Microwave Photonic Frequency Conversion Based on a Wavelength Swept Laser
Abstract
:1. Introduction
2. Operation Principle
2.1. Frequency Conversion Principle
2.2. Simulations of Conversion Performance
3. Experimental Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Capmany, J.; Beatriz, O.; Daniel, P. A tutorial on microwave photonic filters. J. Lightwave Technol. 2006, 24, 201–229. [Google Scholar] [CrossRef]
- Minasian, R.A. Photonic signal processing of microwave signals. IEEE Trans. Microw. Theory Tech. 2006, 54, 832–846. [Google Scholar] [CrossRef]
- Yao, J.p. Microwave photonics. J. Lightwave Technol. 2009, 27, 314–335. [Google Scholar] [CrossRef]
- Yang, L.H.; Ren, G.L.; Qiu, Z.L. A novel Doppler frequency offset estimation method for DVB-T system in HST environment. IEEE Trans. Broadcast. 2012, 58, 139–143. [Google Scholar] [CrossRef]
- Hong, Y.; He, D. An improved Doppler frequency offset estimation algorithm of OFDM system under high-speed movement environment. J. Comput. 2013, 8, 3191–3195. [Google Scholar] [CrossRef]
- Shi, Y.Q.; Wang, W.S.; Bechtel, J.H. High-isolation photonic microwave mixer/link for wideband signal processing and transmission. J. Lightwave Technol. 2003, 21, 1224–1232. [Google Scholar]
- Xue, X.X.; Zheng, X.P.; Zhang, H.Y.; Zhou, B.K. Idler-free photonic microwave mixer using a broadband optical source and cascaded phase modulators. Opt. Lett. 2012, 37, 1451–1453. [Google Scholar] [CrossRef]
- Gopalakrishnan, G.K.; Burns, W.K.; Bulmer, C.H. Microwave-optical mixing in LiNbO/sub 3/modulators. IEEE Trans. Microw. Theory Tech. 1993, 41, 2383–2391. [Google Scholar] [CrossRef]
- Zhang, S.J.; Yu, J.J.; Chang, G.K. Optical millimeter-wave generation or up-conversion using external modulators. IEEE Photon. Technol. Lett. 2005, 18, 265–267. [Google Scholar]
- Wu, B.l.; Tang, Y.; Sun, J.; Jian, S.s. Photonic microwave signal mixing using Sagnac-Loop-based modulator and polarization-dependent modulation. IEEE Photon. J. 2016, 8, 1–8. [Google Scholar] [CrossRef]
- Yin, C.J.; Li, J.Q.; Li, B.Y.; Lv, Q.; Dai, J.; Yin, F.L.; Dai, Y.T.; Xu, K. Microwave photonic frequency up-convertor with frequency doubling and compensation of chromatic-dispersion-induced power fading. IEEE Photon. J. 2017, 9, 1–7. [Google Scholar] [CrossRef]
- Ma, J.L.; Wen, A.J.; Tu, Z.Y. Filter-free photonic microwave upconverter with frequency quadrupling. Appl. Opt. 2019, 58, 7915–7920. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.Z.; Pan, S.L. Image-reject mixer with large suppression of mixing spurs based on a photonic microwave phase shifter. J. Lightwave Technol. 2016, 34, 4729–4735. [Google Scholar] [CrossRef]
- Zhang, J.; Chan, E.H.W.; Wang, X.; Feng, X.; Guan, B. High conversion efficiency photonic microwave mixer with image rejection capability. IEEE Photon. J. 2016, 8, 1–11. [Google Scholar] [CrossRef]
- Gao, Y.S.; Wen, A.J.; Zhang, W.; Wang, Y.; Zhang, H.X. Photonic microwave and mm-wave mixer for multichannel fiber transmission. J. Lightwave Technol. 2017, 35, 1566–1574. [Google Scholar] [CrossRef]
- Gao, Y.S.; Wen, A.J.; Jiang, W. Fundamental/Subharmonic Photonic Microwave I/Q Up-Converter for Single Sideband and Vector Signal Generation. IEEE Trans. Microw. Theory Tech. 2018, 66, 4282–4292. [Google Scholar] [CrossRef]
- Shi, Z.; Zhu, S.; Li, M. Reconfigurable microwave photonic mixer based on dual-polarization dual-parallel Mach–Zehnder modulator. Opt. Comm. 2018, 428, 131–135. [Google Scholar] [CrossRef]
- Lee, K.H.; Choi, W.Y.; Leem, Y.A. Harmonic millimeter-wave generation and frequency up-conversion using a passively mode-locked multisection DFB laser under external optical injection. IEEE Photon. Technol. Lett. 2007, 19, 161–163. [Google Scholar] [CrossRef]
- Huchard, M.; Chanclou, P.; Charbonnier, B. 60 GHz radio signal up-conversion and transport using a directly modulated mode-locked laser. In Proceedings of the 2008 International Topical Meeting on Microwave Photonics jointly held with the 2008 Asia-Pacific Microwave Photonics Conference, Gold Coast, QLD, Australia, 9 September–3 October 2008. [Google Scholar]
- Xu, X.Y.; Wu, J.Y.; Tan, M.X. Microcomb-based photonic local oscillator for broadband microwave frequency conversion. In Proceedings of the Optical Fiber Communication Conference. Optical Society of America, San Diego, CA, USA, 3–7 March 2019. [Google Scholar]
- Turani, Z.; Fatemizadeh, E.; Blumetti, T.; Daveluy, S.; Moraes, A.F.; Chen, W. Optical radiomic signatures derived from optical coherence tomography images improve identification of melanoma. Cancer Res. 2019, 79, 2021–2030. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.Q.; Li, Z.H.; Yuan, S.Z. Tunable dual-wavelength actively mode-locked fiber laser with an F-P semiconductor modulator. IEEE Photon. Technol. Lett. 2002, 14, 1494–1496. [Google Scholar] [CrossRef]
- Mei, J.W.; Xiao, X.S.; Yang, C.X. 1 μm wavelength swept fiber laser based on dispersion-tuning technique. Chinese Opt. Lett. 2015, 13, 091403. [Google Scholar]
- Tozburun, S.; Siddiqui, M.; Vakoc, B.J. A rapid, dispersion-based wavelength-stepped and wavelength-swept laser for optical coherence tomography. Opt. Express. 2014, 22, 3414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huber, R.; Wojtkowski, M.; Fujimoto, J.G. Fourier domain mode locking (FDML): A new laser operating regime and applications for optical coherence tomography. Opt. Express. 2006, 14, 3225–3237. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Zhang, A.Q.; Feng, X.H.; Wai, P.K.A. Frequency synchronization of Fourier domain harmonically mode locked fiber laser by monitoring the supermode noise peaks. Opt. Express. 2013, 21, 30255–30265. [Google Scholar] [CrossRef] [Green Version]
Conversion | Input Frequency | Output Frequency (Simulation) | Output Frequency (Experiment) |
---|---|---|---|
Down | 5 GHz | 4.935 GHz | 4.936 GHz |
Up | 5 GHz | 5.067 GHz | 5.067 GHz |
SMF Length | Up-Conversion for 5 GHz Input | Up-Conversion for 8 GHz Input | Up-Conversion for 16 GHz Input |
---|---|---|---|
1.04 km | 5.067 GHz | 8.094 GHz | 16.208 GHz |
3.11 km | 5.207 GHz | 8.369 GHz | 16.629 GHz |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, Y.; Cao, Y.; Wang, L.; Wang, G.; Feng, X.; Guan, B.-O. Microwave Photonic Frequency Conversion Based on a Wavelength Swept Laser. Appl. Sci. 2020, 10, 3813. https://doi.org/10.3390/app10113813
Kong Y, Cao Y, Wang L, Wang G, Feng X, Guan B-O. Microwave Photonic Frequency Conversion Based on a Wavelength Swept Laser. Applied Sciences. 2020; 10(11):3813. https://doi.org/10.3390/app10113813
Chicago/Turabian StyleKong, Youxue, Yuan Cao, Lin Wang, Guangying Wang, Xinhuan Feng, and Bai-Ou Guan. 2020. "Microwave Photonic Frequency Conversion Based on a Wavelength Swept Laser" Applied Sciences 10, no. 11: 3813. https://doi.org/10.3390/app10113813
APA StyleKong, Y., Cao, Y., Wang, L., Wang, G., Feng, X., & Guan, B. -O. (2020). Microwave Photonic Frequency Conversion Based on a Wavelength Swept Laser. Applied Sciences, 10(11), 3813. https://doi.org/10.3390/app10113813