Reliability Analysis of Layered Soil Slopes Considering Different Spatial Autocorrelation Structures
Abstract
:1. Introduction
2. Reliability Analysis of Spatially Varied Soil Slopes
2.1. Autocorrelation Structure of Spatially Varied Soil Properties
2.2. Random Field Simulation of Spatially Varied Soil Properties
2.3. Monte Carlo Simulation for Slope Reliability Analysis
3. Illustrative Examples
3.1. Example I: A Two-Layered Cohesive Slope
3.1.1. Effects of ACF types on Slope Reliability Analysis
3.1.2. Effect of SOF on Slope Reliability Analysis
3.2. Example II: A Cohesive–Frictional Slope with a Weak Seam
3.2.1. Effect of ACF on Slope Reliability Analysis
3.2.2. Effect of SOF on Slope Reliability Analysis
4. Discussion
5. Summary and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Uzielli, M.; Lacasse, S.; Nadim, F.; Phoon, K.K. Soil variability analysis for geotechnical practice. In Characterization & Engineering Properties of Natural Soils; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Griffiths, D.V.; Huang, J.; Fenton, G.A. Influence of spatial variability on slope reliability using 2-D random fields. J. Geotech. Geoenviron. 2009, 10, 1367–1378. [Google Scholar] [CrossRef] [Green Version]
- Cho, S.E. Probabilistic analysis of seepage that considers the spatial variability of permeability for an embankment on soil foundation. Eng. Geol. 2012, 133, 30–39. [Google Scholar] [CrossRef]
- Wang, B.; Liu, L.; Li, Y.; Jiang, Q. Reliability analysis of slopes considering spatial variability of soil properties based on efficiently identified representative slip surfaces. Int. J. Rock Mech. Rock Eng. 2020. [Google Scholar] [CrossRef]
- Liu, L.L.; Cheng, Y.M.; Pan, Q.J.; Dias, D. Incorporating stratigraphic boundary uncertainty into reliability analysis of slopes in spatially variable soils using one-dimensional conditional Markov chain model. Comput. Geotech. 2020, 118, 103321. [Google Scholar] [CrossRef]
- Pan, Q.J.; Qu, X.R.; Liu, L.L.; Dias, D. A sequential sparse polynomial chaos expansion using Bayesian regression for geotechnical reliability estimations. Int. J. Numer. Anal. Methods Geomech. 2020, 44, 874–889. [Google Scholar] [CrossRef]
- Santoso, A.M.; Phoon, K.K.; Quek, S.T. Effects of soil spatial variability on rainfall-induced landslides. Comput. Struct. 2011, 89, 893–900. [Google Scholar] [CrossRef]
- Li, D.Q.; Jiang, S.H.; Cao, Z.J.; Wei, Z.; Zhou, C.B.; Zhang, L.M. A multiple response-surface method for slope reliability analysis considering spatial variability of soil properties. Eng. Geol. 2015, 187, 60–72. [Google Scholar] [CrossRef]
- Qi, X.H.; Li, D.Q. Effect of spatial variability of shear strength parameters on critical slip surfaces of slopes. Eng. Geol. 2018, 239, 41–49. [Google Scholar] [CrossRef]
- Jiang, S.H.; Huang, J.S. Efficient slope reliability analysis at low-probability levels in spatially variable soils. Comput. Geotech. 2016, 75, 18–27. [Google Scholar] [CrossRef]
- Hicks, M.; Li, Y. Influence of length effect on embankment slope reliability in 3D. Int. J. Numer. Anal. Methods Geomech. 2018, 42, 891–915. [Google Scholar]
- Phoon, K.K.; Quek, S.T.; An, P. Identification of Statistically Homogeneous Soil Layers Using Modified Bartlett Statistics. J. Geotech. Geoenviron. 2003, 129, 649–659. [Google Scholar] [CrossRef]
- Ching, J.; Phoon, K.-K. Impact of Autocorrelation Function Model on the Probability of Failure. J. Eng. Mech. 2019, 145, 4018123. [Google Scholar] [CrossRef]
- Luo, N.; Bathurst, R.J. Probabilistic analysis of reinforced slopes using RFEM and considering spatial variability of frictional soil properties due to compaction. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 2018, 12, 87–108. [Google Scholar] [CrossRef]
- Low, B.K.; Lacasse, S.; Nadim, F. Slope reliability analysis accounting for spatial variation. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 2007, 1, 177–189. [Google Scholar] [CrossRef]
- Liu, L.L.; Cheng, Y.M.; Jiang, S.H.; Zhang, S.H.; Wang, X.M.; Wu, Z.H. Effects of spatial autocorrelation structure of permeability on seepage through an embankment on a soil foundation. Comput. Geotech. 2017, 87, 62–75. [Google Scholar] [CrossRef]
- Liu, L.L.; Zhang, S.H.; Cheng, Y.M. Advanced reliability analysis of slopes in spatially variable soils using multivariate adaptive regression splines. Geosci. Front. 2019, 10, 671–682. [Google Scholar] [CrossRef]
- Spry, M.J.; Kulhawy, F.H.; Grigoriu, M.D. Reliability-Based Foundation Design for Transmission Line Structures: Volume 1, Geotechnical Site Characterization Strategy: Final Report; Electric Power Research Institute: Palo Alto, CA, USA, 1988. [Google Scholar]
- Li, K.S.; Lumb, P. Probabilistic design of slopes. Can. Geotech. J. 1987, 24, 520–535. [Google Scholar] [CrossRef]
- Guo, X.; Dias, D.; Pan, Q. Probabilistic stability analysis of an embankment dam considering soil spatial variability. Comput. Geotech. 2019, 113, 103093. [Google Scholar] [CrossRef]
- Deutsch, C. Geostatistical Reservoir Modeling; Oxford University Press: Oxford, UK, 2002. [Google Scholar]
- Uzielli, M.; Vannucchi, G.; Phoon, K.K. Random field characterisation of stress-nomalised cone penetration testing parameters. Géotechnique 2005, 55, 3–20. [Google Scholar] [CrossRef]
- Fenton, G.A.; Griffiths, D.V. Risk Assessment in Geotechnical Engineering; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008. [Google Scholar]
- Christian John, T.; Ladd Charles, C.; Baecher Gregory, B. Reliability Applied to Slope Stability Analysis. J. Geotech. Eng. 1994, 120, 2180–2207. [Google Scholar] [CrossRef]
- Guo, X.; Dias, D.; Carvajal, C.; Peyras, L.; Breul, P. Reliability analysis of embankment dam sliding stability using the sparse polynomial chaos expansion. Eng. Struct. 2018, 174, 295–307. [Google Scholar] [CrossRef]
- Guo, X.; Dias, D.; Carvajal, C.; Peyras, L.; Breul, P. A comparative study of different reliability methods for high dimensional stochastic problems related to earth dam stability analyses. Eng. Struct. 2019, 188, 591–602. [Google Scholar] [CrossRef]
- Guo, X.; Du, D.; Dias, D. Reliability analysis of tunnel lining considering soil spatial variability. Eng. Struct. 2019, 196, 109332. [Google Scholar] [CrossRef]
- Oliver, M.A.; Webster, R. Basic Steps in Geostatistics: The Variogram and Kriging; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar]
- Wang, Y.; Zhao, T.; Phoon, K.K. Statistical inference of random field auto-correlation structure from multiple sets of incomplete and sparse measurements using Bayesian compressive sampling-based bootstrapping. Mech. Syst. Signal Process. 2019, 124, 217–236. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, T.; Phoon, K.K. Direct simulation of random field samples from sparsely measured geotechnical data with consideration of uncertainty in interpretation. Can. Geotech. J. 2018, 55, 862–880. [Google Scholar] [CrossRef]
- Wang, Y.; Akeju, O.V.; Zhao, T. Interpolation of spatially varying but sparsely measured geo-data: A comparative study. Eng. Geol. 2017, 231, 200–217. [Google Scholar] [CrossRef]
- Vanmarcke, E.H. Random Fields Analysis and Synthesis; MIT Press: Cambridge, MA, USA, 1983. [Google Scholar]
- Phoon, K.K.; Huang, H.W.; Quek, S.T. Comparison between Karhunen-Loeve and wavelet expansions for simulation of Gaussian processes. Comput. Struct. 2004, 82, 985–991. [Google Scholar] [CrossRef]
- Fenton, G.A.; Vanmarcke, E.H. Simulation of random fields via local average subdivision. J. Eng. Mech. 1990, 116, 1733–1749. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.H.; Huang, J.; Yao, C.; Yang, J. Quantitative risk assessment of slope failure in 2-D spatially variable soils by limit equilibrium method. Appl. Math. Model. 2017, 47, 710–725. [Google Scholar] [CrossRef]
- Cho, S.E. Probabilistic Assessment of slope stability that considers the spatial variability of soil properties. J. Geotech. Geoenviron. 2010, 136, 975–984. [Google Scholar] [CrossRef]
- Griffiths, D.V.; Fenton, G.A. Probabilistic slope stability analysis by finite elements. J. Geotech. Geoenviron. 2004, 130, 507–518. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Griffiths, D.V.; Fenton, G.A. System reliability of slopes by RFEM. Soils Found. 2010, 50, 343–353. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Qin, Z.; Liu, X.; Li, L. Probabilistic analysis of post-failure behavior of soil slopes using random smoothed particle hydrodynamics. Eng. Geol. 2019, 261, 105266. [Google Scholar] [CrossRef]
- GEO-SLOPE International Ltd. Stability Modeling With SLOPE/W: An Engineering Methodology [Computer Program]; GEO-SLOPE International Ltd.: Calgary, AB, Canada, 2012. [Google Scholar]
- Shooman, M. Probabilistic Reliability—An Engineering Approach; McGraw-Hill: New York, NY, USA, 1968. [Google Scholar]
- Cheng, Y.M.; Li, L.; Chi, S.C. Performance studies on six heuristic global optimization methods in the location of critical slip surface. Comput. Geotech. 2007, 34, 462–484. [Google Scholar] [CrossRef]
- Liu, X.; Li, D.Q.; Cao, Z.J.; Wang, Y. Adaptive Monte Carlo simulation method for system reliability analysis of slope stability based on limit equilibrium methods. Eng. Geol. 2020, 264, 105384. [Google Scholar] [CrossRef]
- Ching, J.; Phoon, K.-K.; Stuedlein, A.W.; Jaksa, M. Identification of sample path smoothness in soil spatial variability. Struct. Saf. 2019, 81, 101870. [Google Scholar] [CrossRef]
- Marchant, B.P.; Lark, R.M. The Matérn variogram model: Implications for uncertainty propagation and sampling in geostatistical surveys. Geoderma 2007, 140, 337–345. [Google Scholar] [CrossRef]
- Pardo-Iguzquiza, E.; Chica-Olmo, M. Geostatistics with the Matern semivariogram model: A library of computer programs for inference, kriging and simulation. Comput. Geosci. 2008, 34, 1073–1079. [Google Scholar] [CrossRef]
- Liu, W.F.; Leung, Y.F.; Lo, M.K. Integrated framework for characterization of spatial variability of geological profiles. Can. Geotech. J. 2016, 54, 47–58. [Google Scholar] [CrossRef]
ACF Type | ACF Expression |
---|---|
Squared exponential function (SQEF) | |
Single exponential function (SEF) | |
Cosine exponential function (CEF) | |
Second-order Markov function (SMF) | |
Binary noise function (BNF) |
Parameter | Mean | COV | Distribution |
---|---|---|---|
51 kPa | 0.3 | Lognormal | |
34 kPa | 0.3 | Lognormal | |
19 kN/m3 | NA | NA |
Case | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
Clay 1 | SQEF | SQEF | SQEF | SQEF | SQEF | SEF | CEF | SMF | BNF |
Clay 2 | SQEF | SEF | CEF | SMF | BNF | SQEF | SQEF | SQEF | SQEF |
Soil Type | Parameter | Mean | COV | Distribution |
---|---|---|---|---|
Clay | c1 (kPa) | 28.5 | 0.3 | Lognormal |
φ1 (°) | 20.0 | 0.3 | Lognormal | |
γ1 (kN/m3) | 18.84 | NA | NA | |
Weak seam | c2 (kPa) | 0.0 | NA | Lognormal |
φ2 (°) | 10.0 | 0.2 | Lognormal | |
γ2 (kN/m3) | 18.84 | - | NA |
Case | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
Clay | SEF | SEF | SEF | SEF | SEF | CEF | SQEF | SMF | BNF |
Weak seam | SEF | CEF | SQEF | SMF | BNF | SEF | SEF | SEF | SEF |
Case No. | Clay | Weak Seam | |
---|---|---|---|
1 | SEF: δh = 20 m, δv = 2 m | CEF: δh = 20 m, δv = 4 m | 1 × 10−4 |
2 | SEF: δh = 20 m, δv = 8 m | CEF: δh = 20 m, δv = 4 m | 4.7 × 10−3 |
3 | CEF: δh = 20 m, δv = 2 m | SEF: δh = 20 m, δv = 4 m | 3 × 10−4 |
4 | CEF: δh = 20 m, δv = 8 m | SEF: δh = 20 m, δv = 4 m | 1.22 × 10−2 |
5 | SEF: δh = 20 m, δv = 4 m | CEF: δh = 20 m, δv = 2 m | 1 × 10−3 |
6 | SEF: δh = 20 m, δv = 4 m | CEF: δh = 20 m, δv = 8 m | 1 × 10−3 |
7 | CEF: δh = 20 m, δv = 4 m | SEF: δh = 20 m, δv = 2 m | 3.2 × 10−3 |
8 | CEF: δh = 20 m, δv = 4 m | SEF: δh = 20 m, δv = 8 m | 3.2 × 10−3 |
Case | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
Clay 1 | ∞ | ∞ | ∞ | ∞ | ∞ | 0.1 | 0.2 | 0.5 | 1.5 |
Clay 2 | ∞ | 0.1 | 0.2 | 0.5 | 1.5 | ∞ | ∞ | ∞ | ∞ |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Li, Y.; Li, J.; Liu, L. Reliability Analysis of Layered Soil Slopes Considering Different Spatial Autocorrelation Structures. Appl. Sci. 2020, 10, 4029. https://doi.org/10.3390/app10114029
Zhang S, Li Y, Li J, Liu L. Reliability Analysis of Layered Soil Slopes Considering Different Spatial Autocorrelation Structures. Applied Sciences. 2020; 10(11):4029. https://doi.org/10.3390/app10114029
Chicago/Turabian StyleZhang, Shaohe, Yuehua Li, Jingze Li, and Leilei Liu. 2020. "Reliability Analysis of Layered Soil Slopes Considering Different Spatial Autocorrelation Structures" Applied Sciences 10, no. 11: 4029. https://doi.org/10.3390/app10114029
APA StyleZhang, S., Li, Y., Li, J., & Liu, L. (2020). Reliability Analysis of Layered Soil Slopes Considering Different Spatial Autocorrelation Structures. Applied Sciences, 10(11), 4029. https://doi.org/10.3390/app10114029