A New Method of Low Amplitude Signal Detection and Its Application in Acoustic Emission
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
Algorithm for Detecting Weak Signals (φ-Method)
- Zeroing the negative part of .
- Recursive smoothing of the resulting vector.
- Normalisation.
- The calculation of the decision function from the φ-parameter (involving zeroing the negative part of φ, recursive smoothing and normalizing steps);
- The calculation of the start and end times (as well as the amplitudes) of events from the decisive function;
- The use of an amplitude filter to cut off false alarms;
- The “left shift” of the obtained times to compensate for the delay caused by the smoothing window used for calculating φ;
- The use of an amplitude filter to cut off false events.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mba, D. Acoustic emissions and monitoring bearing health. Tribol. Trans. 2003, 46, 447–451. [Google Scholar] [CrossRef]
- Jamaludin, N.; Mba, D. Monitoring extremely slow rolling element bearings: Part I. NDT E Int. 2002, 35, 349–358. [Google Scholar] [CrossRef]
- Al-Ghamd, A.M.; Mba, D. A comparative experimental study on the use of acoustic emission and vibration analysis for bearing defect identification and estimation of defect size. Mech. Syst. Signal Proc. 2006, 20, 1537–1571. [Google Scholar] [CrossRef] [Green Version]
- Abbasion, S.; Rafsanjani, A.; Farshidianfar, A.; Irani, N. Rolling element bearings multi-fault classification based on the wavelet denoising and support vector machine. Mech. Syst. Signal Proc. 2007, 21, 2933–2945. [Google Scholar] [CrossRef]
- Igba, J.; Alemzadeh, K.; Durugbo, C.; Eiriksson, E.T. Analysing rms and peak values of vibration signals for condition monitoring of wind turbine gearboxes. Renew. Energy 2016, 91, 90–106. [Google Scholar] [CrossRef] [Green Version]
- Esmaeili, K.; Zuercher, M.; Wang, L.; Harvey, T.J.; Holweger, W. Advanced Signal Processing Techniques for Wind Turbine Gearbox Bearing Failure Detection; British Institute of Non-Destructive Testing: Northampton, UK, 2017. [Google Scholar]
- Antoniadou, I.; Manson, G.; Staszewski, W.J.; Barszcz, T.; Worden, K. A time–frequency analysis approach for condition monitoring of a wind turbine gearbox under varying load conditions. Mech. Syst. Signal Proc. 2015, 64–65, 188–216. [Google Scholar] [CrossRef]
- Scruby, C.B.; Wadley, H.N.G. An assessment of acoustic emission for nuclear pressure vessel monitoring. Prog. Nucl. Energy 1983, 11, 275–297. [Google Scholar] [CrossRef]
- Kwon, J.R.; Lyu, G.J.; Lee, T.H.; Kim, J.Y. Acoustic emission testing of repaired storage tank. Int. J. Press. Vessel. Pip. 2001, 78, 373–378. [Google Scholar] [CrossRef]
- Gholizadeh, S.; Leman, Z.; Baharudin, B.T.H.T. A review of the application of acoustic emission technique in engineering. Struct. Eng. Mech. 2015, 54, 1075–1095. [Google Scholar] [CrossRef]
- Ahn, B.; Kim, J.; Choi, B. Artificial intelligence-based machine learning considering flow and temperature of the pipeline for leak early detection using acoustic emission. Eng. Fract. Mech. 2019, 210, 381–392. [Google Scholar] [CrossRef]
- Carpinteri, A.; Lacidogna, G. Acoustic Emission and Critical Phenomena: From Structural Mechanics to Geophysics; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Carpinteri, A.; Lacidogna, G. Earthquakes and acoustic emission. In Balkema—Proceedings and Monographs in Engineering, Water, and Earth Sciences; Taylor & Francis: London, UK; New York, NY, USA, 2007. [Google Scholar]
- Stepanova, L.; Ramazanov, I.; Kanifadin, K. Estimation of time-of-arrival errors of acoustic-emission signals by the threshold method. Russ. J. Nondestruct. Test. 2009, 45, 273–279. [Google Scholar] [CrossRef]
- Chlada, M.; Prevorovsky, Z. Expert ae signal arrival detection. Int. J. Microstruct. Mater. Prop. 2011, 6, 191–205. [Google Scholar] [CrossRef] [Green Version]
- Blahacek, M.; Chlada, M.; Prevorovsky, Z. Acoustic emission source location based on signal features. Adv. Mater. Res. 2006, 13–14, 77–82. [Google Scholar] [CrossRef]
- Barat, P.; Kalyanasundaram, P.; Raj, B. Acoustic-emission source location on a cylindrical surface. NDT E Int. 1993, 26, 295–297. [Google Scholar] [CrossRef]
- Bai, F.; Gagar, D.; Foote, P.; Zhao, Y. Comparison of alternatives to amplitude thresholding for onset detection of acoustic emission signals. Mech. Syst. Signal Process. 2017, 84, 717–730. [Google Scholar] [CrossRef] [Green Version]
- Pomponi, E.; Vinogradov, A.; Danyuk, A. Wavelet based approach to signal activity detection and phase picking: Application to acoustic emission. Signal Process. 2015, 115, 110–119. [Google Scholar] [CrossRef]
- Allen, R.V. Automatic earthquake recognition and timing from single traces. Bull. Seismol. Soc. Am. 1978, 68, 1521–1532. [Google Scholar]
- Baer, M.; Kradolfer, U. An automatic phase picker for local and teleseismic events. Bull. Seismol. Soc. Am. 1987, 77, 1437–1445. [Google Scholar]
- Withers, M.; Aster, R.; Young, C.; Beiriger, J.; Harris, M.; Moore, S.; Trujillo, J. A comparison of select trigger algorithms for automated global seismic phase and event detection. Bull. Seismol. Soc. Am. 1998, 88, 95–106. [Google Scholar]
- Malygin, G.A. Features of slip-band formation during the plastic straining of layered crystals. Phys. Solid State 1999, 41, 224–229. [Google Scholar] [CrossRef]
- Küperkoch, L.; Meier, T.; Diehl, T. Automated event and phase identification. In New Manual of Seismological Observatory Practice 2 (Nmsop-2); Bormann, P., Ed.; Deutsches GeoForschungsZentrum GFZ: Potsdam, Germany, 2012; pp. 1–52. [Google Scholar]
- Allen, R. Automatic phase pickers: Their present use and future prospects. Bull. Seismol. Soc. Am. 1982, 72, S225–S242. [Google Scholar]
- Trnkoczy, A. Understanding and parameter setting of sta/lta trigger algorithm. In New Manual of Seismological Observatory Practice (Nmsop-2); Bormann, P., Ed.; IASPEI, GFZ German Research Centre for Geosciences: Potsdam, Germany, 2012. [Google Scholar]
- Morita, Y.; Hamaguchi, H. Automatic detection of onset time of seismic waves and its confidence interval using the autoregressive model fitting. Zisin J. Seismol. Soc. Jpn. 1984, 37, 281–293. [Google Scholar]
- Murat, M.E.; Rudman, A.J. Automated first arrival picking: A neural network approach1. Geophys. Prospect. 1992, 40, 587–604. [Google Scholar] [CrossRef]
- Der, Z.A.; Shumway, R.H. Phase onset time estimation at regional distances using the cusum algorithm. Phys. Earth Planet. Inter. 1999, 113, 227–246. [Google Scholar] [CrossRef]
- Boschetti, F.; Dentith, M.D.; List, R.D. A fractal-based algorithm for detecting first arrivals on seismic traces. Geophysics 1996, 61, 1095–1102. [Google Scholar] [CrossRef]
- Jiao, L.; Moon, W.M. Detection of seismic refraction signals using a variance fractal dimension technique. Geophysics 2000, 65, 286–292. [Google Scholar] [CrossRef]
- Yung, S.K.; Ikelle, L.T. An example of seismic time picking by third-order bicoherence. Geophysics 1997, 62, 1947–1952. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Rich, J.; Marfurt, K.J.; Zhou, H. Automatic Event Detection on Noisy Microseismograms; Society of Exploration Geophysicists: Tulsa, OK, USA, 2014; pp. 2363–2367. [Google Scholar]
- Li, X.; Shang, X.; Wang, Z.; Dong, L.; Weng, L. Identifying p-phase arrivals with noise: An improved kurtosis method based on dwt and sta/lta. J. Appl. Geophys. 2016, 133, 50–61. [Google Scholar] [CrossRef]
- Akaike, H. Markovian representation of stochastic processes and its application to the analysis of autoregressive moving average processes. Ann. Inst. Stat. Math. 1974, 26, 363–387. [Google Scholar] [CrossRef]
- Kalkan, E. An automatic p-phase arrival-time picker. Bull. Seismol. Soc. Am. 2016, 106, 971–986. [Google Scholar] [CrossRef]
- Sleeman, R.; van Eck, T. Robust automatic p-phase picking: An on-line implementation in the analysis of broadband seismogram recordings. Phys. Earth Planet. Inter. 1999, 113, 265–275. [Google Scholar] [CrossRef]
- Sedlak, P.; Hirose, Y.; Enoki, M. Acoustic emission localization in thin multi-layer plates using first-arrival determination. Mech. Syst. Signal Proc. 2013, 36, 636–649. [Google Scholar] [CrossRef]
- Sedlak, P.; Hirose, Y.; Khan, S.A.; Enoki, M.; Sikula, J. New automatic localization technique of acoustic emission signals in thin metal plates. Ultrasonics 2009, 49, 254–262. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Shang, X.; Morales-Esteban, A.; Wang, Z. Identifying p-phase arrival of weak events: The akaike information criterion picking application based on the empirical mode decomposition. Comput. Geosci. 2017, 100, 57–66. [Google Scholar] [CrossRef]
- Shang, X.; Li, X.; Morales-Esteban, A.; Dong, L. Enhancing micro-seismic p-phase arrival picking: Emd-cosine function-based denoising with an application to the aic picker. J. Appl. Geophys. 2018, 150, 325–337. [Google Scholar] [CrossRef]
- Dai, H.; MacBeth, C. The application of back-propagation neural network to automatic picking seismic arrivals from single-component recordings. J. Geophys. Res. Solid Earth 1997, 102, 15105–15113. [Google Scholar] [CrossRef]
- Takano, K.; Zhao, Y. An artificial neural network approach for broadband seismic phase picking. Bull. Seismol. Soc. Am. 1999, 89, 670–680. [Google Scholar]
- Sabbione, J.I.; Velis, D. Automatic first-breaks picking: New strategies and algorithms. Geophysics 2010, 75, V67–V76. [Google Scholar] [CrossRef]
- Jiao, J.P.; He, C.F.; Wu, B.; Fei, R.Y.; Wang, X.Y. Application of wavelet transform on modal acoustic emission source location in thin plates with one sensor. Int. J. Press. Vessel. Pip. 2004, 81, 427–431. [Google Scholar] [CrossRef]
- Serrano, E.P.; Fabio, M.A. Application of the wavelet transform to acoustic emission signals processing. IEEE Trans. Signal Process. 1996, 44, 1270–1275. [Google Scholar] [CrossRef]
- Qi, G. Wavelet-based ae characterization of composite materials. NDT E Int. 2000, 33, 133–144. [Google Scholar] [CrossRef]
- Grosse, C.U.; Finck, F.; Kurz, J.H.; Reinhardt, H.W. Improvements of ae technique using wavelet algorithms, coherence functions and automatic data analysis. Constr. Build. Mater. 2004, 18, 203–213. [Google Scholar] [CrossRef]
- Hamstad, M.; Gallagher, A.O.; Gary, J. A wavelet transform applied to acoustic emission signals: Part 1: Source location. J. Acoust. Emiss. 2002, 20, 62–82. [Google Scholar]
- Ciampa, F.; Meo, M. Acoustic emission source localization and velocity determination of the fundamental mode a0 using wavelet analysis and a newton-based optimization technique. Smart Mater. Struct. 2010, 19, 045027. [Google Scholar] [CrossRef] [Green Version]
- Lympertos, E.M.; Dermatas, E.S. Acoustic emission source location in dispersive media. Signal Process. 2007, 87, 3218–3225. [Google Scholar] [CrossRef]
- Moriya, H.; Niitsuma, H. Precise detection of a p-wave in low s/n signal by using time-frequency representations of a triaxial hodogram. Geophysics 1996, 61, 1453–1466. [Google Scholar] [CrossRef]
- Zhu, K.; Wong, Y.S.; Hong, G.S. Wavelet analysis of sensor signals for tool condition monitoring: A review and some new results. Int. J. Mach. Tools Manuf. 2009, 49, 537–553. [Google Scholar] [CrossRef]
- Spagnolini, U. Adaptive picking of refracted first arrivals1. Geophys. Prospect. 1991, 39, 293–312. [Google Scholar] [CrossRef]
- Van der Baan, M.; Vaezi, Y. Comparison of the sta/lta and power spectral density methods for microseismic event detection. Geophys. J. Int. 2015, 203, 1896–1908. [Google Scholar]
- Sharma, B.K.; Kumar, A.; Murthy, V.M. Evaluation of seismic events detection algorithms. J. Geol. Soc. India 2010, 75, 533–538. [Google Scholar] [CrossRef]
- Lomax, A.; Satriano, C.; Vassallo, M. Automatic picker developments and optimization: Filterpicker-a robust, broadband picker for real-time seismic monitoring and earthquake early warning. Seismol. Res. Lett. 2012, 83, 531–540. [Google Scholar] [CrossRef]
- Kamer, Y. Filterpicker: A Robust, Broadband Phase Detector and Picker. 2019. Available online: https://www.Mathworks.Com/matlabcentral/fileexchange/69211-filterpicker-a-robust-broadband-phase-detector-and-picker (accessed on 5 September 2019).
- Vinogradov, A.; Ueno, H. Method of Signal Detection. Patent of Japan JP4754651, 2009. [Google Scholar]
- Agletdinov, E.; Pomponi, E.; Merson, D.; Vinogradov, A. A novel bayesian approach to acoustic emission data analysis. Ultrasonics 2016, 72, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Wadley, H.N.G.; Mehrabian, R. Acoustic emission for materials processing: A review. Mater. Sci. Eng. 1984, 65, 245–263. [Google Scholar] [CrossRef]
- Ono, K. Current understanding of mechanisms of acoustic emission. J. Strain Anal. Eng. Des. 2005, 40, 1–15. [Google Scholar] [CrossRef]
- Eitzen, D.G.; Wadley, H.N.G. Acoustic-emission—Establishing the fundamentals. J. Res. Natl. Bur. Stand. 1984, 89, 75–100. [Google Scholar] [CrossRef]
- Kay, S.M. Fundamentals of Statistical Signal Processing. Vol. II, Detection Theory; PTR Prentice Hall: Englewood Cliffs, NJ, USA, 1998; p. xiv. 560p. [Google Scholar]
- Pomponi, E.; Vinogradov, A. A real-time approach to acoustic emission clustering. Mech. Syst. Signal Proc. 2013, 40, 791–804. [Google Scholar] [CrossRef]
Noise Level | Number of Event | |||||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
1 | 6.0 | 7.2 | 7.8 | 4.2 | 3.7 | 21.5 | 6.8 | 4.3 |
2 | 0 | 1.2 | 1.8 | −1.9 | −2.3 | 15.5 | 0.8 | −1.7 |
3 | −3.5 | −2.3 | −1.7 | −5.4 | −5.9 | 12.0 | −2.7 | −5.2 |
4 | −6.5 | −4.8 | −4.2 | −7.9 | −8.4 | 9.5 | −5.2 | −7.7 |
5 | −8.0 | −6.7 | −6.2 | −9.8 | −10.3 | 7.5 | −7.2 | −9.7 |
Parameter | Noise Level | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
Detection threshold, h | 1.5 × 10−8 | 6 × 10−8 | 9 × 10−9 | 1 × 10−9 | 1 × 10−9 |
Smoothing window, M/samples | 3 | 5 | 10 | 10 | 10 |
Time shift, s/samples | 10 | 20 | 50 | 50 | 50 |
Noise Level | Amplitude Threshold | STA/LTA | φ-Algorithm | FilterPicker |
---|---|---|---|---|
True Alarms (Out of 8)/False Alarms. | ||||
1 | 8/0 | 8/0 | 8/0 | 8/0 |
2 | 7/0 | 8/0 | 8/0 | 8/1 |
3 | 5/0 | 8/1 | 8/0 | 8/3 |
4 | 1/0 | 5/1 | 8/0 | 5/1 |
5 | 1/0 | 3/2 | 6/0 | 2/1 |
Noise Level | Amplitude Threshold | STA/LTA | φ-Algorithm | FilterPicker |
---|---|---|---|---|
True Alarms/False Alarms | ||||
1 | 1000/3 | 986/19 | 1000/0 | 988/11 |
2 | 926/55 | 975/51 | 977/19 | 925/72 |
3 | 570/49 | 888/48 | 919/51 | 832/256 |
4 | 314/54 | 674/53 | 780/35 | 542/67 |
5 | 186/37 | 431/59 | 630/38 | 309/36 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agletdinov, E.; Merson, D.; Vinogradov, A. A New Method of Low Amplitude Signal Detection and Its Application in Acoustic Emission. Appl. Sci. 2020, 10, 73. https://doi.org/10.3390/app10010073
Agletdinov E, Merson D, Vinogradov A. A New Method of Low Amplitude Signal Detection and Its Application in Acoustic Emission. Applied Sciences. 2020; 10(1):73. https://doi.org/10.3390/app10010073
Chicago/Turabian StyleAgletdinov, Einar, Dmitry Merson, and Alexei Vinogradov. 2020. "A New Method of Low Amplitude Signal Detection and Its Application in Acoustic Emission" Applied Sciences 10, no. 1: 73. https://doi.org/10.3390/app10010073
APA StyleAgletdinov, E., Merson, D., & Vinogradov, A. (2020). A New Method of Low Amplitude Signal Detection and Its Application in Acoustic Emission. Applied Sciences, 10(1), 73. https://doi.org/10.3390/app10010073