Partial Frequency Assignment for Torsional Vibration Control of Complex Marine Propulsion Shafting Systems
Abstract
:1. Introduction
2. Theoretical Development
2.1. The Problem Description
2.2. Construction of a Real Smmetric Matrix with All Expected Eigenvalues
2.3. The Gradient Flow Method
2.4. The Mass and Stiffness Matrix after Modification
3. Torsional Vibration Control and Analysis of a Marine Diesel Engine Propulsion System
3.1. The Model Setup
3.2. Desired Modifications under Two Different Operating Conditions
3.3. Results Obtained from the Gradient Flow Method
3.3.1. Case One (Desired Frequencies at 30 Hz and 90 Hz)
3.3.2. Case Two (Desired Frequencies at 55 Hz and 80 Hz)
3.3.3. Case Three (Desired Frequencies at 55 Hz and 70 Hz)
4. Torsional Vibration Control and Analysis of a Diesel Generator Set
4.1. The Model Setup
4.2. The Aim of Modification
4.3. Results Obtained from the Gradient Flow Method
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Notation
mass matrix | an orthogonal matrix | ||
stiffness matrix | all matrices that have the same eigenvalues as | ||
displacement vector | some matrix entry locations | ||
acceleration vector | the desired values corresponding to | ||
a real matrix with the same eigenvalues as the original system | all matrices with the prescribed entries at the desired locations | ||
a real symmetric matrix with all expected eigenvalues | any given matrix in | ||
system eigenvalues | the same as , except those at the matrix entry locations that do not belong to are set identically zero | ||
original system eigenvalues | all locations that do not belong to | ||
the desired eigenvalues | the projection of any matrix onto the affine subspace | ||
all the eigenvalues that remain unchanged | a constant matrix in with zero entries at all locations corresponding to and known entries at all other locations | ||
the mass-normalized eigenvector matrix corresponding to | A function defined to minimize the distance between and | ||
and | the normalized eigenvector matrices | A function defined the minimization with objective function in terms of | |
a real symmetric matrix | the gradient of objective function |
References
- Baldwin, J.F.; Hutton, S.G. Natural models of modified structures. AIAA 1985, 23, 1737–1743. [Google Scholar] [CrossRef]
- Chen, S.H.; Yang, X.W.; Lian, H.D. Comparison of several eigenvalue reanalysis methods for modified structures. Struct. Multidiscip. Optim. 2000, 20, 253–259. [Google Scholar] [CrossRef]
- Weissenburger, J.T. Effects of local modification on the vibration characteristics of linear systems. J. Appl. Mech. 1968, 35, 327–332. [Google Scholar] [CrossRef]
- Pomazal, R.J.; Snyder, V.W. Local modifications of damped linear systems. AIAA 1971, 9, 2216–2221. [Google Scholar] [CrossRef]
- Ram, Y.M.; Blech, J.J. The dynamic behaviour of a vibratory system after modification. J. Sound Vib. 1991, 150, 357–370. [Google Scholar] [CrossRef]
- Wang, B.P.; Pilkey, W.D. Eigenvalue reanalysis of locally modified structures using a generalized Rayleigh’s method. AIAA 1986, 24, 938–990. [Google Scholar] [CrossRef]
- To, W.M.; Ewins, D.J. Structural modification analysis using Rayleigh quotient iteration. Int. J. Mech. Sci. 1990, 32, 169–179. [Google Scholar] [CrossRef]
- Mottershead, J.E.; Link, M.; Friswell, M.I. The sensitivity method in finite element model updating: A tutorial. Mech. Syst. Signal Process. 2011, 25, 2275–2296. [Google Scholar] [CrossRef]
- Sestieri, A. Structural dynamic modification. Sadhana. Acad. Proc. Eng. Sci. 2000, 25, 247–260. [Google Scholar]
- Richiedei, D.; Trevisani, A.; Zanardo, G. A constrained convex approach to modal design optimization of vibrating systems. J. Mech. Design 2011, 133, 061011. [Google Scholar] [CrossRef]
- Farahani, K.; Bahai, H. An inverse strategy for relocation of eigenfrequencies in structural design. Part I: First order approximate solutions. J. Sound Vib. 2004, 274, 481–505. [Google Scholar] [CrossRef]
- Farahani, H.; Aryana, F. Design optimisation of structures vibration behaviour using first order approximation and local modification. Comput. Struct. 2002, 80, 1955–1964. [Google Scholar]
- Bucher, I.; Braun, S. The structural modification inverse problem: An exact solution. Mech. Syst. Signal Process. 1993, 7, 217–238. [Google Scholar] [CrossRef]
- Li, T.; He, J.M. Local structural modification using mass and stiffness changes. Eng. Struct. 1999, 21, 1028–1037. [Google Scholar] [CrossRef]
- Park, Y.H.; Park, Y.S. Structural modification based on measured frequency response functions: An exact eigenproperties reallocation. J. Sound Vib. 2000, 237, 411–426. [Google Scholar] [CrossRef]
- Mottershead, J.E. Structural modification for the assignment of zeros using measured receptances. J. Appl. Mech. 2001, 68, 791–798. [Google Scholar] [CrossRef]
- Hu, Y.L.; Michael, Z.Q.; Smith, M.C. Natural frequency assignment for mass-chain system with inerters. Mech. Syst. Signal Process. 2018, 108, 126–139. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.X.; Dai, H. An inverse problem for undamped gyroscopic systems. J. Comput. Appl. Math. 2012, 236, 2574–2581. [Google Scholar] [CrossRef] [Green Version]
- Tsai, S.H.; Ouyang, H.; Chang, J.Y. Inverse structural modifications of a geared rotor-bearing system for frequency assignment using measured receptances. Mech. Syst. Signal Process. 2018, 110, 59–72. [Google Scholar] [CrossRef]
- Liu, Z.H.; Li, W.Y.; Ouyang, H. Structural modifications for torsional vibration control of shafting systems based on torsional receptances. Shock Vib. 2016. [Google Scholar] [CrossRef]
- Zhang, J.F.; Ye, J.P.; Ouyang, H.; Yin, X. An explicit formula of perturbating stiffness matrix for partial natural frequency assignment using static output feedback. J. Low Freq. Noise Vib. Act. 2018, 37, 1045–1052. [Google Scholar] [CrossRef] [Green Version]
- Singh, K.V.; Ling, X.X. Active control of viscoelastic systems by the method of receptance. J. Vib. Acoust. 2018, 140, 1–6. [Google Scholar] [CrossRef]
- Araujo, J.M.; Carlos, C.E.T.; Goncalves, L.M.G. Robustness of the quadratic partial eigenvalue assignment using spectrum sensitivities for state and derivative feedback designs. J. Low Freq. Noise Vib. Act. 2018, 37, 253–268. [Google Scholar] [CrossRef]
- Ram, Y.M.; Mottershead, J.E.; Tehrani, M.G. Partial pole placement with time delay in structures using the receptance and the system matrices. Linear Algebra Appl. 2011, 434, 1689–1696. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.T.; Zhang, L. Partial eigenvalue assignment with time delay in high order system using the receptance. Linear Algebra Appl. 2017, 523, 335–345. [Google Scholar] [CrossRef]
- Bai, Z.J.; Chen, M.X.; Datta, B.N. Minimum norm partial quadratic eigenvalue assignment with time delay in vibrating structures using the receptance and the system matrices. J. Sound Vib. 2013, 332, 780–794. [Google Scholar] [CrossRef] [Green Version]
- Bai, Z.J.; Yang, J.K.; Datta, B.N. Robust partial quadratic eigenvalue assignment with time delay using the receptance and the system matrices. J. Sound Vib. 2016, 384, 1–14. [Google Scholar] [CrossRef]
- Bai, Z.J.; Lu, M.; Wan, Q.Y. Minimum norm partial quadratic eigenvalue assignment for vibrating structures using receptances and system matrices. Mech. Syst. Signal Process. 2018, 112, 265–279. [Google Scholar] [CrossRef]
- Liu, H.; He, B.X.; Chen, X.P. Minimum norm partial quadratic eigenvalue assignment for vibrating structures using receptance method. Mech. Syst. Signal Process. 2019, 123, 131–142. [Google Scholar] [CrossRef]
- Bai, Z.J.; Chen, M.X.; Yang, J.K. A multi-step hybrid method for multi-input partial quadratic eigenvalue assignment with time delay. Linear Algebra Appl. 2012, 437, 1658–1669. [Google Scholar] [CrossRef]
- Ram, Y.M.; Mottershead, J.E. Multiple-input active vibration control by partial pole placement using the method of receptances. Mech. Syst. Signal Process. 2013, 40, 727–735. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, X.T. Partial eigenvalue assignment of high order systems by multi-input control. Mech. Syst. Signal Process. 2014, 42, 129–136. [Google Scholar] [CrossRef]
- Zhang, L. Multi-input partial eigenvalue assignment for high order control systems with time delay. Mech. Syst. Signal Process. 2016, 72–73, 376–382. [Google Scholar] [CrossRef]
- Zhang, L.; Yu, F.; Wang, X.T. An algorithm of partial eigenstructure assignment for high-order systems. Math. Methods Appl. Sci. 2018, 41, 6070–6079. [Google Scholar] [CrossRef]
- Li, S.; Yu, D.Z. Simulation study of active control of vibro-acoustic response by sound pressure feedback using modal pole assignment strategy. J. Low Freq. Noise Vib. Act. 2016, 35, 167–186. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.X. Stiffness matrix modification with vibration test data by displacement feedback technique. J. Vibroeng. 2017, 19, 5149–5160. [Google Scholar] [CrossRef]
- Araujo, J.M.; Santos, T. A multiplicative eigenvalues perturbation and its application to natural frequency assignment in undamped second-order systems. Proc. Inst. Mech. Eng. Part I 2018, 232, 963–997. [Google Scholar] [CrossRef]
- Ouyang, H.; Zhang, J.F. Passive modifications for partial assignment of natural frequencies of mass-spring systems. Mech. Syst. Signal Process. 2015, 50–51, 214–226. [Google Scholar] [CrossRef] [Green Version]
- Belotti, R.; Ouyang, H.; Richiedei, D. A new method of passive modifications for partial frequency assignment of general structures. Mech. Syst. Signal Process. 2018, 99, 586–599. [Google Scholar] [CrossRef]
- Chu, M.T.; Diele, F.; Sgura, I. Gradient flow methods for matrix completion with prescribed eigenvalues. Linear Algebra Appl. 2004, 379, 85–112. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.M.; Hong, C.D. Extended transfer matrix method with complex numbers for branched torsional systems. J. Vib. Control 2001, 7, 155–166. [Google Scholar] [CrossRef]
- Zou, C.P.; Chen, D.S.; Hua, H.X. Torsional vibration analysis of complicated multi-branched shafting systems by modal synthesis method. J. Vib. Acoust. 2003, 125, 317–323. [Google Scholar] [CrossRef]
- Wu, J.S.; Chen, C.H. Torsional vibration analysis of gear-branched systems by finite element method. J. Sound Vib. 2001, 240, 159–182. [Google Scholar] [CrossRef]
- Liu, Z.S.; Chen, S.H.; Xu, T. Derivatives of eigenvalues for torsional vibration of geared shaft systems. J. Vib. Acoust. 1993, 115, 277–279. [Google Scholar]
- Crowther, A.R.; Zhang, N. Torsional finite elements and nonlinear numerical modelling in vehicle powertrain dynamics. J. Sound Vib. 2005, 284, 825–849. [Google Scholar] [CrossRef]
Parameter | Parameter | ||
---|---|---|---|
J1 | 5 | K12 | 10 |
J2 | 2 | K23 | 200 |
J3 | 1 | K34 | 150 |
J4 | 3 | K45 | 100 |
J5 | 3 | K56 | 100 |
J6 | 3 | K67 | 100 |
J7 | 3 | K78 | 100 |
J8 | 3 | K89 | 200 |
J9 | 40 | K9,10 | 7 |
J10 | 5.5 | K10,11 | 4 |
J11 | 3.5 | K11,12 | 50 |
J12 | 8 |
Mode number | 1 | 2 | 3 | 4 | 5 | 6 |
f [Hz] | 0 | 24.96 | 57.52 | 74.65 | 108.25 | 232.69 |
Mode number | 7 | 8 | 9 | 10 | 11 | 12 |
f [Hz] | 234.95 | 363.90 | 467.27 | 538.75 | 577.99 | 1046.91 |
The First Case | The Second Case | The Third Case | ||||
---|---|---|---|---|---|---|
Mode number | 2 | 3 | 3 | 4 | 3 | 4 |
f [Hz] | 30 | 90 | 55 | 80 | 55 | 70 |
Physical constraints | The inertias and stiffness of the diesel engine remain unchanged | The inertias and stiffness of the diesel engine remain unchanged | The inertias and stiffness of the diesel engine and propeller remain unchanged |
Mode number | 1 | 2 | 3 | 4 | 5 | 6 |
f [Hz] | 0 | 29.99 | 57.53 | 90.08 | 108.24 | 232.68 |
Error (%) | 0 | 0 | 0 | 0 | 0 | 0 |
Mode number | 7 | 8 | 9 | 10 | 11 | 12 |
f [Hz] | 234.86 | 363.89 | 467.46 | 539.03 | 578.25 | 1046.85 |
Error (%) | 0 | 0 | 0 | 0 | 0 | 0 |
Mode number | 1 | 2 | 3 | 4 | 5 | 6 |
f [Hz] | 0 | 24.96 | 55.00 | 80.00 | 108.20 | 232.69 |
Error (%) | 0 | 0 | 0 | 0 | 0 | 0 |
Mode number | 7 | 8 | 9 | 10 | 11 | 12 |
f [Hz] | 234.81 | 363.90 | 467.69 | 539.32 | 578.53 | 1048.63 |
Error (%) | 0 | 0 | 0 | 0.11 | 0 | 0 |
Mode number | 1 | 2 | 3 | 4 | 5 | 6 |
f [Hz] | 0 | 24.97 | 55.06 | 70.04 | 108.56 | 232.78 |
Error (%) | 0 | 0 | 0 | 0 | 0 | 0 |
Mode number | 7 | 8 | 9 | 10 | 11 | 12 |
f [Hz] | 235.20 | 364.20 | 467.68 | 539.18 | 578.38 | 1051.33 |
Error (%) | 0 | 0 | 0 | 0 | 0 | 0 |
Parameter | Parameter | ||
---|---|---|---|
J1 | 15 | K12 | 100 |
J2 | 2.8 | K23 | 35 |
J3 | 9 | K34 | 25 |
J4 | 9 | K45 | 25 |
J5 | 9 | K56 | 25 |
J6 | 9 | K67 | 100 |
J7 | 220 | K78 | 4 |
J8 | 150 | K89 | 2 |
J9 | 0.6 | K9,10 | 12.6 |
J10 | 2.8 | K10,11 | 2 |
J11 | 0.6 | K11,12 | 12.6 |
J12 | 2.8 |
Mode number | 1 | 2 | 3 | 4 | 5 | 6 |
f [Hz] | 0 | 10.09 | 22.42 | 36.64 | 41.54 | 74.87 |
Mode number | 7 | 8 | 9 | 10 | 11 | 12 |
f [Hz] | 120.97 | 154.56 | 195.72 | 267.20 | 267.77 | 375.48 |
Mode number | 1 | 2 | 3 | 4 | 5 | 6 |
f [Hz] | 0 | 10.09 | 22.42 | 36.62 | 41.53 | 74.86 |
Error (%) | 0 | 0 | 0 | 0 | 0 | 0 |
Mode number | 7 | 8 | 9 | 10 | 11 | 12 |
f [Hz] | 120.94 | 154.58 | 195.71 | 262.50 | 262.99 | 375.49 |
Error (%) | 0 | 0 | 0 | 0 | 0 | 0 |
Parameter | Original Value [kg∙m2] | Obtained Value [kg∙m2] | Changed [kg∙m2] | Parameter | Original Value [105 N/m] | Obtained Value [105 N/m] | Changed [105 N/m] |
---|---|---|---|---|---|---|---|
J1 | 15 | 14.80 | −0.2 | K12 | 100 | 109.29 | 9.29 |
J2 | 2.8 | 3.00 | 0.2 | K23 | 35 | 33.78 | −1.22 |
J3 | 9 | 8.99 | −0.01 | K34 | 25 | 24.99 | −0.01 |
J4 | 9 | 9.00 | 0 | K45 | 25 | 25.01 | 0.01 |
J5 | 9 | 9.01 | 0.01 | K56 | 25 | 25.04 | 0.04 |
J6 | 9 | 9.02 | 0.02 | K67 | 100 | 100.22 | 0.22 |
J7 | 220 | 220.14 | 0.14 | K78 | 4 | 4.00 | 0 |
J8 | 150 | 150.02 | 0.02 | K89 | 2 | 1.99 | −0.01 |
J9 | 0.6 | 0.60 | 0 | K9,10 | 12.6 | 12.11 | −0.49 |
J10 | 2.8 | 2.77 | −0.03 | K10,11 | 2 | 1.99 | −0.01 |
J11 | 0.6 | 0.60 | 0 | K11,12 | 12.6 | 12.13 | −0.47 |
J12 | 2.8 | 2.78 | −0.02 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, M.; Ouyang, H.; Li, W.; Wang, D.; Liu, S. Partial Frequency Assignment for Torsional Vibration Control of Complex Marine Propulsion Shafting Systems. Appl. Sci. 2020, 10, 147. https://doi.org/10.3390/app10010147
Chen M, Ouyang H, Li W, Wang D, Liu S. Partial Frequency Assignment for Torsional Vibration Control of Complex Marine Propulsion Shafting Systems. Applied Sciences. 2020; 10(1):147. https://doi.org/10.3390/app10010147
Chicago/Turabian StyleChen, Meilong, Huajiang Ouyang, Wanyou Li, Donghua Wang, and Siyuan Liu. 2020. "Partial Frequency Assignment for Torsional Vibration Control of Complex Marine Propulsion Shafting Systems" Applied Sciences 10, no. 1: 147. https://doi.org/10.3390/app10010147
APA StyleChen, M., Ouyang, H., Li, W., Wang, D., & Liu, S. (2020). Partial Frequency Assignment for Torsional Vibration Control of Complex Marine Propulsion Shafting Systems. Applied Sciences, 10(1), 147. https://doi.org/10.3390/app10010147