Nonlinear Elastic Wave Energy Imaging for the Detection and Localization of In-Sight and Out-of-Sight Defects in Composites
Abstract
:1. Introduction
2. Materials and Measurements
3. Data Processing
3.1. Time-Frequency Filtering
3.2. Defect-to-Background Ratio
3.3. Band Power Caculation
4. Detection of Artificial Delaminations
4.1. Defect-to-Background Ratio and Local Defect Resonance
4.2. Band Power
5. Detection of Side-Delaminations
6. Opportunities for Out-of-Sight Damage Detection
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tenek, L.H.; Henneke, E.G.; Gunzburger, M.D. Vibration of delaminated composite plates and some applications to non-destructive testing. Compos. Struct. 1993, 23, 253–262. [Google Scholar] [CrossRef]
- Solodov, I.; Bai, J.; Bekgulyan, S.; Busse, G. A local defect resonance to enhance acoustic wave-defect interaction in ultrasonic nondestructive evaluation. Appl. Phys. Lett. 2011, 99. [Google Scholar] [CrossRef]
- Segers, J.; Kersemans, M.; Hedayatrasa, S.; Calderon, J.; Van Paepegem, W. Towards in-plane local defect resonance for non-destructive testing of polymers and composites. Ndt E Int. 2018, 98, 130–133. [Google Scholar] [CrossRef]
- Hettler, J.; Tabatabaeipour, M.; Delrue, S.; Van Den Abeele, K. Detection and characterization of local defect resonances arising from delaminations and flat bottom holes. J. Nondestruct. Eval. 2017, 36, 2. [Google Scholar] [CrossRef]
- Solodov, I.; Rahammer, M.; Kreutzbruck, M. Analytical evaluation of resonance frequencies for planar defects: Effect of a defect shape. Ndt E Int. 2019, 102, 274–280. [Google Scholar] [CrossRef]
- Delrue, S.; Tabatabaeipour, M.; Hettler, J.; Van Den Abeele, K. Non-destructive evaluation of kissing bonds using Local Defect Resonance (LDR) spectroscopy: A simulation study. Phys. Procedia 2015, 70, 648–651. [Google Scholar] [CrossRef] [Green Version]
- Derusova, D.; Vavilov, V.; Sfarra, S.; Sarasini, F.; Krasnoveikin, V.; Chulkov, A.; Pawar, S. Ultrasonic spectroscopic analysis of impact damage in composites by using laser vibrometry. Compos. Struct. 2019, 211, 221–228. [Google Scholar] [CrossRef]
- Segers, J.; Hedayatrasa, S.; Verboven, E.; Poelman, G.; Van Paepegem, W.; Kersemans, M. Efficient automated extraction of local defect resonance parameters in fiber reinforced polymers using data compression and iterative amplitude thresholding. J. Sound Vib. 2019, 463, 114958. [Google Scholar] [CrossRef]
- Segers, J.; Hedayatrasa, S.; Poelman, G.; Van Paepegem, W.; Kersemans, M. Probing the limits of full-field linear Local Defect Resonance identification for deep defect detection. Ultrasonics 2020, 105, 106130. [Google Scholar] [CrossRef]
- Flynn, E.B.; Chong, S.Y.; Jarmer, G.J.; Lee, J.-R. Structural imaging through local wavenumber estimation of guided waves. Ndt E Int. 2013, 59, 1–10. [Google Scholar] [CrossRef]
- Jeon, J.Y.; Gang, S.; Park, G.; Flynn, E.; Kang, T.; Han, S.W. Damage detection on composite structures with standing wave excitation and wavenumber analysis. Adv. Compos. Mater. 2017, 26, 53–65. [Google Scholar] [CrossRef]
- Rogge, M.D.; Leckey, C.A. Characterization of impact damage in composite laminates using guided wavefield imaging and local wavenumber domain analysis. Ultrasonics 2013, 53, 1217–1226. [Google Scholar] [CrossRef] [PubMed]
- Stevens, G.N.; Van Buren, K.L.; Flynn, E.B.; Atamturktur, S.; Lee, J. Stochastic wavenumber estimation: Damage detection through simulated guided lamb waves. In Proceedings of the IMAC2016, Orlando, FL, USA, 25–28 January 2016; pp. 105–126. [Google Scholar]
- Kudela, P.; Wandowski, T.; Malinowski, P.; Ostachowicz, W. Application of scanning laser Doppler vibrometry for delamination detection in composite structures. Opt. Lasers Eng. 2017, 99, 46–57. [Google Scholar] [CrossRef]
- Kudela, P.; Radzienski, M.; Ostachowicz, W. Impact induced damage assessment by means of Lamb wave image processing. Mech. Syst. Signal Process. 2018, 102, 23–36. [Google Scholar] [CrossRef]
- Radzienski, M.; Kudela, P.; Marzani, A.; De Marchi, L.; Ostachowicz, W. Damage identification in various types of composite plates using guided waves excited by a piezoelectric transducer and measured by a laser vibrometer. Sensors 2019, 19, 1958. [Google Scholar] [CrossRef] [Green Version]
- O’Dowd, N.M.; Han, D.; Kang, L.; Flynn, E.B. Exploring the performance limits of full-field acoustic wavenumber spectroscopy techniques for damage detection through numerical simulation. In Proceedings of the 8th European Workshop on Structural Health Monitoring, Bilbao, Spain, 5–8 July 2016. [Google Scholar]
- Moon, S.; Kang, T.; Han, S.-W.; Jeon, J.-Y.; Park, G. Optimization of excitation frequency and guided wave mode in acoustic wavenumber spectroscopy for shallow wall-thinning defect detection. J. Mech. Sci. Technol. 2018, 32, 5213–5221. [Google Scholar] [CrossRef]
- Van Den Abeele, K.; Carmeliet, J.; Ten Cate, J.A.; Johnson, P.A. Nonlinear Elastic Wave Spectroscopy (NEWS) techniques to discern material damage, part II: Single-mode nonlinear resonance acoustic spectroscopy. Res. Nondestr. Eval. 2000, 12, 31–42. [Google Scholar] [CrossRef]
- Zhang, S.; Ma, C.; Hu, H.; Jiang, Y.; Chen, X.; Li, X. Far-sided defect recognition of FRP sandwich structures based on local defect resonance. J. Sandw. Struct. Mater. 2019, 1–12. [Google Scholar] [CrossRef]
- Fierro, G.P.M.; Meo, M. Nonlinear elastic imaging of barely visible impact damage in composite structures using a constructive nonlinear array sweep technique. Ultrasonics 2018, 90, 125–143. [Google Scholar] [CrossRef] [PubMed]
- Fierro, G.P.M.; Meo, M. A combined linear and nonlinear ultrasound time-domain approach for impact damage detection in composite structures using a constructive nonlinear array technique. Ultrasonics 2018, 93, 43–62. [Google Scholar] [CrossRef] [PubMed]
- Ginzburg, D. Damage Propagation and Detection Using Nonlinear Elastic Wave Spectroscopy in Aerospace Structures. Ph.D. Thesis, University of Bath, Claverton Down, UK, 2016. [Google Scholar]
- Ooijevaar, T.H.; Rogge, M.D.; Loendersloot, R.; Warnet, L.L.; Akkerman, R.; Tinga, T. Nonlinear dynamic behavior of an impact damaged composite skin–stiffener structure. J. Sound Vib. 2015, 353, 243–258. [Google Scholar] [CrossRef]
- Broda, D.; Staszewski, W.J.; Martowicz, A.; Uhl, T.; Silberschmidt, V.V. Modelling of nonlinear crack–wave interactions for damage detection based on ultrasound—A review. J. Sound Vib. 2014, 333, 1097–1118. [Google Scholar] [CrossRef]
- Van Den Abeele, K.; Johnson, P.A.; Sutin, A. Nonlinear Elastic Wave Spectroscopy (NEWS) techniques to discern material damage, part I: Nonlinear Wave Modulation Spectroscopy (NWMS). Res. Nondestr. Eval. 2000, 12, 17–30. [Google Scholar] [CrossRef]
- Pieczonka, L.; Zietek, L.; Klepka, A.; Staszewski, W.J.; Aymerich, F.; Uhl, T. Damage imaging in composites using nonlinear vibro-acoustic wave modulations. Struct. Control Health Monit. 2017, 25, e2063. [Google Scholar] [CrossRef]
- Dziedziech, K.; Pieczonka, L.; Adamczyk, M.; Klepka, A.; Staszewski, W.J. Efficient swept sine chirp excitation in the non-linear vibro-acoustic wave modulation technique used for damage detection. Struct. Health Monit. 2017, 17, 565–576. [Google Scholar] [CrossRef]
- Klepka, A.; Staszewski, W.J.; di Maio, D.; Scarpa, F. Impact damage detection in composite chiral sandwich panels using nonlinear vibro-acoustic modulations. Smart Mater. Struct. 2013, 22, 084011. [Google Scholar] [CrossRef]
- Jhang, K.-Y.; Lissenden, C.; Solodov, I.; Ohara, Y.; Gusev, V. Measurement of Nonlinear Ultrasonic Characteristics; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Solodov, I. Resonant acoustic nonlinearity of defects for highly-efficient nonlinear NDE. J. Nondestruct. Eval. 2014, 33, 252–262. [Google Scholar] [CrossRef]
- Roy, S.; Bose, T.; Debnath, K. Detection of local defect resonance frequencies using bicoherence analysis. J. Sound Vib. 2019, 443, 703–716. [Google Scholar] [CrossRef]
- Ciampa, F.; Scarselli, G.; Meo, M. On the generation of nonlinear damage resonance intermodulation for elastic wave spectroscopy. J. Acoust. Soc. Am. 2017, 141, 2364. [Google Scholar] [CrossRef] [Green Version]
- Segers, J.; Hedayatrasa, S.; Poelman, G.; Van Paepegem, W.; Kersemans, M. Backside delamination detection in composites through local defect resonance induced nonlinear source behaviour. J. Sound Vib. 2020, 479, 115360. [Google Scholar] [CrossRef]
- Ciampa, F.; Meo, M. Nonlinear elastic imaging using reciprocal time reversal and third order symmetry analysis. J. Acoust. Soc. Am. 2012, 131, 4316–4323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciampa, F.; Scarselli, G.; Meo, M. Nonlinear imaging method using second order phase symmetry analysis and inverse filtering. J. Nondestruct. Eval. 2015, 34, 7. [Google Scholar] [CrossRef] [Green Version]
- Zhivomirov, H. On the Development of STFT-analysis and ISTFT-synthesis Routines and their Practical Implementation. TEM 2019, 8, 56–64. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Segers, J.; Hedayatrasa, S.; Poelman, G.; Van Paepegem, W.; Kersemans, M. Nonlinear Elastic Wave Energy Imaging for the Detection and Localization of In-Sight and Out-of-Sight Defects in Composites. Appl. Sci. 2020, 10, 3924. https://doi.org/10.3390/app10113924
Segers J, Hedayatrasa S, Poelman G, Van Paepegem W, Kersemans M. Nonlinear Elastic Wave Energy Imaging for the Detection and Localization of In-Sight and Out-of-Sight Defects in Composites. Applied Sciences. 2020; 10(11):3924. https://doi.org/10.3390/app10113924
Chicago/Turabian StyleSegers, Joost, Saeid Hedayatrasa, Gaétan Poelman, Wim Van Paepegem, and Mathias Kersemans. 2020. "Nonlinear Elastic Wave Energy Imaging for the Detection and Localization of In-Sight and Out-of-Sight Defects in Composites" Applied Sciences 10, no. 11: 3924. https://doi.org/10.3390/app10113924
APA StyleSegers, J., Hedayatrasa, S., Poelman, G., Van Paepegem, W., & Kersemans, M. (2020). Nonlinear Elastic Wave Energy Imaging for the Detection and Localization of In-Sight and Out-of-Sight Defects in Composites. Applied Sciences, 10(11), 3924. https://doi.org/10.3390/app10113924