Analysis of a Wake-Up Task-Based Mobile Alarm App
Abstract
:1. Introduction
RQ 1. How does users’ alarm usage differ depending on the wake-up task?
RQ 2. How do hard-taskers, who use a higher proportion of the hard tasks with task load over a certain level, use task alarms, and in what contexts?
2. Literature Review
2.1. Task Capability Immediately after Awakening
2.2. Uncomfortable and Inconvenient Interaction
3. Methodology
3.1. Alarmy Usage Data
3.1.1. Alarmy App
3.1.2. Dataset Overview
3.2. Analysis Methods
3.2.1. Comparing Alarm Usage among Wake-Up Tasks (RQ1)
3.2.2. Modeling Hard-Taskers’ Usage Patterns (RQ2)
4. Results
4.1. Different Alarm App Usage among Wake-Up Tasks (RQ1)
4.1.1. Alarm-Set Usage
4.1.2. Alarm-Dismiss Usage
4.2. Alarm Usage Factors for Predicting the Proportion of the Hard-Task Use (RQ2)
5. Discussion
5.1. Characteristics of Wake-Up Tasks
5.2. Physical Tasks vs. Cognitive Tasks
5.3. Wake-Up Tasks and Fogg’s Motivation–Ability–Prompt (MAP) Model
5.4. Limitations
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kurniawan, S.; Mahmud, M.; Nugroho, Y. A Study of the Use of Mobile Phones by Older Persons. In Proceedings of the Extended Abstracts of the SIGCHI Conference on Human Factors in Computing Systems, Montreal, QC, Canada, 22–27 April 2006; ACM: New York, NY, USA, 2006; pp. 989–994. [Google Scholar]
- Ong, A.A.; Gillespie, M.B. Overview of Smartphone Applications for Sleep Analysis. World J. Otorhinolaryngol. Head Neck Surg. 2016, 2, 45–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, M.H.; Lee, S.T. A Study on User Needs Cognition on Functions of Mobile Phone-Focused on Use Frequency and Necessity on Functions of Age Group. In Proceedings of the HCI Korea, Pyeongchang-gun, Korea, 13–15 February 2008; The HCI Society of Korea: Seoul, Korea, 2008; pp. 465–469. [Google Scholar]
- Kasim, S.; Hafit, H.; Leong, T.H.; Hashim, R.; Ruslai, H.; Jahidin, K.; Arshad, M.S. SRC: Smart Reminder Clock. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2016; Volume 160, p. 012101. [Google Scholar]
- Yeh, Y.H.; Lu, D.H.; Hung, J.C. Combining Fuzzy Systems and Social Networking Sites Design to Alarm Clocks Using the Android System. In Proceedings of the International Symposium on Computer, Consumer and Control, Taichung, Taiwan, 4–6 June 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 28–31. [Google Scholar]
- Kim, J.; Park, J.; Lee, H.; Ko, M.; Lee, U. LocknType: Lockout Task Intervention for Discouraging Smartphone App Use. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Glasgow, UK, 4–9 May 2019; ACM: New York, NY, USA, 2019; pp. 1–12. [Google Scholar]
- Bloch, V. Level of Wakefulness and Attention. In Experimental Psychology; University Press of France: Paris, France, 1966; pp. 97–146. [Google Scholar]
- Lazareva, V.V.; Svederskaya, N.E.; Khomskaya, E.D. Electrical Activity of Brain During Mental Workload. In Neuropsychological Mechanisms of Attention; Science Publisher: Moscow, Russia, 1979; pp. 151–168. [Google Scholar]
- Bedny, G.Z.; Karwowski, W.; Bedny, I.S. Complexity Evaluation of Computer-Based Tasks. Int. J. Hum. Comput. Interact. 2012, 28, 236–257. [Google Scholar] [CrossRef]
- Bedny, G.Z.; Karwowski, W. A Systemic-Structural Activity Approach to Design of Human–Computer Interaction Tasks. Int. J. Hum. Comput. Interact. 2003, 16, 235–260. [Google Scholar] [CrossRef]
- Choe, E.K.; Lee, B.; Kay, M.; Pratt, W.; Kientz, J.A. SleepTight: Low-Burden, Self-Monitoring Technology for Capturing and Reflecting on Sleep Behaviors. In Proceedings of the ACM International Joint Conference on Pervasive and Ubiquitous Computing, Osaka, Japan, 7–11 September 2015; ACM: New York, NY, USA, 2015; pp. 121–132. [Google Scholar]
- Min, J.K.; Doryab, A.; Wiese, J.; Amini, S.; Zimmerman, J.; Hong, J.I. Toss’n’turn: Smartphone as Sleep and Sleep Quality Detector. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Toronto, ON, Canada, 26 April–1 May 2014; ACM: New York, NY, USA, 2014; pp. 477–486. [Google Scholar]
- Ravichandran, R.; Sien, S.W.; Patel, S.N.; Kientz, J.A.; Pina, L.R. Making Sense of Sleep Sensors: How Sleep Sensing Technologies Support and Undermine Sleep Health. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Denver, CO, USA, 6–11 May 2017; ACM: New York, NY, USA, 2017; pp. 6864–6875. [Google Scholar]
- Fogg, B.J. A Behavior Model for Persuasive Design. In Proceedings of the International Conference on Persuasive Technology, Claremont, CA, USA, 26–29 April 2009; ACM: New York, NY, USA, 2009; p. 40. [Google Scholar]
- Dinges, D.F. Are You Awake? Cognitive Performance and Reverie during the Hypnopompic State. In Sleep and Cognition; American Psychological Association: Washington, DC, USA, 1990; pp. 159–175. [Google Scholar]
- Jeanneret, P.R.; Webb, W.B. Strength of Grip on Arousal from Full Night’s Sleep. Percept. Mot. Skills 1963, 17, 759–761. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, R.T.; Stretton, M. Performance after Awakening at Different Times of Night. Psychon. Sci. 1971, 23, 283–285. [Google Scholar] [CrossRef]
- ÅKerstedt, T.; Gillberg, M. Effects of Sleep Deprivation on Memory and Sleep Latencies in Connection with Repeated Awakenings from Sleep. Psychophysiology 1979, 16, 49–52. [Google Scholar] [CrossRef] [PubMed]
- Ahtinen, A. Wellness Applications-UI Design to Support Long-Term Usage Motivation. In Proceedings of the Extended Abstracts of the SIGCHI Conference on Human Factors in Computing Systems, Florence, Italy, 5–10 April 2008; ACM: New York, NY, USA, 2008; pp. 2669–2672. [Google Scholar]
- Gilmore, D.J. Interface Design: Have we got it wrong? In Human—Computer Interaction; Springer: Berlin/Heidelberg, Germany, 1995; pp. 173–178. [Google Scholar]
- Benford, S.; Greenhalgh, C.; Giannachi, G.; Walker, B.; Marshall, J.; Rodden, T. Uncomfortable Interactions. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Austin, TX, USA, 5–10 May 2012; ACM: New York, NY, USA, 2012; pp. 2005–2014. [Google Scholar]
- Rekimoto, J.; Tsujita, H. Inconvenient Interactions: An Alternative Interaction Design Approach to Enrich Our Daily Activities. In Proceedings of the International Working Conference on Advanced Visual Interfaces, Como, Italy, 27–30 May 2014; ACM: New York, NY, USA, 2014; pp. 225–228. [Google Scholar]
- Tsujita, H.; Rekimoto, J. Smiling Makes Us Happier: Enhancing Positive Mood and Communication with Smile-Encouraging Digital Appliances. In Proceedings of the International Conference on Ubiquitous Computing, Beijing, China, 17–21 September 2011; ACM: New York, NY, USA, 2011; pp. 1–10. [Google Scholar]
- Becker, L.A. Effect size (ES). Retrieved Sept. 2000, 9, 2007. [Google Scholar]
- Rea, L.M.; Parker, R.A. Designing and Conducting Survey Research: A Comprehensive Guide; Jossey-Bass Publishers: San Francisco, CA, USA, 1992. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge Academic: New York, NY, USA, 1988. [Google Scholar]
- Hair, J.F.; Tatham, R.L.; Anderson, R.E.; Black, W. Multivariate Data Analysis, 5th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1998. [Google Scholar]
- Kandappu, T.; Jaiman, N.; Tandriansyah, R.; Misra, A.; Cheng, S.F.; Chen, C.; Lau, H.C.; Chander, D.; Dasgupta, K. TASKer: Behavioral Insights via Campus-Based Experimental Mobile Crowd-Sourcing. In Proceedings of the ACM International Joint Conference on Pervasive and Ubiquitous Computing, Heidelberg, Germany, 12–16 September 2016; ACM: New York, NY, USA, 2016; pp. 392–402. [Google Scholar]
- Truong, K.N.; Shihipar, T.; Wigdor, D.J. Slide to X: Unlocking the Potential of Smartphone Unlocking. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Toronto, ON, Canada, 26 April–1 May 2014; ACM: New York, NY, USA, 2014; pp. 3635–3644. [Google Scholar]
- Vaish, R.; Wyngarden, K.; Chen, J.; Cheung, B.; Bernstein, M.S. Twitch Crowdsourcing: Crowd Contributions in Short Bursts of Time. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Toronto, ON, Canada, 26 April–1 May 2014; ACM: New York, NY, USA, 2014; pp. 3645–3654. [Google Scholar]
- Cheng, J.; Teevan, J.; Iqbal, S.T.; Bernstein, M.S. Break It Down: A Comparison of Macro-And Microtasks. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Seoul, Korea, 18–23 April 2015; ACM: New York, NY, USA, 2015; pp. 4061–4064. [Google Scholar]
Category | Variable | Description | Mean | SD |
---|---|---|---|---|
Set Frequency | The number of days using the alarm | 73.67 | 30.47 | |
Proportion of the days using the alarm | 0.66 | 0.18 | ||
Average number of alarms in a day | 1.68 | 0.69 | ||
Set Time | Average of ringing hours | 7.43 | 2.72 | |
Proportion of alarms set for weekdays | 0.84 | 0.11 | ||
Set Consistency | SD of the number of alarms in a day | 0.676 | 0.50 | |
SD of ringing hours | 2.14 | 1.68 | ||
% of the alarms set to recur weekly | 0.77 | 0.35 | ||
Dismiss Time | Average time to dismiss the alarm after it went off (seconds) | 19.59 | 12.21 | |
SD of the seconds to dismiss the alarm after it went off (seconds) | 13.86 | 5.88 | ||
Snooze | Average number of delays to dismiss an alarm | 0.18 | 0.28 | |
SD of delays to dismiss an alarm | 0.30 | 0.27 |
Variable | Wake-Up Task: Mean (SD) | H | p-Value | ||||
---|---|---|---|---|---|---|---|
Normal | Picture | Shake | Math | ||||
Set Frequency | |||||||
54.38 (38.92) | 2.53 (12.85) | 9.05 (23.51) | 13.68 (28.95) | 10884.67 | <0.001 | 0.036 | |
0.49 (0.30) | 0.02 (0.11) | 0.08 (0.20) | 0.12 (0.24) | 15704.64 | <0.001 | 0.052 | |
1.56 (0.64) | 1.17 (0.31) | 1.34 (0.48) | 1.37 (0.49) | 13852.05 | <0.001 | 0.046 | |
Set Time | |||||||
7.73 (3.02) | 6.89 (2.65) | 7.37 (2.89) | 7.20 (2.62) | 2558.71 | <0.001 | 0.008 | |
0.82 (0.17) | 0.86 (0.17) | 0.83 (0.19) | 0.84 (0.16) | 1828.93 | <0.001 | 0.006 | |
Set Consistency | |||||||
0.58 (0.48) | 0.26 (0.32) | 0.41 (0.43) | 0.44 (0.43) | 12485.94 | <0.001 | 0.041 | |
2.16 (1.80) | 1.30 (1.50) | 1.57 (1.67) | 1.55 (1.55) | 11731.86 | <0.001 | 0.039 | |
0.73 (0.38) | 0.76 (0.38) | 0.74 (0.39) | 0.77 (0.38) | 2736.60 | <0.001 | 0.009 |
Variable | Wake-Up Task: Mean (SD) | H | p-Value | ||||
---|---|---|---|---|---|---|---|
Normal | Picture | Shake | Math | ||||
Dismiss Time Duration | |||||||
14.10 (7.18) | 40.06 (15.09) | 26.62 (12.34) | 40.81 (15.49) | 144,454.19 | <0.001 | 0.683 | |
11.86 (6.22) | 15.63 (8.01) | 12.89 (6.39) | 14.67 (5.61) | 14,281.84 | <0.001 | 0.067 | |
Snooze | |||||||
0.16 (0.25) | 0.33 (0.51) | 0.20 (0.32) | 0.19 (0.33) | 277.76 | <0.001 | 0.001 | |
0.27 (0.27) | 0.30 (0.31) | 0.28 (0.30) | 0.28 (0.28) | 16.18 | <0.001 | 0.001 |
Variable | t | 95% CI Exp (Beta) | |||||
---|---|---|---|---|---|---|---|
Lower | Upper | ||||||
() | −0.164 | 0.007 | −23.580 | 0.000 | −0.178 | −0.151 | 126.656 |
0.004 | 0.000 | 15.302 | 0.000 | 0.000 | 0.000 | 1.371 | |
−0.040 | 0.004 | −9.35 | 0.000 | −0.049 | −0.032 | 1.499 | |
0.005 | 0.000 | 16.422 | 0.000 | 0.004 | 0.005 | 1.464 | |
0.001 | 0.000 | 0.451 | 0.652 | −0.001 | 0.001 | 1.541 | |
−0.041 | 0.006 | −6.722 | 0.000 | −0.053 | −0.029 | 1.170 | |
0.065 | 0.001 | 45.927 | 0.000 | −0.062 | 0.067 | 1.269 | |
0.017 | 0.002 | 8.886 | 0.000 | 0.013 | 0.021 | 1.158 | |
0.027 | 0.000 | 401.445 | 0.000 | 0.027 | 0.027 | 1.745 | |
−0.011 | 0.000 | −76.479 | 0.000 | −0.011 | −0.010 | 1.757 | |
0.098 | 0.002 | 42.768 | 0.000 | 0.094 | 0.103 | 1.041 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, K.T.; Shin, J.; Kim, J.; Ko, M. Analysis of a Wake-Up Task-Based Mobile Alarm App. Appl. Sci. 2020, 10, 3993. https://doi.org/10.3390/app10113993
Oh KT, Shin J, Kim J, Ko M. Analysis of a Wake-Up Task-Based Mobile Alarm App. Applied Sciences. 2020; 10(11):3993. https://doi.org/10.3390/app10113993
Chicago/Turabian StyleOh, Kyue Taek, Jaemyung Shin, Jaejeung Kim, and Minsam Ko. 2020. "Analysis of a Wake-Up Task-Based Mobile Alarm App" Applied Sciences 10, no. 11: 3993. https://doi.org/10.3390/app10113993
APA StyleOh, K. T., Shin, J., Kim, J., & Ko, M. (2020). Analysis of a Wake-Up Task-Based Mobile Alarm App. Applied Sciences, 10(11), 3993. https://doi.org/10.3390/app10113993