Preparation and Characterization for Antibacterial Activities of 3D Printing Polyetheretherketone Disks Coated with Various Ratios of Ampicillin and Vancomycin Salts
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Apparatus
2.2. Preparation of PEEK/PLGA/Antibiotic Agent Samples
2.3. In Vitro Drug Release Analysis
2.4. Test of Bioactivity of Samples
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Norman, J.; Madurawe, R.D.; Moore, C.M.V.; Khan, M.A.; Khariuzzaman, A. A new chapter in pharmaceutical manufacturing: 3D-printed drug products. Adv. Drug Deliv. Rev. 2017, 108, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Wholers, T.; Caffrey, T.; Campbell, R.I.; Diegel, O.; Kowen, J. 3D Printing and Additive Manufacturing State of the Industrial Annual Worldwide Progress Report; Wohlers Associate: Fort Collins, CO, USA, 2018. [Google Scholar]
- Goole, J.; Amighi, K. 3D printing in pharmaceutics: A new tool for designing customized drug delivery system. Int. J. Pharm. 2016, 499, 376–394. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.H.; Yao, Y.Y.; Tang, H.C.; Lin, T.Y.; Chen, D.W.; Cheng, K.W. Long-term antibacterial performances of biodegradable polylactic acid materials with direct absorption of antibiotic agent. RSC Adv. 2018, 8, 16223–16231. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.W.; Lee, K.Y.; Tsai, M.H.; Lin, T.Y.; Chen, C.H.; Cheng, K.W. Antibacterial applications on staphylococcus aureus using abtibiotic agent/zinc oxide nonorod arrays/polyethylethylketone composite samples. Nanomaterials 2019, 713, 1–15. [Google Scholar]
- Sallica-Leva, E.; Jardine, A.L.; Fagagnolo, J.B. Microstructure and mechanical behavior of porous Ti-6Al-4V parts obtained by selective laser melting. J. Mech. Behav. Biomed. Mater. 2013, 26, 98–108. [Google Scholar] [CrossRef]
- Grémare, A.; Guduric, V.; Bareille, R.; Heroguez, V.; Latour, S.; L’heureux, N.; Fricain, J.C.; Catros, S.; Le Nihouannen, D. Characterization of printed PLA scaffolds for bone tissue engineering. J. Biomed. Mater. Res. A 2018, 106, 887–894. [Google Scholar] [CrossRef]
- Quyang, L.; Zhao, Y.; Jin, G.; Lu, T.; Qiao, Y.; Ning, C.; Zhang, X.; Chu, P.K.; Liu, X. Influence of sulfur content on the bone formation and antibacterial ability of sulfonated PEEK. Biomaterials 2017, 115–126. [Google Scholar]
- Kizuki, T.; Matsushita, T.; Kokubo, T. Apatite-forming PEEK with TiO2 surface layer coating. J. Mater. Sci. Mater. Med. 2015, 26, 1–9. [Google Scholar] [CrossRef]
- Anguiano-Sanchez, J.; Martinez-Romero, O.; Siller, H.R.; Diaz-Elizondo, J.A.; Flores-Villalba, E.; Rodriguez, C.A. Influence of PEEK coating on Hip implant stress shielding: A finite element analysis. Comput. Math. Methods Med. 2016, 2016, 6183679. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Li, L.; Fu, C.; Yang, F.; Jiao, Z.; Shi, X.; Ito, Y.; Wang, Z.; Liu, Q.; Zhang, P. Micro-porous polyetheretherketone implants decorated with BMP-2 via phosphorylated gelatin coating for enhance cell adhesion and osteogenic differentiation. Colloids Surf. B Biointerfaces 2018, 169, 233–241. [Google Scholar] [CrossRef]
- Parthasarathy, J. 3D modeling custom implants and its future perspectives in craniofacial surgery. Ann. Maxillofac. Surg. 2014, 4, 9–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, M.; Pohle, D.; Rechtenwald, T. Selective Laser Sintering of PEEK. CIRP Ann. 2007, 1, 205–208. [Google Scholar] [CrossRef]
- Bakhshandeh, S.; Karaji, Z.G.; Lietaert, K.; Fluit, A.C.; Boel, C.H.H.; Vogely, H.C.; Vermoden, T.; Hennink, W.E.; Weinans, H.; Zadpoor, A.A.; et al. Simultaneous delivery of multiple antibacterial agents from additively manufactured porous biomaterials to fully eradicate planktonic and adherent Staphylococcus aureus. ACS Appl. Mater. Interfaces 2017, 9, 25691–25699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Felice, B.; Sánchez, M.A.; Socci, M.C.; Sappia, L.D.; Gómez, M.I.; Cruz, M.K.; Felice, C.J.; Marti, M.; Pividon, M.I.; Simonelli, G.; et al. Control degradability of PCL-ZnO nanofibrous scaffolds for bone tissue engineering and their antibacterial activity. Mater. Sci. Eng. C 2018, 93, 724–738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kadiyala, U.; Turali-Emre, E.S.; Bahng, J.H.; Kotov, N.A.; VanEpps, J.S. Unexpected insights into antibacterial activity of zinc oxide nanoparticels against methicillin resistant Staphylococcus aureus (MRSA). Nanoscale 2018, 10, 4427–4439. [Google Scholar] [CrossRef]
- Agnihotri, S.; Bajaj, G.; Mukherji, S.; Mukherji, S. Arginine-assisted immobilization of silver nanoparticles on ZnO nanorods: An enhanced and reusable antibacterial substrates with human cell cytotoxicity. Nanoscale 2015, 7, 7415–7429. [Google Scholar] [CrossRef] [Green Version]
- Tranquillo, E.; Barrino, F.; Poggetto, G.D.; Blanco, I. Sol–Gel synthesis of silica-based materials with different percentages of PEG or PCL and high chlorogenic acid content. Materials 2019, 12, 155. [Google Scholar] [CrossRef] [Green Version]
- Catauro, M.; Tranquillo, E.; Barrino, F.; Blanco, I.; Poggetto, G.D.; Navigllo, D. Drug Release of Hybrid Materials Containing Fe(II)Citrate Synthesized by Sol-Gel Technique. Materials 2018, 11, 2270. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.W.; Hsu, Y.H.; Liao, J.Y.; Liu, S.J.; Chen, J.K.; Ueng, S.W.N. Sustainable release vancomycin gentamicin and lidocaine from novel electrospun sandwich-structured PLGA/collagen nanofibers membrane. Int. J. Pharm. 2012, 430, 335–341. [Google Scholar] [CrossRef]
- Ajeesh, G.; Bhowmik, S.; Sivakumar, V.; Varshney, L.; Kumar, V.; Abraham, M. Investigation on polyetheretherketone composite for long term storage of nuclear waste. J. Nuclear Mater. 2015, 467, 855–862. [Google Scholar] [CrossRef]
- Berretta, S.; Davies, R.; Shyng, Y.T.; Wang, Y.; Ghita, O. Fused deposition modeling of high temperature polymer: Exploring CNT PEEK composites. Polym. Test. 2017, 63, 251–262. [Google Scholar] [CrossRef]
- Kumar, H.; Singla, M.; Jindal, R. Solvation behavior of depeptides of alanine in aqueous solution of antibacterial drug ampicillin at different temperature. Thermo. Acta 2013, 571, 28–41. [Google Scholar] [CrossRef]
- Levine, D.P. Vancomycin: A History. Clin. Infect. Dis. 2006, 42, S5–S12. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.A.; Kang, J.S. Stability test of ampicillin sodium solutions in the accufuser® elastomeric infusion device Using HPLC: UV method. Pharmacol. Pharm. 2012, 4, 462–467. [Google Scholar] [CrossRef] [Green Version]
- Gentile, P.; Chiono, V.; Carmagnola, I.; Hatton, P.V. An overview of poly (lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int. J. Mol. Sci. 2014, 15, 3640–3659. [Google Scholar] [CrossRef]
- Xiao, L.; Mai, Y.; He, F.; Yu, L.; Zhang, L.; Tange, H.; Yang, G. Bio-based green composites with high performance from poly(lactic acid) and surface-modified microcrystalline cellulose. J. Mater. Chem. 2012, 22, 15732–15739. [Google Scholar] [CrossRef]
- Sancak, B.; Yagci, S.; Gür, D.; Gülay, Z.; Ogunc, D.; Söyletir, G.; Yalcin, A.N.; Dündar, D.Ö.; Topçu, A.W.; Aksit, F.; et al. Vancomycin and daptomycin minimum inhibitory concentration distribution and occurrence of heteroresistance among methicillin-resistant Staphylococcus aureus blood isolates in Turkey. BMC Infect. Dis. 2013, 13, 583–589. [Google Scholar] [CrossRef] [Green Version]
- Sidorenko, S.V.; Rezvan, S.P.; Tikchonova, A.S.; Krotova, L.A.; Ansolis, L.E.; Tzvigun, E.A. In vitro activity of ampicillin, cefoperazone, their combinations with sulbactam and other antimicrobials: Survey of Russian isolates. Int. J. Antimicrob. Agents 1996, 7, 109–117. [Google Scholar] [CrossRef]
Sample | PLGA Weight (mg) | Ampicillin Weight (mg) | Vancomycin Weight (mg) | WAmp | (wt%) |
---|---|---|---|---|---|
WAmp+Van | |||||
(A) | 875.6 | 0 | 125.5 | 0 | |
(B) | 875.5 | 33.0 | 94.0 | 26.0 | |
(C) | 876.0 | 63.3 | 63.4 | 50.0 | |
(D) | 876.3 | 94.2 | 32.4 | 74.3 | |
(E) | 876.5 | 125.3 | 0 | 100.0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lau, N.-C.; Tsai, M.-H.; Chen, D.W.; Chen, C.-H.; Cheng, K.-W. Preparation and Characterization for Antibacterial Activities of 3D Printing Polyetheretherketone Disks Coated with Various Ratios of Ampicillin and Vancomycin Salts. Appl. Sci. 2020, 10, 97. https://doi.org/10.3390/app10010097
Lau N-C, Tsai M-H, Chen DW, Chen C-H, Cheng K-W. Preparation and Characterization for Antibacterial Activities of 3D Printing Polyetheretherketone Disks Coated with Various Ratios of Ampicillin and Vancomycin Salts. Applied Sciences. 2020; 10(1):97. https://doi.org/10.3390/app10010097
Chicago/Turabian StyleLau, Ngi-Chiong, Min-Hua Tsai, Dave W. Chen, Chien-Hao Chen, and Kong-Wei Cheng. 2020. "Preparation and Characterization for Antibacterial Activities of 3D Printing Polyetheretherketone Disks Coated with Various Ratios of Ampicillin and Vancomycin Salts" Applied Sciences 10, no. 1: 97. https://doi.org/10.3390/app10010097
APA StyleLau, N. -C., Tsai, M. -H., Chen, D. W., Chen, C. -H., & Cheng, K. -W. (2020). Preparation and Characterization for Antibacterial Activities of 3D Printing Polyetheretherketone Disks Coated with Various Ratios of Ampicillin and Vancomycin Salts. Applied Sciences, 10(1), 97. https://doi.org/10.3390/app10010097