Timinouni, M.; Belhaj, A. Clonal analysis of clinical and environmental Pseudomonas aeruginosa isolates from Meknes Region, Morocco. Pol. J. Microbiol. 2017, 66, 397–400. [Google Scholar] [CrossRef] [Green Version]
- Rolandi de Perrot, D. Estudio sobre textiles del yacimiento arqueológico de Santa Rosa de Tastil, Salta. Ph.D. Thesis, National University of La Plata, Buenos Aires, Argentina, 1972. [Google Scholar]
- Pietrzak, K.; Otlewska, A.; Puchalski, M.; Gutarowska, B.; Guiamet, P. Antimicrobial properties of silver nanoparticles against biofilm formation by Pseudomonas aeruginosa on archaeological textiles. Appl. Environ. Biotechnol. 2016, 1, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Rajkowska, K.; Kunicka-Styczyńska, A. Typing and virulence factors of food-borne Candida spp. isolates. Int. J. Food Microbiol. 2018, 279, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Essar, D.W.; Eberly, L.; Hadero, A.; Crawford, I.P. Identification and characterization of genes for a second anthranilate synthase in Pseudomonas aeruginosa: interchange ability of the two anthranilate synthases and evolutionary implications. J. Bacteriol. 1990, 172, 884–900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wikström, M.B. Detection of microbial proteolytic activity by a cultivation plate assay in which different proteins adsorbed to a hydrophobic surface are used as substrates. Appl. Environ. Microbiol. 1983, 45, 393–400. [Google Scholar] [PubMed]
- Tay, S.T.; Devi, S.; Puthucheary, S.D.; Kautner, I.M. Detection of haemolytic activity of campylobacters by agarose haemolysis and microplate assay. J. Med. Microbiol. 1995, 42, 175–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Disk Susceptibility Tests, approved standard, 11th ed.; M02-A11; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2012. [Google Scholar]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing, Twenty-Fifth Informational Supplements; M100-S25; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2015. [Google Scholar]
- McGregor, B.A.; Liu, X.; Wang, X.G. Comparisons of the Fourier Transform Infrared Spectra of cashmere, guard hair, wool and other animal fibres. J. Text. Inst. 2018, 109, 813–822. [Google Scholar] [CrossRef]
- Silva, L.V.; Galdino, A.C.M.; Nunes, A.P.F.; dos Santos, K.R.; Moreira, B.M.; Cacci, L.C.; Sodré, C.L.; Ziccardi, M.; Branquinha, M.H.; Santos, A.L. Virulence attributes in Brazilian clinical isolates of Pseudomonas aeruginosa. Int. J. Med. Microbiol. 2014, 304, 990–1000. [Google Scholar] [CrossRef]
- Hunter, R.C.; Klepac-Ceraj, V.; Lorenzi, M.M.; Grotzinger, H.; Martin, T.R.; Newman, D.K. Phenazine content in the cystic fibrosis respiratory tract negatively correlates with lung function and microbial complexity. Am. J. Respir. Cell Mol. Biol. 2012, 47, 738–745. [Google Scholar] [CrossRef]
- Holder, I.A.; Haidaris, C.G. Experimental studies of the pathogenesis of infections due to Pseudomonas aeruginosa: extracellular protease and elastase as in vivo virulence factors. Can. J. Microbiol. 1979, 25, 593–599. [Google Scholar] [CrossRef]
- Sokol, P.A.; Ohman, D.E.; Iglewski, B.H. A more sensitive plate assay for detection of protease production by Pseudomonas aeruginosa. J. Clin. Microbiol. 1979, 9, 538–540. [Google Scholar]
- Yayan, J.; Ghebremedhin, B.; Rasche, K. Antibiotic resistance of Pseudomonas aeruginosa in pneumonia at a single university hospital center in Germany over a 10-year period. PLoS ONE 2015, 10, e0139836. [Google Scholar] [CrossRef] [Green Version]
- Lambert, P.A. Mechanisms of antibiotic resistance in Pseudomonas aeruginosa. J. Roy. Soc. Med. 2002, 95, 22–26. [Google Scholar] [PubMed]
- Gutarowska, B.; Celikkol-Aydin, S.; Bonifay, V.; Otlewska, A.; Aydin, E.; Oldham, A.L.; Brauer, J.I.; Duncan, K.E.; Adamiak, J.; Sunner, J.A.; et al. Metabolomic and high-throughput sequencing analysis-modern approach for the assessment of biodeterioration of materials from historic buildings. Front. Microbiol. 2015, 6, 979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wąs, J.; Knittel, D.; Schollmeyer, E. The use of FTIR microspectroscopy for the identification of thermally changed fibres. J. Forensic Sci. 1996, 41, 1005–1011. [Google Scholar] [CrossRef]
- Yuan, Z.; Yi, L.; Jianjun, L.; Hailing, Z.; Yang, Z.; Zhiqin, P.; Bing, W.; Zhiwen, H.; Junmin, W. Application of electron paramagnetic resonance spectroscopy, Fourier transform infrared spectroscopy-attenuated total reflectance and scanning electron microscopy to the study of the photo-oxidation of wool fiber. Anal. Methods. 2015, 7, 10403–10408. [Google Scholar] [CrossRef]
- Kan, C.W.; Chan, K.; Marcus, Y. Surface characterisation of low-temperature plasma treated wool fibre. Autex Res. J. 2003, 3, 194–204. [Google Scholar] [CrossRef]
- Restivo, A.; Degano, I.; Ribechini, E.; Pérez-Arantegui, J.; Colombini, M.P. Field-emission scanning electron microscopy and energy-dispersive x-ray analysis to understand the role of tannin-based dyes in the degradation of historical wool textiles. Microsc. Microanal. 2014, 20, 1534–1543. [Google Scholar] [CrossRef]
- Li, B.; Yao, J.; Niu, J.; Liu, J.; Wang, L.; Feng, M.; Sun, Y. Study on the effect of organic phosphonic compounds on disulfide bonds in wool. Text. Res. J. 2019, 89, 2682–2693. [Google Scholar] [CrossRef]
- Guiamet, P.; Igareta, A.; Battistoni, P.; Gómez de Saravia, S. Fungi and bacteria in the biodeterioration of archeological fibers. Analysis using different microscopic techniques. Rev. Argent. Microbiol. 2014, 46, 376–377. [Google Scholar] [CrossRef] [Green Version]
- Lavin, P.; Gómez de Saravia, S.G.; Guiamet, P.S. An environmental assessment of biodeterioration in document repositories. Biofouling 2014, 30, 561–569. [Google Scholar] [CrossRef]
- Sterflinger, K. Fungi: their role in deterioration of cultural heritage. Fungal Biol. Rev. 2010, 24, 47–55. [Google Scholar] [CrossRef]
Antimicrobial Agent | Interpretive Categories | ||
---|---|---|---|
S—Susceptible | I—Intermediate | R—Resistant | |
Zone Diameter (mm) | |||
amikacin | ≥17 | 15–16 | ≤14 |
imipenem | ≥19 | 16–18 | ≤15 |
cefepime | ≥18 | 15–17 | ≤14 |
ciprofloxacin | ≥21 | 16–20 | ≤15 |
aztreonam | ≥22 | 16–21 | ≤15 |
polymyxin B | ≥12 | – | ≤11 |
piperacillin–tazobactam | ≥21 | 15–20 | ≤14 |
Feature | Environmental Strains | Clinical Strain | ||
---|---|---|---|---|
KP842564 | KP842565 | |||
Virulence-related parameters | ||||
Biofilm formation (log (CFU/cm2)) ± SD | polypropylene | 8.6 ± 0.4 a | 8.7 ± 0.3 a | 9.2 ± 0.4 |
glass | 8.6 ± 0.5 b | 8.4 ± 0.6 b | 8.9 ± 0.4 | |
Pyocyanin production (µg/mL) ± SD | 1.09 ± 0.3 a | 0.39 ± 0.2 a | 8.48 ± 0.8 | |
Proteolytic activity—decreased wettability zone (mm) ± SD | bovine serum albumin | 16.4 ± 1.1 a | 0 a | 20.8 ± 0.4 |
mucin | 22.0 ± 0.7 a | 0 a | 25.6 ± 0.5 | |
fibrinogen | 12.6 ± 1.7 a | 0 a | 17.6 ± 1.1 | |
casein | 14.4 ± 0.5 a | 0 a | 19.6 ± 1.1 | |
Hemolytic index ± SD | 1.50 ± 0.07 b | 1.46 ± 0.05 b | 1.41 ± 0.09 | |
Susceptibility to antimicrobials—inhibition zone (mm)/category * | amikacin | 23/S | 28/S | 22/S |
imipenem | 33/S | 32/S | 27/S | |
cefepime | 34/S | 31/S | 11/R | |
ciprofloxacin | 37/S | 33/S | 33/S | |
aztreonam | 27/S | 25/S | 0/R | |
polymyxin B | 12/S | 16/S | 0/R | |
piperacillin–tazobactam | 22/S | 21/S | 20/I | |
Additional features | ||||
Biofilm on archeological textile (log (CFU/cm2)) | after 3 days | 5.8 ± 0.5 | 8.7 ± 0.8 | nd |
after 5 days | 6.8 ± 0.6 | 8.6 ± 0.7 | nd | |
Sequence homology of 16S rRNA to the clinical strain (%) | 99.7 | 99.5 | – |
Sample | Textile Sample After Biofilm Formation by P. aeruginosa KP842564 | Textile Sample after Biofilm Formation by P. aeruginosa KP842565 | Control | ||
---|---|---|---|---|---|
SEM images | Right side | ||||
Left side | |||||
Chemical analysis (SEM-EDX) | Spectrum | ||||
Element content (%) | C: 53.30, O: 20.85, Na: 1.54, Mg: 0.63, Al: 0.57, Si: 0.55, S: 6.71, Cl: 0.71, K: 0.77, Ca: 10.68, Fe: 3.66 | C: 53.27, O: 28.04, Na: 2.40, Mg: 1.09, Ca: 15.20 | C: 51.47, O: 33.42, Mg: 0.80, Al: 0.52, K: 0.66, Ca: 11.15, Fe: 1.97 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajkowska, K.; Otlewska, A.; Guiamet, P.S.; Wrzosek, H.; Machnowski, W. Pre-Columbian Archeological Textiles: A Source of Pseudomonas aeruginosa with Virulence Attributes. Appl. Sci. 2020, 10, 116. https://doi.org/10.3390/app10010116
Rajkowska K, Otlewska A, Guiamet PS, Wrzosek H, Machnowski W. Pre-Columbian Archeological Textiles: A Source of Pseudomonas aeruginosa with Virulence Attributes. Applied Sciences. 2020; 10(1):116. https://doi.org/10.3390/app10010116
Chicago/Turabian StyleRajkowska, Katarzyna, Anna Otlewska, Patricia S. Guiamet, Henryk Wrzosek, and Waldemar Machnowski. 2020. "Pre-Columbian Archeological Textiles: A Source of Pseudomonas aeruginosa with Virulence Attributes" Applied Sciences 10, no. 1: 116. https://doi.org/10.3390/app10010116
APA StyleRajkowska, K., Otlewska, A., Guiamet, P. S., Wrzosek, H., & Machnowski, W. (2020). Pre-Columbian Archeological Textiles: A Source of Pseudomonas aeruginosa with Virulence Attributes. Applied Sciences, 10(1), 116. https://doi.org/10.3390/app10010116