Photodynamic Opening of the Blood–Brain Barrier Using Different Photosensitizers in Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subject
2.2. Photodynamic Treatment Protocol
2.3. Spectrofluorometric Assay of Evans Blue Albumin Complex (EBAC) Extravasation
2.4. Confocal Microscopy of FITC-dextran 70 kDa Extravasation
2.5. Immunohistochemical Assay
2.6. Statistical Analysis
3. Results
3.1. Phthalocyanine Functionalization by Galactose
3.2. Photodynamic Opening of the BBB Using Different PSs
3.3. Fluorescence Spectra of Brain Tissues with Different PSs
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bors, L.; Tóth, K.; Tóth, E.; Bajza, Á.; Csorba, A.; Szigeti, K.; Máthé, D.; Perlaki, G.; Orsi, G.; Tóth, G.; et al. Overcoming the Blood–Brain Barrier. Challenges and Tricks for CNS Drug Delivery. Sci. Pharm. 2019, 87, 6. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Li, K.; Yan, Y.; Gran, B.; Han, Y.; Zhou, F.; Guan, Y.; Rostami, A.; Zhang, G. Intranasal Delivery of Neural Stem Cells: A CNS-specific, Non-invasive Cell-based Therapy for Experimental Autoimmune Encephalomyelitis. J. Clin. Cell. Immunol. 2013, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lipsman, N.; Meng, Y.; Bethune, A.; Huang, Y.; Lam, B.; Masellis, M.; Herrmann, N.; Heyn, C.; Aubert, I.; Boutet, A.; et al. Blood–brain barrier opening in Alzheimer’s disease using MR-guided focused ultrasound. Nat. Commun. 2018, 9, 2336. [Google Scholar] [CrossRef] [Green Version]
- Kiviniemi, V.; Korhonen, V.; Kortelainen, J.; Rytky, J.S.; Keinänen, T.; Tuovinen, T.; Isokangas, M.; Sonkajärvi, E.; Siniluoto, T.; Nikkinen, J.; et al. Real-time monitoring of human blood-brain barrier disruption. PLoS ONE 2017, 12, e0174072. [Google Scholar] [CrossRef] [PubMed]
- Gill, S.; Patel, N.; Hotton, G.; O’Sullivan, K.; McCarter, R.; Bunnage, M.; Brooks, D.; Svendsen, C.; Heywood, P. Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat. Med. 2003, 9, 589–595. [Google Scholar] [CrossRef]
- Abdurashitov, A.; Tuchin, V.; Semyachkina-Glushkovskaya, O. Photodynamic therapy of brain tumors and novel optical coherence tomography strategies for in vivo monitoring of cerebral fluid dynamics. J. Innov. Opt. Health Sci. 2019, in press. [Google Scholar] [CrossRef] [Green Version]
- Stummer, W.; Stepp, H.; Wiestler, O.D.; Pichlmeier, U. Randomized, Prospective Double-Blinded Study Comparing 3 Different Doses of 5-Aminolevulinic Acid for Fluorescence-Guided Resections of Malignant Gliomas. Neurosurgery 2017, 81, 230–239. [Google Scholar] [CrossRef] [Green Version]
- Hirschberg, H.; Berg, K.; Peng, Q. Photodynamic therapy mediated immune therapy of brain tumors. Neuroimmunol. Neuroinflamm. 2018, 5, 27. [Google Scholar] [CrossRef]
- Hirschberg, H.; Uzal, F.A.; Chighvinadze, D.; Zhang, M.J.; Peng, Q.; Madsen, M.J. Disruption of the Blood Brain Barrier Following ALA-Mediated Photodynamic Therapy. Lasers Surg. Med. 2008, 40, 535–542. [Google Scholar] [CrossRef] [Green Version]
- Madsen, S.J.; Gach, H.M.; Hong, S.J.; Uzal, F.A.; Peng, Q.; Hirschberg, H. Increased nanoparticle-loaded exogenous macrophage migration into the brain following PDT-induced blood-brain barrier disruption. Lasers Surg. Med. 2013, 45, 524–532. [Google Scholar] [CrossRef] [Green Version]
- Semyachkina-Glushkovskaya, O.; Kurths, J.; Borisova, E.; Sokolovsky, S.; Mantareva, N.; Angelov, I.; Shirokov, A.; Navolokin, N.; Shushunova, N.; Khorovodov, A.; et al. Photodynamic opening of blood-brain barrier. Biomed. Opt. Exp. 2017, 8, 5040–5048. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Feng, W.; Li, Y.; Kurths, J.; Yu, T.; Semyachkina-Glushkovskaya, O.; Zhu, D. Age differences in photodynamic opening of blood-brain barrier through optical clearing skull window in mice. Lasers Surg. Med. 2019, 51, 625–633. [Google Scholar] [CrossRef] [PubMed]
- Semyachkina-Glushkovskaya, O.; Chehonin, V.; Borisova, E.; Fedosov, I.; Namykin, A.; Abdurashitov, A.; Shirokov, A.; Khlebtsov, B.; Lyubun, Y.; Navolokin, N.; et al. Photodynamic opening of the blood-brain barrier and pathways of brain clearing pathways. J. Biophotonics 2018, 11, e201700287. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Feng, W.; Vodovozova, E.; Tretiakova, D.; Boldyrevd, I.; Li, Y.; Kürths, J.; Yu, T.; Semyachkina-Glushkovskaya, O.; Zhu, D. Photodynamic opening of the blood-brain barrier to high weight molecules and liposomes through an optical clearing skull window. Biomed. Opt. Express 2018, 9, 4850–4862. [Google Scholar] [CrossRef]
- Bors, L.; Tóth, K.; Tóth, E.; Bajza, Á.; Csorba, A.; Szigeti, K.; Máthé, D.; Perlaki, G.; Orsi, G.; Tóth, G.; et al. Age-dependent changes at the blood-brain barrier. A Comparative structural and functional study in young adult and middle aged rats. Brain Res. Bull. 2018, 139, 269–277. [Google Scholar] [CrossRef]
- Ruk, I.; Pouckova, P.; Benes, J.; Vetrviska, D. Drug Delivery Systems for Phthalocyanines for Photodynamic Therapy. Anticancer Res. 2019, 39, 3323–3339. [Google Scholar] [CrossRef] [Green Version]
- Sansaloni-Pastor, S.; Bouilloux, J.; Lange, N. The Dark Side: Photosensitizer Prodrugs. Pharmaceuticals 2019, 12, 148. [Google Scholar] [CrossRef] [Green Version]
- Braun, A.; Tcherniac, J. Über die produkte der einwirkung von acetanhy- did auf phthalamid. Ber. Deut. Chem. Ges. 1907, 40, 2709–2714. [Google Scholar] [CrossRef] [Green Version]
- Leznoff, C.; Lever, A. Phthalocyanines: Properties and Applications; VCH: Vancouver, BC, Canada, 1989; Volume 2. [Google Scholar]
- Lagorio, M.G.; Dicelio, L.E.; San Roman, E.J. Visible and near-IR spectroscopic and photochemical characterization of substituted metallophthalocyanines. Photochem. Photobiol. A Chem. 1993, 72, 153–161. [Google Scholar] [CrossRef]
- Mantareva, V.; Angelov, I.; Wöhrle, D.; Borisova, E.; Kussovski, V. Metallophthalocyanines for antimicrobial photodynamic therapy: an overview of our experience. J. Porphyrins Phthalocyanines 2013, 17, 399–416. [Google Scholar] [CrossRef]
- Xia, P.; Inoguchi, T.; Kern, T.; Engerman, R.; Oates, P.; King, G. Characterization of the mechanism for the chronic activation of diacylglycerol-protein kinase C pathway in diabetes and hypergalactosemia. Diabetes 1994, 43, 1122–1129. [Google Scholar] [CrossRef] [PubMed]
- Hempel, A.; Maasch, C.; Heintze, U.; Lindschau, C.; Dietz, R.; Luft, F.; Haller, H. High Glucose Concentrations Increase Endothelial Cell Permeability via Activation of Protein Kinase Cα. Circ. Res. 1997, 81, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Mantareva, V.; Kril, A.; Dimitrov, R.; Wohrle, D.; Angelov, I. Selective photodynamic therapy induced by preirradiation of galactopyranosyl Zn(II) phthalocyanines with UV and red lights. J. Porphyrins Phthalocyanines 2013, 17, 529–539. [Google Scholar] [CrossRef]
- Angelov, I.; Kril, A.; Dimitrov, R.; Borisova, E.; Avramov, L.; Mantareva, V. Light enhancement of in vitro antitumor activity of galactosylated phthalocyanines. Photon. Lasers Med. 2016, 5, 123–140. [Google Scholar] [CrossRef]
- Mantareva, V.; Petrova, D.; Avramov, L.; Angelov, I.; Borisova, E.; Peeva, M.; Woehrle, D. Long wavelength absorbing cationic Zn (II)-phthalocyanines as fluorescent contrast agents for B16 pigmented melanoma. J. Porphyr. Phthalocyan. 2005, 9, 47–53. [Google Scholar] [CrossRef]
- Mantareva, V.; Kril, A.; Angelov, I.; Dimitrov, R.; Borisova, E.; Avramov, L. Effects of the position of galactose units to Zn(II) phthalocyanine on the uptake and photodynamic activity towards breast cancer cells. Proc. SPIE Biophotonics Photonic Solut. Better Health Care III 2012, 8427, 8427-43. [Google Scholar]
- Wang, H.L.; Lai, T.W. Optimization of Evans blue quantitation in limited rat tissue samples. Sci. Rep. 2014, 4, 6588. [Google Scholar] [CrossRef] [Green Version]
- Saunders, N.; Dziegielewska, K.; Møllgård, K.; Habgood, M. Markers for blood-brain barrier integrity: how appropriate is Evans blue in the twenty-first century and what are the alternatives? Front. Neurosci. 2015, 9, 385. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, A.; Bredno, J.; Wendland, M.; Derugin, N.; Ohara, P.; Wintermark, M. High and low molecular weight fluorescein isothiocyanate (FITC)-dextran to assess blood-brain barrier disruption: technical consideration. Transl. Stroke Res. 2011, 2, 106–111. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, A.; Tome, J.; Neves, M.; Tome, A.; Cavaleiro, J.; Iamamoto, Y.; Torres, T. [1,2,3,4-Tetrakis(α/β-D-galactopyranos-6-yl)phthalocyaninato]zinc(II): a water-soluble phthalocyanine. Tetrahedron Lett. 2006, 47, 9177–9180. [Google Scholar] [CrossRef]
- Alvares-Mico, X.; Calvete, M.; Hanack, M.; Ziegler, T. Expeditious synthesis of glycosylated phthalocyanines. Synthesis 2007, 14, 2186–2192. [Google Scholar] [CrossRef]
- Yamashita, T.; Mimura, K.; Umeda, F.; Kobayashi, K.; Hashimoto, T.; Nawata, H. Increased transendothelial permeation of albumin by high glucose concentration. Metabolism 1995, 44, 739–744. [Google Scholar] [CrossRef]
- Chang, K.; Kilo, C.; Williamson, J. Galactose ingestion increases vascular permeability and collagen solubility in normal male rats. J. Clin. Investig. 1987, 79, 367–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishii, K. Functional singlet oxygen generators based on phthalocyanines. Coord. Chem. Rev. 2012, 256, 1556–1568. [Google Scholar] [CrossRef]
- Rick, K.; Sroka, R.; Stepp, H.; Kriegmair, M.; Huber, R.; Jacob, K.; Baumgather, R. Pharmacokinetics of 5- aminolevulinic acid-induced protoporphyrin IX in skin and blood. J. Photochem. Photobiol. B Biol. 1997, 40, 313–319. [Google Scholar] [CrossRef]
- Hu, S.; Cheng, H.; Zheng, Y.; Zhang, Y.; Yue, W.; Zhang, H. Effects of photodynamic therapy on the ultrastructure of glioma cells. Biomed. Environ. Sci. 2007, 20, 269–273. [Google Scholar] [PubMed]
- Sporn, L.; Foster, T. Photofrin and light induces microtubule depolymerization in cultured human endothelial cells. Cancer Res. 1992, 52, 3443–3448. [Google Scholar]
- Fingar, V. Vascular effects of photodynamic therapy. J. Clin. Laser Med. Surg. 1996, 14, 323–328. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Semyachkina-Glushkovskaya, O.; Borisova, E.; Mantareva, V.; Angelov, I.; Eneva, I.; Terskov, A.; Mamedova, A.; Shirokov, A.; Khorovodov, A.; Klimova, M.; et al. Photodynamic Opening of the Blood–Brain Barrier Using Different Photosensitizers in Mice. Appl. Sci. 2020, 10, 33. https://doi.org/10.3390/app10010033
Semyachkina-Glushkovskaya O, Borisova E, Mantareva V, Angelov I, Eneva I, Terskov A, Mamedova A, Shirokov A, Khorovodov A, Klimova M, et al. Photodynamic Opening of the Blood–Brain Barrier Using Different Photosensitizers in Mice. Applied Sciences. 2020; 10(1):33. https://doi.org/10.3390/app10010033
Chicago/Turabian StyleSemyachkina-Glushkovskaya, Oxana, Ekaterina Borisova, Vanya Mantareva, Ivan Angelov, Ivelina Eneva, Andrey Terskov, Aysel Mamedova, Alexander Shirokov, Alexander Khorovodov, Maria Klimova, and et al. 2020. "Photodynamic Opening of the Blood–Brain Barrier Using Different Photosensitizers in Mice" Applied Sciences 10, no. 1: 33. https://doi.org/10.3390/app10010033
APA StyleSemyachkina-Glushkovskaya, O., Borisova, E., Mantareva, V., Angelov, I., Eneva, I., Terskov, A., Mamedova, A., Shirokov, A., Khorovodov, A., Klimova, M., Agranovich, I., Blokhina, I., Lezhnev, N., & Kurths, J. (2020). Photodynamic Opening of the Blood–Brain Barrier Using Different Photosensitizers in Mice. Applied Sciences, 10(1), 33. https://doi.org/10.3390/app10010033