Relation Between the Defect Interactions and the Serration Dynamics in a Zr-Based Bulk Metallic Glass
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mechanical and Microstructural Characterization
2.2. Refined Composite Multiscale Entropy Technique
- (1)
- First, eliminate the trend that arises in the strain-hardening regime [42]. This step can be accomplished by either fitting the data using either third order polynomial or moving average methods, and then subtracting the fit from the original data set [43]. One can next define the kth coarse-grained time series from the detrended data set, [32]:
- (2)
- Write the time series of as a vector for each τ:
- (3)
- Construct the template vectors of dimension m, (typically m = 2):
- (4)
- Determine whether two template vectors match by measuring the distance between them via the infinity norm [44]:
- (5)
- Repeat steps (1–4) for m = m + 1.
- (6)
- Calculate the RCMSE value (typically denoted as the sample entropy) for a given τ by first summing the number of matching pairs for each m, m + 1 from k = 1 to τ and then taking the logarithm of their ratios, as shown in the following equation [32]:
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Telford, M. The case for bulk metallic glass. Mater. Today 2004, 7, 36–43. [Google Scholar] [CrossRef]
- Schuh, C.A.; Hufnagel, T.C.; Ramamurty, U. Overview No.144 - Mechanical behavior of amorphous alloys. Acta Mater. 2007, 55, 4067–4109. [Google Scholar] [CrossRef]
- Madge, S.V.; Caron, A.; Gralla, R.; Wilde, G.; Mishra, S.K. Novel W-based metallic glass with high hardness and wear resistance. Intermetallics 2014, 47, 6–10. [Google Scholar] [CrossRef]
- Greer, A.L.; Rutherford, K.L.; Hutchings, I.M. Wear resistance of amorphous alloys and related materials. Int. Mater. Rev. 2002, 47, 87–112. [Google Scholar] [CrossRef]
- Peter, W.H.; Buchanan, R.A.; Liu, C.T.; Liaw, P.K.; Morrison, M.L.; Horton, J.A.; Carmichael, C.; Wright, J.L. Localized Corrosion behavior of a zirconium-based bulk metallic glass relative to its crystalline state. Intermetallics 2002, 10, 1157–1162. [Google Scholar] [CrossRef]
- Hua, N.; Huang, L.; Wang, J.; Cao, Y.; He, W.; Pang, S.; Zhang, T. Corrosion behavior and in vitro biocompatibility of Zr–Al–Co–Ag bulk metallic glasses: An experimental case study. J. Non-Cryst. Solids 2012, 358, 1599–1604. [Google Scholar] [CrossRef]
- Kruzic, J.J. Bulk Metallic Glasses as Structural Materials: A Review. Adv. Eng. Mater. 2016, 18, 1308–1331. [Google Scholar] [CrossRef]
- Madge, S.V. Toughness of Bulk Metallic Glasses. Metals 2015, 5, 1279–1305. [Google Scholar] [CrossRef] [Green Version]
- Masumoto, T.; Maddin, R. Mechanical properties of palladium 20 a/o silicon alloy quenched from liquid state. Acta Metall. Mater. 1971, 19, 725–741. [Google Scholar] [CrossRef]
- Wang, J.G.; Hu, Y.C.; Guan, P.F.; Song, K.K.; Wang, L.; Wang, G.; Pan, Y.; Sarac, B.; Eckert, J. Hardening of shear band in metallic glass. Sci. Rep. 2017, 7, 7076. [Google Scholar] [CrossRef]
- Miller, M.; Liaw, P.K. (Eds.) Bulk Metallic Glasses: An Overview; Springer: New York, NY, USA, 2008. [Google Scholar]
- Greer, A.L.; Cheng, Y.Q.; Maj, E. Shear bands in metallic glasses. Mater. Sci. Eng. R Rep. 2013, 74, 71–132. [Google Scholar] [CrossRef]
- Egami, T. Mechanical failure and glass transition in metallic glasses. J. Alloys Compd. 2011, 509, S82–S86. [Google Scholar] [CrossRef]
- Li, W.; Gao, Y.; Bei, H. On the correlation between microscopic structural heterogeneity and embrittlement behavior in metallic glasses. Sci. Rep. 2015, 5, 14786. [Google Scholar] [CrossRef]
- Li, W.; Bei, H.; Tong, Y.; Dmowski, W.; Gao, Y.F. Structural heterogeneity induced plasticity in bulk metallic glasses: From well-relaxed fragile glass to metal-like behavior. Appl. Phys. Lett. 2013, 103, 171910. [Google Scholar] [CrossRef]
- Antonaglia, J.; Xie, X.; Schwarz, G.; Wraith, M.; Qiao, J.; Zhang, Y.; Liaw, P.K.; Uhl, J.T.; Dahmen, K.A. Tuned critical avalanche scaling in bulk metallic glasses. Sci. Rep. 2014, 4, 4382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antonaglia, J.; Wright, W.J.; Gu, X.; Byer, R.R.; Hufnagel, T.C.; LeBlanc, M.; Uhl, J.T.; Dahmen, K.A. Bulk metallic glasses deform via slip avalanches. Phys. Rev. Lett. 2014, 112, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Li, J.J.; Wang, Z.; Qiao, J.W. Power-law scaling between mean stress drops and strain rates in bulk metallic glasses. Mater. Des. 2016, 99, 427–432. [Google Scholar] [CrossRef]
- Torre, F.H.D.; Klaumünzer, D.; Maaß, R.; Löffler, J.F. Stick–slip behavior of serrated flow during inhomogeneous deformation of bulk metallic glasses. Acta Mater. 2010, 58, 3742–3750. [Google Scholar] [CrossRef]
- Maaß, R.; Klaumünzer, D.; Löffler, J.F. Propagation dynamics of individual shear bands during inhomogeneous flow in a Zr-based bulk metallic glass. Acta Mater. 2011, 59, 3205–3213. [Google Scholar] [CrossRef]
- Shi, B.; Luan, S.Y.; Jin, P.P. Crossover from free propagation to cooperative motions of shear bands and its effect on serrated flow in metallic glass. J. Non-Cryst. Solids 2018, 482, 126–131. [Google Scholar] [CrossRef]
- Jiang, W.H.; Fan, G.J.; Liu, F.X.; Wang, G.Y.; Choo, H.; Liaw, P.K. Spatiotemporally inhomogeneous plastic flow of a bulk-metallic glass. Int. J. Plast. 2008, 24, 1–16. [Google Scholar] [CrossRef]
- Brechtl, J.; Xie, X.; Wang, Z.; Qiao, J.; Liaw, P.K. Complexity analysis of serrated flows in a bulk metallic glass under constrained and unconstrained conditions. Mater. Sci. Eng. 2020, 771, 138585. [Google Scholar] [CrossRef]
- Alrasheedi, N.H.; Yousfi, M.A.; Hajlaoui, K.; Mahfoudh, B.J.; Tourki, Z.; Yavari, A.R. On the Modelling of the Transient Flow Behavior of Metallic Glasses: Analogy with Portevin-Le Chatelier Effect. Metals 2016, 6, 8. [Google Scholar] [CrossRef]
- Zhang, Y.; Zuo, T.T.; Tang, Z.; Gao, M.C.; Dahmen, K.A.; Liaw, P.K.; Lu, Z.P. Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 2014, 61, 1–93. [Google Scholar] [CrossRef]
- Niu, S.; Kou, H.; Zhang, Y.; Wang, J.; Li, J. The characteristics of serration in Al0.5CoCrFeNi high entropy alloy. Mater. Sci. Eng. A 2017, 702, 96–103. [Google Scholar] [CrossRef]
- Fan, Z.; Li, Q.; Fan, C.; Wang, H.; Zhang, X. Strategies to tailor serrated flows in metallic glasses. J. Mater. Res. 2019, 34, 1595–1607. [Google Scholar] [CrossRef]
- Sun, B.A.; Pauly, S.; Tan, J.; Stoica, M.; Wang, W.H.; Kuhn, U.; Eckert, J. Serrated flow and stick-slip deformation dynamics in the presence of shear-band interactions for a Zr-based metallic glass. Acta Mater. 2012, 60, 4160–4171. [Google Scholar] [CrossRef]
- Wang, Y.T.; Dong, J.; Liu, Y.H.; Bai, H.Y.; Wang, W.H.; Sun, B.A. Optimum shear stability at intermittent-to-smooth transition of plastic flow in metallic glasses at cryogenic temperatures. Materialia 2020, 9, 100559. [Google Scholar] [CrossRef]
- Wright, W.J.; Long, A.A.; Gu, X.J.; Liu, X.; Hufnagel, T.C.; Dahmen, K.A. Slip statistics for a bulk metallic glass composite reflect its ductility. J. Appl. Phys. 2018, 124, 8. [Google Scholar] [CrossRef] [Green Version]
- Ren, J.L.; Chen, C.; Wang, G.; Mattern, N.; Eckert, J. Dynamics of serrated flow in a bulk metallic glass. AIP Adv. 2011, 1, 032158. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.-D.; Wu, C.-W.; Lin, S.-G.; Lee, K.-Y.; Peng, C.-K. Analysis of complex time series using refined composite multiscale entropy. Phys. Lett. A 2014, 378, 1369–1374. [Google Scholar] [CrossRef]
- Costa, M.; Goldberger, A.L.; Peng, C.K. Multiscale entropy analysis of complex physiologic time series. Phys. Rev. Lett. 2002, 89, 068102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, M.; Goldberger, A.L.; Peng, C.K. Multiscale entropy analysis of biological signals. Phys. Rev. E 2005, 71, 021906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Humeau-Heurtier, A. Evaluation of Systems’ Irregularity and Complexity: Sample Entropy, Its Derivatives, and Their Applications across Scales and Disciplines; MDPI AG: Basel, Switzerland, 2018. [Google Scholar]
- Brechtl, J.; Chen, B.; Xie, X.; Ren, Y.; Venable, J.D.; Liaw, P.K.; Zinkle, S.J. Entropy modeling on serrated flows in carburized steels. Mater. Sci. Eng. A 2019, 753, 135–145. [Google Scholar] [CrossRef]
- Sarkar, A.; Chatterjee, A.; Barat, P.; Mukherjee, P. Comparative study of the Portevin-Le Chatelier effect in interstitial and substitutional alloy. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2007, 459, 361–365. [Google Scholar] [CrossRef] [Green Version]
- Perez-Bergquist, A.G.; Bei, H.; Leonard, K.J.; Zhang, Y.; Zinkle, S.J. Effects of ion irradiation on Zr52.5Cu17.9Ni14.6Al10Ti5 (BAM-11) bulk metallic glass. Intermetallics 2014, 53, 62–66. [Google Scholar] [CrossRef]
- Clark, D.W.; Zinkle, S.J.; Patel, M.K.; Parish, C.M. High temperature ion irradiation effects in MAX phase ceramics. Acta Mater. 2016, 105, 130–146. [Google Scholar] [CrossRef] [Green Version]
- Oliver, W.C.; Pharr, G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- Oliver, W.C.; Pharr, G.M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 2004, 19, 3–20. [Google Scholar] [CrossRef]
- Sarkar, A.; Maloy, S.A.; Murty, K.L. Investigation of Portevin-LeChatelier effect in HT-9 steel. Mater. Sci. Eng. A 2015, 631, 120–125. [Google Scholar] [CrossRef]
- Iliopoulos, A.C.; Nikolaidis, N.S.; Aifantis, E.C. Analysis of serrations and shear bands fractality in UFGs. J. Mech. Behav. Mater. 2015, 24, 1–9. [Google Scholar] [CrossRef]
- Brechtl, J.; Xie, X.; Liaw, P.K.; Zinkle, S.J. Complexity modeling and analysis of chaos and other fluctuating phenomena. Chaos Solitons Fractals 2018, 116, 166–175. [Google Scholar]
- Costa, M.D.; Goldberger, A.L. Generalized multiscale entropy analysis: Application to quantifying the complex volatility of human heartbeat time series. Entropy 2015, 17, 1197–1203. [Google Scholar] [CrossRef] [PubMed]
- Brechtl, J.; Chen, S.Y.; Xie, X.; Ren, Y.; Qiao, J.W.; Liaw, P.K.; Zinkle, S.J. Towards a greater understanding of serrated flows in an Al-containing high-entropy-based alloy. Int. J. Plast. 2019, 115, 71–92. [Google Scholar] [CrossRef]
- Brechtl, J.; Wang, H.; Kumar, N.A.P.K.; Yang, T.; Lin, Y.R.; Bei, H.; Neuefeind, J.; Dmowski, W.; Zinkle, S.J. Investigation of the thermal and neutron irradiation response of BAM-11 bulk metallic glass. J. Nucl. Mater. 2019, 526, 151771. [Google Scholar] [CrossRef]
- Huo, L.-S.; Wang, J.-Q.; Huo, J.-T.; Zhao, Y.-Y.; Men, H.; Chang, C.-T.; Wang, X.-M.; Li, R.-W. Interactions of Shear Bands in a Ductile Metallic Glass. J. Iron Steel Res. Int. 2016, 23, 48–52. [Google Scholar] [CrossRef]
- Crespo, A.; Álvarez, D.; Gutiérrez-Tobal, G.C.; Vaquerizo-Villar, F.; Barroso-García, V.; Alonso-Álvarez, M.L.; Terán-Santos, J.; Hornero, R.; Campo, F.d. Multiscale entropy analysis of unattended oximetric recordings to assist in the screening of paediatric sleep apnoea at home. Entropy 2017, 19, 284. [Google Scholar] [CrossRef] [Green Version]
- Egami, T.; Poon, S.J.; Zhang, Z.; Keppens, V. Glass transition in metallic glasses: A microscopic model of topological fluctuations in the bonding network. Phys. Rev. B 2007, 76, 6. [Google Scholar] [CrossRef] [Green Version]
- Srolovitz, D.; Maeda, K.; Vitek, V.; Egami, T. Structural defects in amorphous solids Statistical analysis of a computer model. Philos. Mag. A 1981, 44, 847–866. [Google Scholar] [CrossRef]
- Louzguine-Luzgin, D.V.; Jiang, J.; Bazlov, A.I.; Zolotorevzky, V.S.; Mao, H.; Ivanov, Y.P.; Greer, A.L. Phase separation process preventing thermal embrittlement of a Zr-Cu-Fe-Al bulk metallic glass. Scr. Mater. 2019, 167, 31–36. [Google Scholar] [CrossRef]
- Sarkar, A.; Barat, P.; Mukherjee, P. Multiscale entropy analysis of the Portevin-Le Chatelier effect in an Al-2.5%Mg alloy. Fractals 2010, 18, 319–325. [Google Scholar] [CrossRef] [Green Version]
- Yuan, B.; Li, J.-J.; Qiao, J.-W. Statistical analysis on strain-rate effects during serrations in a Zr-based bulk metallic glass. J. Iron Steel Res. Int. 2017, 24, 455–461. [Google Scholar] [CrossRef]
Sample Condition | Strain Rate (s−1) | ASE |
---|---|---|
As-cast | 2 × 10−5 | 2.4 |
2 × 10−4 | 4.2 | |
300 °C, 1 week | 2 × 10−5 | 15.4 |
2 × 10−4 | 28.5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brechtl, J.; Wang, Z.; Xie, X.; Qiao, J.-W.; Liaw, P.K. Relation Between the Defect Interactions and the Serration Dynamics in a Zr-Based Bulk Metallic Glass. Appl. Sci. 2020, 10, 3892. https://doi.org/10.3390/app10113892
Brechtl J, Wang Z, Xie X, Qiao J-W, Liaw PK. Relation Between the Defect Interactions and the Serration Dynamics in a Zr-Based Bulk Metallic Glass. Applied Sciences. 2020; 10(11):3892. https://doi.org/10.3390/app10113892
Chicago/Turabian StyleBrechtl, Jamieson, Zhong Wang, Xie Xie, Jun-Wei Qiao, and Peter K. Liaw. 2020. "Relation Between the Defect Interactions and the Serration Dynamics in a Zr-Based Bulk Metallic Glass" Applied Sciences 10, no. 11: 3892. https://doi.org/10.3390/app10113892
APA StyleBrechtl, J., Wang, Z., Xie, X., Qiao, J. -W., & Liaw, P. K. (2020). Relation Between the Defect Interactions and the Serration Dynamics in a Zr-Based Bulk Metallic Glass. Applied Sciences, 10(11), 3892. https://doi.org/10.3390/app10113892