Influences of Temperature and Substrate Particle Content on Granular Sludge Bed Anaerobic Digestion
Abstract
:1. Introduction
1.1. Particle Disintegration and Hydrolysis
1.2. Temperature Effect on Particle Hydrolysis
1.3. Effect of Temperature Change in Anaerobic Digestion
2. Materials and Methods
2.1. Samples
2.2. Sample Analysis
2.3. Reactor and Experimental Procedure
2.4. ADM1 Simulation
3. Result and Discussion
3.1. Biogas Production
3.2. Methane Yield and Solid Removal Efficiency
3.3. Simulation Results
4. Conclusions
- An increase in temperature increased the overall biogas production in both high- and low-particulate-content substrates, but the temperature effect was stronger on high-particle-content substrates.
- Disintegration and hydrolysis of suspended solids were significantly enhanced by a temperature increase from 25 to 35 °C.
- Methane yield was significantly higher for the low-particulate sample (CF) than for the high-particulate sample (RF) at both 25 and 35 °C.
- Particulate and COD removal efficiencies were improved at a higher temperature. CODtotal removal efficiency improved from 44% at 25 °C to 73% at 35 °C for the high-particulate substrate and from 43% at 25 °C to 54% at 35 °C for the low-particulate substrate. CODsoluble removal efficiencies were also improved at higher temperatures, but they were approximately similar for both high- and low-particulate substrates.
- Classifying particulates into fast and slow disintegrating and applying temperature-dependent disintegration constant values Kdis fit the experimental data better than the traditional ADM1 method of simulation.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Sensitivity Function of Biogas Production
Variable | r(av(SensAR2)) | av(|SensAR|) | av(|ErrCont|) | |||
---|---|---|---|---|---|---|
Ea1 | Ea2 | Ea1 | Ea2 | Ea1 | Ea2 | |
S_CH4 | 0.286 | 0.163 | 0.085 | 0.068 | 0 | 0 |
S_CO2 | 0.004 | 0.003 | 0.001 | 0.001 | 0 | 0 |
S_H2 | 0 | 0 | 0 | 0 | 0 | 0 |
Variable | r(av(SensAR2)) | av(|SensAR|) | av(|ErrCont|) | |||
---|---|---|---|---|---|---|
Ea1 | Ea2 | Ea1 | Ea2 | Ea1 | Ea2 | |
S_CH4 | 0.233 | 0.085 | 0.025 | 0.016 | 0 | 0 |
S_CO2 | 0.005 | 0.003 | 0.001 | 0.001 | 0 | 0 |
S_H2 | 0 | 0 | 0 | 0 | 0 | 0 |
Other parameters | ||||||
Xc1 | 75.9 | 71.15 | 31.5 | 34.8 | 0 | 0 |
Xc2 | 15.6 | 12.5 | 10.6 | 7.6 | 0 | 0 |
Appendix B. Simulation before and after Parameter Estimation
References
- FAO. FAO Report: Nitrogen Inputs to Agricultural Soils from Livestock Manure. Available online: http://www.fao.org/economic/ess/ess-events/faostat-manure/en/ (accessed on 15 February 2019).
- Zeeman, G.; Sanders, W.T.M.; Wang, K.Y.; Lettinga, G. Anaerobic Treatment of Complex Wastewater and Waste Activated Sludge–Application of an Upflow Anaerobic Solid Removal (UASR) Reactor for the Removal and Pre-Hydrolysis of Suspended COD. Water Sci. Technol. 1997, 35, 121–128. [Google Scholar] [CrossRef]
- Bergland, W.H.; Dinamarca, C.; Toradzadegan, M.; Nordgård, A.S.R.; Bakke, I.; Bakke, R. High Rate Manure Supernatant Digestion. Water Res. 2015, 76, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahmoud, N.; Zeeman, G.; Gijzen, H.; Lettinga, G. Solids Removal in Upflow Anaerobic Reactors, a Review. Bioresour. Technol. 2003, 90, 1–9. [Google Scholar] [CrossRef]
- Batstone, D.J.; Keller, J.; Angelidaki, I.; Kalyuzhnyi, S.V.; Pavlostathis, S.G.; Rozzi, A.; Sanders, W.T.; Siegrist, H.; Vavilin, V.A. The IWA Anaerobic Digestion Model No 1 (ADM1). Water Sci. Technol. 2002, 45, 65–73. [Google Scholar] [CrossRef]
- Vavilin, V.A.; Fernandez, B.; Palatsi, J.; Flotats, X. Hydrolysis Kinetics in Anaerobic Degradation of Particulate Organic Material: An Overview. Waste Manag. 2008, 28, 939–951. [Google Scholar] [CrossRef]
- Vavilin, V.A.; Rytov, S.V.; Lokshina, L.Y. A Description of Hydrolysis Kinetics in Anaerobic Degradation of Particulate Organic Matter. Bioresour. Technol. 1996, 56, 229–237. [Google Scholar] [CrossRef]
- Cazier, E.A.; Trably, E.; Steyer, J.P.; Escudie, R. Biomass Hydrolysis Inhibition at High Hydrogen Partial Pressure in Solid-State Anaerobic Digestion. Bioresour. Technol. 2015, 190, 106–113. [Google Scholar] [CrossRef] [Green Version]
- Tassew, F.A.; Bergland, W.H.; Dinamarca, C.; Bakke, R. Effect of Particulate Disintegration on Biomethane Potential of Particle-Rich Substrates in Batch Anaerobic Reactor. Appl. Sci. 2019, 9, 2880. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.Y.; Noike, T.; Sato, K.; Matsumoto, J. Temperature Characteristics of the Methanogenesis Process in Anaerobic Digestion. Water Sci. Technol. 1987, 19, 299–300. [Google Scholar] [CrossRef]
- Masse, D.I.; Masse, L.; Croteau, F. The effect of temperature fluctuations on psychrophilic anaerobic sequencing batch reactors treating swine manure. Bioresour. Technol. 2003, 89, 57–62. [Google Scholar] [CrossRef]
- Saady, N.M.C.; Massé, D.I. Psychrophilic anaerobic digestion of lignocellulosic biomass: A characterization study. Bioresour. Technol. 2013, 142, 663–671. [Google Scholar] [CrossRef] [PubMed]
- Moset, V.; Poulsen, M.; Wahid, R.; Højberg, O.; Møller, H.B. Mesophilic versus thermophilic anaerobic digestion of cattle manure: Methane productivity and microbial ecology. Microb. Biotechnol. 2015, 8, 787–800. [Google Scholar] [CrossRef] [PubMed]
- Lettinga, G.; Rebac, S.; Zeeman, G. Challenge of Psychrophilic Anaerobic Wastewater Treatment. TRENDS Biotechnol. 2001, 19, 363–370. [Google Scholar] [CrossRef]
- Massé, D.I.; Saady, N.M.C. Psychrophilic dry anaerobic digestion of dairy cow feces: Long-term operation. Waste Manag. 2015, 36, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Jha, A.K. Psychrophilic dry anaerobic digestion of cow dung for methane production: Effect of inoculum. Sci. Asia 2013, 39, 500–510. [Google Scholar] [CrossRef] [Green Version]
- Rajagopal, R.; Bellavance, D.; Rahaman, M.S. Psychrophilic anaerobic digestion of semi-dry mixed municipal food waste: For North American context. Process. Saf. Environ. Prot. 2017, 105, 101–108. [Google Scholar] [CrossRef]
- Ge, H.; Jensen, P.D.; Batstone, D.J. Relative Kinetics of Anaerobic Digestion under Thermophilic and Mesophilic Conditions. Water Sci. Technol. 2011, 64, 848–853. [Google Scholar] [CrossRef]
- Chi, Y.Z.; Li, Y.Y.; Ji, M.; Qiang, H.; Deng, H.W.; Wu, Y.P. Mesophilic and Thermophilic Digestion of Thickened Waste Activated Sludge: A Comparative Study. In Advanced Materials Research; Trans Tech Publications: Zurich, Switzerland, 2010; Volume 113, pp. 450–458. [Google Scholar]
- Veeken, A.; Hamelers, B. Effect of Temperature on Hydrolysis Rates of Selected Biowaste Components. Bioresour. Technol. 1999, 69, 249–254. [Google Scholar] [CrossRef]
- Hashimoto, A.G. Ammonia Inhibition of Methanogenesis from Cattle Wastes. Agric. Wastes 1986, 17, 241–261. [Google Scholar] [CrossRef]
- Lukáš KRÁTKÝ, T.J. The Effect of Mechanical Disintegration on the Biodegradability of Wheat Straw. Inżynieria Apar. Chem. 2013, 52, 202–203. [Google Scholar]
- Sambusiti, C.; Monlau, F.; Ficara, E.; Musatti, A.; Rollini, M.; Barakat, A.; Malpe, F. Comparison of various post-treatments for recovering methane from agricultural digestate. Fuel Process. Technol. 2015, 137, 359–365. [Google Scholar] [CrossRef]
- Gioelli, F.; Dinuccio, E.; Balsari, P. Residual biogas potential from the storage tanks of non-separated digestate and digested liquid fraction. Bioresour. Technol. 2011, 102, 10248–10251. [Google Scholar] [CrossRef] [PubMed]
- Association, A.P.H.; Association, A.W.W. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 1989. [Google Scholar]
- Reichert, P. AQUASIM A Tool for Simulation and Data Analysis of Aquatic Systems. Water Sci. Technol. 1994, 30, 21. [Google Scholar] [CrossRef]
- Kunov-Kruse, A.J.; Riisager, A.; Saravanamurugan, S.; Berg, R.W.; Kristensen, S.B.; Fehrmann, R. Revisiting the Brønsted Acid Catalysed Hydrolysis Kinetics of Polymeric Carbohydrates in Ionic Liquids by in Situ ATR-FTIR Spectroscopy. Green Chem. 2013, 15, 2843–2848. [Google Scholar] [CrossRef] [Green Version]
- Galí, A.; Benabdallah, T.; Astals, S.; Mata-Alvarez, J. Modified Version of ADM1 Model for Agro-Waste Application. Bioresour. Technol. 2009, 100, 2783–2790. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; He, G.; Rui, J.; Fang, X.; Tao, Y.; Li, J.; Li, X. Microorganism-regulated mechanisms of temperature effects on the performance of anaerobic digestion. Microb. Cell Fact. 2016, 15, 96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Servio, P.; Englezos, P. Measurement of dissolved methane in water in equilibrium with its hydrate. J. Chem. Eng. Data 2002, 47, 87–90. [Google Scholar] [CrossRef]
- Chae, K.J.; Jang, A.; Yim, S.K.; Kim, I.S. The Effects of Digestion Temperature and Temperature Shock on the Biogas Yields from the Mesophilic Anaerobic Digestion of Swine Manure. Bioresour. Technol. 2008, 99, 1–6. [Google Scholar] [CrossRef]
- Reichert, P. AQUASIM 2.0-User Manual, Computer Program for the Identification and Simulation of Aquatic Systems; Switzerland Swiss Federal Institute for Environmental Science and Technology: Dübendorf, Switzerland, 1998. [Google Scholar]
Experiment | Time (days) | Temperature (°C) | Substrate |
---|---|---|---|
Phase 1 | 0–11 | 35 | RF |
Phase 2 | 11–26 | 25 | RF |
Phase 3 | 26–45 | 25 | CF |
Phase 4 | 45–60 | 35 | CF |
Variable | Yield from Disintegration | Value | |
---|---|---|---|
Model | ADM1 | ||
f_ch_xc1 | Carbohydrates from complex particulates (fast) | 0.2305 | 0.2 |
f_ch_xc2 | Carbohydrates from complex particulates (slow) | 0.2305 | |
f_li_xc1 | Lipids from complex particulates (fast) | 0.0805 | 0.25 |
f_li_xc2 | Lipids from complex particulates (slow) | 0.0805 | |
f_pr_xc1 | Proteins from complex particulates (fast) | 0.101 | 0.2 |
f_pr_xc2 | Proteins from complex particulates (slow) | 0.101 | |
f_SI_xc1 | Soluble inerts from complex particulates (fast) | 0.0715 | 0.1 |
f_SI_xc2 | Soluble inerts from complex particulates (slow) | 0.0715 | |
f_XI_xc1 | Particulate inerts from complex particulates (fast) | 0.0165 | 0.25 |
f_XI_xc2 | Particulate inerts from complex particulates (slow) | 0.0165 |
Variable | Yield from Degradation | Value | |
---|---|---|---|
Model | ADM1 | ||
f_ac_aa | Acetate from amino acids | 0.40 | 0.40 |
f_ac_su | Acetate from sugars | 0.41 | 0.41 |
f_bu_aa | Butyrate from amino acids | 0.26 | 0.26 |
f_bu_su | Butyrate from monosaccharides | 0.13 | 0.13 |
f_fa_li | LCFAs from lipids | 0.95 | 0.95 |
f_h2_aa | Hydrogen from amino acids | 0.06 | 0.06 |
f_h2_su | Hydrogen from monosaccharides | 0.19 | 0.19 |
f_pro_aa | Propionate from amino acids | 0.08 | 0.05 |
f_pro_su | Propionate from monosaccharides | 0.27 | 0.27 |
f_va_aa | Valerate from amino acids | 0.23 | 0.23 |
Variable | Description and Unit | Value |
---|---|---|
input_Qin_dyn | Feed flow rate (m3/day) | 3.38 × 10−4 |
input_S_fa_in | Long-chain fatty acids (kg COD∙m−3) | 2.0 |
input_S_aa_in | Amino acids (kg COD∙m−3) | 2.83 |
input_S_IC_in | Total inorganic carbon (M) | 0.2 |
input_S_IN_in | Total inorganic nitrogen (M) | 0.2 |
input_S_I_in | Soluble inert COD (kg COD∙m−3) | 2.3 |
input_S_su_in | Monosaccharides (kg COD∙m−3) | 3.6 |
input_X_I_in | Particulate inerts (kg COD∙m−3) | 2.7 |
Substrate | Average Biogas Flow Rate (L/day) | |||||
---|---|---|---|---|---|---|
Experimental | Simulation | |||||
Mode 1 | Mode 2 | |||||
25 °C | 35 °C | 25 °C | 35 °C | 25 °C | 35 °C | |
RF | 2.1 ± 0.5 | 3.7 ± 0.2 | 2.7 ± 0.3 | 2.6 ± 0.6 | 2.5 ± 0.4 | 3.0 ± 0.9 |
CF | 2.4 ± 0.2 | 3.3 ± 0.9 | 2.4 ± 0.1 | 2.5 ± 0.1 | 2.8 ± 0.0 | 4.7 ± 0.8 |
Substrate | Methane Yield | |||||
---|---|---|---|---|---|---|
L CH4/g VSS | L CH4/g CODtotal | CODCH4/g CODtotal | ||||
25 °C | 35 °C | 25 °C | 35 °C | 25 °C | 35 °C | |
RF | 0.41 | 0.71 | 0.16 | 0.29 | 0.46 | 0.72 |
CF | 0.76 | 1.06 | 0.26 | 0.37 | 0.74 | 0.92 |
Property | RF | RF Effluent (Average) | CF | CF Effluent (Average) | ||
---|---|---|---|---|---|---|
25 °C | 35 °C | 25 °C | 35 °C | |||
TS (g/L) | 17.0 ± 3.0 | 12.0 ± 0.3 | 10.0 ± 0.0 | 12.0 ± 0.4 | 10 ± 0.3 | 8.7 ± 0.0 |
VS (g/L) | 10.0 ± 2.0 | 5.3 ± 0.3 | 4.2 ± 0.0 | 6.0 ± 1 | 4.6 ± 0.2 | 3.2 ± 0.0 |
TSS (g/L) | 9.4 ± 4.0 | 4.7 ± 0.6 | 3.0 ± 0.0 | 3.0 ± 0.4 | 3.5 ± 0.6 | 2.5 ± 0.0 |
VSS (g/L) | 7.0 ± 3.0 | 4.3 ± 0.4 | 2.9 ± 0.0 | 3.0 ± 0.3 | 3.2 ± 0.5 | 2.3 ± 0.0 |
TDS (g/L) | 8.0 ± 1.0 | 7.1 ± 0.0 | 7.0 ± 0.0 | 9.0 ± 0.5 | 6.7 ± 0.0 | 6.2 ± 0.0 |
VDS (g/L) | 3.0 ± 0.4 | 1.0 ± 0.0 | 1.3 ± 0.0 | 3.0 ± 0.4 | 1.4 ± 0.0 | 0.9 ± 0.0 |
CODtotal (g/L) | 24.0 ± 2.0 | 14 ± 2.4 | 6.7 ± 0.0 | 17.0 ± 0.2 | 9.8 ± 0.9 | 8.0 ± 0.0 |
CODsoluble (g/L) | 15.0 ± 2.0 | 6.5 ± 0.4 | 3.3 ± 0.0 | 13.0 ± 0.2 | 6.3 ± 0.3 | 4.0 ± 0.0 |
NH4+-N (g/L) | 1.9 ± 0.0 | 1.9 ± 0.0 | 1.5 ± 0.0 | 1.7 ± 0.1 | 1.9 ± 0.0 | 1.8 ± 0.0 |
pH | 7.0 ± 0.2 | 8.1 ± 0.1 | 8.4 ± 0.1 | 7.0 ± 0.3 | 8.2 ± 0.1 | 8.1 ± 0.1 |
Acetic acid (g/L) | 4.0 ± 1.0 | 1.1 ± 0.1 | 0.4 ± 0.0 | 3.0 ± 0.1 | 1.0 ± 0.2 | 0.2 ± 0.0 |
Propionic acid (g/L) | 1.0 ± 0.7 | 0.7 ± 0.3 | 0.1 ± 0.0 | 1.0 ± 0.3 | 1.0 ± 0.0 | LD 1 |
VFAtotal (g/L) | 6.0 ± 1.0 | 1.9 ± 0.3 | 0.5 ± 0.0 | 6.0 ± 2 | 2.0 ± 0.2 | 0.2 ± 0.0 |
Property | Average Removal (%) | |||
---|---|---|---|---|
Raw Feed | Centrifuged Feed | |||
25 °C | 35 °C | 25 °C | 35 °C | |
TS | 31 | 42 | 17 | 29 |
VS | 47 | 58 | 23 | 47 |
TSS | 50 | 68 | −16 | 16 |
VSS | 42 | 61 | −19 | 17 |
TDS | 8 | 9 | 28 | 33 |
VDS | 60 | 48 | 58 | 73 |
CODtotal | 44 | 73 | 43 | 54 |
CODsoluble | 58 | 79 | 50 | 68 |
VFAtotal | 70 | 91 | 67 | 97 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tassew, F.A.; Bergland, W.H.; Dinamarca, C.; Bakke, R. Influences of Temperature and Substrate Particle Content on Granular Sludge Bed Anaerobic Digestion. Appl. Sci. 2020, 10, 136. https://doi.org/10.3390/app10010136
Tassew FA, Bergland WH, Dinamarca C, Bakke R. Influences of Temperature and Substrate Particle Content on Granular Sludge Bed Anaerobic Digestion. Applied Sciences. 2020; 10(1):136. https://doi.org/10.3390/app10010136
Chicago/Turabian StyleTassew, Fasil Ayelegn, Wenche Hennie Bergland, Carlos Dinamarca, and Rune Bakke. 2020. "Influences of Temperature and Substrate Particle Content on Granular Sludge Bed Anaerobic Digestion" Applied Sciences 10, no. 1: 136. https://doi.org/10.3390/app10010136
APA StyleTassew, F. A., Bergland, W. H., Dinamarca, C., & Bakke, R. (2020). Influences of Temperature and Substrate Particle Content on Granular Sludge Bed Anaerobic Digestion. Applied Sciences, 10(1), 136. https://doi.org/10.3390/app10010136