An Economic Analysis of An Innovative Floating Offshore Wind Platform Built with Concrete: The SATH® Platform
Abstract
:1. Introduction
- Total onshore construction.
- Use of high-durability concrete, reducing maintenance costs.
- Worthy scalability of the turbine size for mass production of large wind farms.
2. Methods
2.1. Calculation of the Costs
2.2. Installation
2.3. Maintenance
2.4. Calculation of the Economic Parameters
3. Case of Study
- –
- Twin horizontal floaters stiffened with diaphragm walls with conical ends and linked with bar frames.
- –
- Transition piece linking the tower to the platform.
- –
- Heave plates linked to floaters.
- –
- Single point mooring.
4. Results
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Union, E. Acuerdo de París | Acción por el Clima. Available online: https://ec.europa.eu/clima/policies/international/negotiations/paris_es (accessed on 31 July 2019).
- Enkvist, P.A.; Nauclér, T.; Rosander, J. A cost curve for greenhouse gas reduction. McKinsey Q. 2007, 1, 34–45. [Google Scholar]
- Union, E. DIRECTIVE 2009/28/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC (Text with EEA relevance). Off. J. Eur. Union 2009, 5, 16–62. [Google Scholar]
- Eurosat Statistics Explained, Estadísticas de Energía Renovable 2018. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php/Main_Page (accessed on 12 March 2020).
- Murdock, H.E.; Gibb, D.; André, T.; Appavou, F.; Brown, A.; Epp, B.; Sawin, J.L. Renewables 2019 Global Status Report; REN21: Paris, France, 2019. [Google Scholar]
- Filgueira, A.; Seijo, M.A.; Muñoz, E.; Castro, L.; Piegari, L. Technical and Economic Study of Two Repowered Wind Farms in Bustelo and San Xoán, 24. 7 MW and 15. 84 MW respectively. In Proceedings of the 2009 International Conference on Clean Electrical Power, Capri, Italy, 9 June 2009; pp. 545–549. [Google Scholar]
- Castro-Santos, L.; Vizoso, A.F.; Camacho, E.M.; Piegiari, L. Costs and feasibility of repowering wind farms. Energy Sources Part B Econ. Plan. Policy 2016. [Google Scholar] [CrossRef]
- Castro-Santos, L.; Garcia, G.P.; Simões, T.; Estanqueiro, A. Planning of the installation of offshore renewable energies: A GIS approach of the Portuguese roadmap. Renew. Energy 2019, 132, 1251–1262. [Google Scholar] [CrossRef]
- Kaldellis, J.K.; Zafirakis, D. The wind energy (r)evolution: A short review of a long history. Renew. Energy 2011, 36, 1887–1901. [Google Scholar] [CrossRef]
- Zheng, C.W.; Li, C.Y.; Pan, J.; Liu, M.Y.; Xia, L.L. An overview of global ocean wind energy resource evaluations. Renew. Sustain. Energy Rev. 2016, 53, 1240–1251. [Google Scholar] [CrossRef]
- Barthelmie, R.J.; Courtney, M.; Højstrup, J.; Sanderhoff, P. The Vindeby Project: A Description; DTU Library: Kongens Lyngby, Denmark, 1994. [Google Scholar]
- DONG Energy. Available online: https://orsted.com/ (accessed on 12 March 2020).
- GWEC | GLOBAL WIND REPORT 2018. Available online: https://gwec.net/global-wind-report-2018/ (accessed on 12 March 2020).
- Plodpradit, P.; Dinh, V.N.; Kim, K.D. Coupled analysis of offshore wind turbine jacket structures with pile-soil-structure interaction using FAST v8 and X-SEA. Appl. Sci. 2019, 9, 1633. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.; Wei, K.; Yang, W.; Li, T.; Qin, B.; Ning, L. A feasibility study for using fishnet to protect offshore wind turbine monopile foundations from damage by scouring. Appl. Sci. 2019, 9, 5023. [Google Scholar] [CrossRef] [Green Version]
- Shittu, A.A.; Mehmanparast, A.; Wang, L.; Salonitis, K.; Kolios, A. Comparative study of structural reliability assessment methods for offshore wind turbine jacket support structures. Appl. Sci. 2020, 10, 860. [Google Scholar] [CrossRef] [Green Version]
- Sclavounos, P.D.; Lee, S.; DiPietro, J. Floating offshore wind turbines: Tension leg platform and taught leg buoy concepts supporting 3–5 mw wind turbines. In Proceedings of the European Wind Energy Conference (EWEC), Warsaw, Poland, 20–23 April 2010; pp. 1–7. [Google Scholar]
- Castro-Santos, L.D.C.V. Cost Comparison of Three Floating Offshore Wind Platforms. J. Coast. Res. 2015, 31, 1217–1221. [Google Scholar] [CrossRef]
- Counago, B.; Urbano, J.; Cerdán, L.M.; Urruchi, A.; Fernández, J.L.; Cortés, C.; Guanche, R. TELWIND- Integrated Telescopic tower combined with an evolved spar floating substructurefor low-cost deep water offshore wind and next generation of 10 MW+ wind turbines. 2016. Available online: https://pdfs.semanticscholar.org/0cbc/2a65975f115250b7256195d5d4955bb609eb.pdf?_ga=2.222539474.832566553.1590488400-592356238.1574839601 (accessed on 1 March 2020).
- Saitec. Technical Documentation Floating Offshore Wind Turbine SATH—10 MW; Marine Operations: Bilbao Spain, 2019. [Google Scholar]
- Marijuán, A.R. Offshore Floating Platforms. Analysis of a Solution for Motion Mitigation; Digitala Vetenskapliga Arkivet (DiVA): Stockholm, Sweden, 2017. [Google Scholar]
- Jessen, K.; Laugesen, K.; Mortensen, S.M.; Jensen, J.K.; Soltani, M.N. Experimental Validation of Aero-Hydro-Servo-Elastic Models of a Scaled Floating Offshore Wind Turbine. Appl. Sci. 2019, 9, 1244. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, J.C. Energía Eólica Offshore, Recubrimientos Basados en Nanopartículas para Aplicaciones Offshore. 2018. Available online: https://ingenieromarino.com/recubrimientos-basados-en-nanoparticulas-para-aplicaciones-offshore/ (accessed on 1 March 2020).
- Borrell, C.M.I.; Hortigüela, A.C. WindCrete. Wind. Int. 2016, 12, 1–4. [Google Scholar]
- Borrell, C.M.I.; Hortigüela, A.C.; Sandner, F.; Matha, D. Monolithic concrete off-shore floating sturcture for wind turbines. In Proceedings of the Annual Conference EWEA 2014 Annual Event: Conference Proceedings, Barcelona, Spain, 10–13 March 2014; pp. 107–111. [Google Scholar]
- Baita-Saavedra, E.; Cordal-Iglesias, D.; Filgueira-Vizoso, A.; Castro-Santos, L. Economic aspects of a concrete floating offshore wind platform in the Atlantic Arc of Europe. Int. J. Environ. Res. Public Health 2019, 16, 4122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saitec. Technical Documentation Floating Offshore Wind Turbine SATH—10 MW; O&M Strategy and Accesibility: Barcelona, Spain; Bilbao, Spain, 2019. [Google Scholar]
- Castro-Santos, L.; Diaz-Casas, V. Life-cycle cost analysis of floating offshore wind farms. Renew. Energy 2014, 66, 41–48. [Google Scholar]
- Castro-Santos, L.; Filgueira-Vizoso, A.; Lamas-Galdo, I.; Carral-Couce, L. Methodology to calculate the installation costs of offshore wind farms located in deep waters. J. Clean. Prod. 2018. [Google Scholar] [CrossRef]
- Carral-Couce, L.; Naya, S.; Alvarez Feal, C.; Lamas Pardo, M.; Tarrío-Saavedra, J. Estimating the traction factor and designing the deck gear for the anchor handling tug. Proc. Inst. Mech. Eng. Part M-J. Eng. Marit. Environ. 2017, 231, 600–615. [Google Scholar] [CrossRef]
- SAITEC. Saitec Webpage. 2020. Available online: https://www.saitec.es/en/ (accessed on 1 February 2020).
- Aubault, A.; Cermelli, C.; Roddier, D. Windfloat: A floating foundation for offshore wind turbines. Part III: Structural analysis. In Proceedings of the ASME 28th International Conference on Ocean, offshore and Arctic Engineering OMAE2009, Honolulu, HI, USA, 31 May–5 June 2009; pp. 1–8. [Google Scholar]
- Driscoll, F.; Jonkman, J.; Robertson, A.; Sirnivas, S.; Skaare, B.; Nielsen, F.G. Validation of a FAST Model of the Statoil-hywind Demo Floating Wind Turbine. Energy Procedia 2016, 94, 3–19. [Google Scholar] [CrossRef] [Green Version]
- Barrero, A. Saitec Elige la Costa Cántabra Para Ensayar su Plataforma eólica Flotante. 2019. Available online: https://www.energias-renovables.com/eolica/cantabria-albergara-en-sus-aguas-la-primera-20191125 (accessed on 1 February 2020).
- Diaz, H.; Soares, C.G. Method for Multi-Criteria Choice of Wind Farm Location—IST Site Selection Report; IST: Lisbon, Portugal, 2019. [Google Scholar]
- Díaz, H.; Soares, C.G. An integrated GIS approach for site selection of floating offshore wind farms in the Atlantic Continental European coastline. Renew. Sustain. Energy Rev. 2020. (Unpublished Paper). [Google Scholar]
- Google Earth. Google Earth. 2020. Available online: https://www.google.com/earth/ (accessed on 1 February 2020).
- Campos, A.; Molins, C.; Gironella, X.; Trubat, P. Spar concrete monolithic design for offshore wind turbines. In Proceedings of the Institution of Civil Engineers: Maritime Engineering; Thomas Telford Ltd.: London, UK, 2016; p. 15. [Google Scholar]
Concept | BlueSATH® | SATH® |
---|---|---|
Type | Prototype | ARCWIND project |
Wind turbine | AE-30 kW AEOLOS | DTU 10 MW |
Power of the wind turbine | 30 kW | 10 MW |
Rotor diameter | 15 m | 178.3 m |
Hub height (above MSL) | 17.6 m | 108 m |
Concept | SATH® | Units |
---|---|---|
Coordinates | 40.21N–9.56W | - |
Bathymetry | 150 | m |
Distance from farm to shore | 51,000 | m |
Distance from farm to onshore facilities | 61,000 | m |
Scenario | Electric Tariff (€/MWh) | Capital Cost (%) |
---|---|---|
1 | 50 | 6 |
2 | 50 | 8 |
3 | 150 | 6 |
4 | 150 | 8 |
Concept | Cost (%) |
---|---|
C12-Legal aspects | 0.2% |
C13-Wind resource study, sea states study, seabed study | 1.0% |
C21-Special Purpose Vehicle (SPV) Cost | 0.3% |
C31-Generator manufacturing cost | 20.0% |
C32-Floating platform manufacturing cost | 11.4% |
C33-Mooring manufacturing cost | 5.8% |
C34-Anchoring manufacturing cost | 1.3% |
C35-Electric systems manufacturing cost | 3.8% |
C41-Generator installation cost | 0.2% |
C42-Floating platform installation cost | 1.1% |
C43-Mooring and anchoring installation cost | 0.9% |
C44-Electric systems installation cost | 0.8% |
C51 - Assurance cost | 0.0% |
C52-Administration and Operations cost | 1.9% |
C53-Maintenance cost | 16.4% |
C54-Onshore logistics | 0.6% |
C55-Offshore logistics | 32.1% |
C61-Generator dismantling cost | 0.9% |
C62-Mooring and anchoring dismantling cost | 0.8% |
C63-Electric system dismantling cost | 0.1% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baita-Saavedra, E.; Cordal-Iglesias, D.; Filgueira-Vizoso, A.; Morató, À.; Lamas-Galdo, I.; Álvarez-Feal, C.; Carral, L.; Castro-Santos, L. An Economic Analysis of An Innovative Floating Offshore Wind Platform Built with Concrete: The SATH® Platform. Appl. Sci. 2020, 10, 3678. https://doi.org/10.3390/app10113678
Baita-Saavedra E, Cordal-Iglesias D, Filgueira-Vizoso A, Morató À, Lamas-Galdo I, Álvarez-Feal C, Carral L, Castro-Santos L. An Economic Analysis of An Innovative Floating Offshore Wind Platform Built with Concrete: The SATH® Platform. Applied Sciences. 2020; 10(11):3678. https://doi.org/10.3390/app10113678
Chicago/Turabian StyleBaita-Saavedra, Eugenio, David Cordal-Iglesias, Almudena Filgueira-Vizoso, Àlex Morató, Isabel Lamas-Galdo, Carlos Álvarez-Feal, Luis Carral, and Laura Castro-Santos. 2020. "An Economic Analysis of An Innovative Floating Offshore Wind Platform Built with Concrete: The SATH® Platform" Applied Sciences 10, no. 11: 3678. https://doi.org/10.3390/app10113678
APA StyleBaita-Saavedra, E., Cordal-Iglesias, D., Filgueira-Vizoso, A., Morató, À., Lamas-Galdo, I., Álvarez-Feal, C., Carral, L., & Castro-Santos, L. (2020). An Economic Analysis of An Innovative Floating Offshore Wind Platform Built with Concrete: The SATH® Platform. Applied Sciences, 10(11), 3678. https://doi.org/10.3390/app10113678