Deep Learning-Based Wrapped Phase Denoising Method for Application in Digital Holographic Speckle Pattern Interferometry
Abstract
:1. Introduction
2. Computer Simulation for Speckle Fringe and Phase Map
3. Deep Neural Network for DHSPI Wrapped Phase Denoising
3.1. Denoising Method
3.2. Data Set Preparation
4. Evaluation Performance
4.1. Evaluation in Simulated Data
4.2. Evaluation in Captured Data
4.2.1. Data Acquisition
4.2.2. Denoising for Captured Data
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fotakis, C.; Anglos, D.; Zafiropulos, V.; Georgiou, S.; Tornari, V. Lasers in the Preservation of Cultural Heritage: Principles and Applications; Taylor and Francis: New York, NY, USA, 2006. [Google Scholar]
- Tornari, V.; Zafiropulos, V.; Bonarou, A.; Vainos, N.A.; Fotakis, C. Modern technology in artwork conservation: A laser based approach for process control and evaluation. Opt. Lasers Eng. 2000, 34, 309–326. [Google Scholar] [CrossRef]
- Tornari, V. Laser Interference-Based techniques and applications in structural inspection of works of art. Anal. Bioanal. Chem. 2007, 387, 761–780. [Google Scholar] [CrossRef] [PubMed]
- Tornari, V.; Tsiranidou, E.; Bernikola, E. Interference fringe-patterns association to defect-types in artwork conservation: An experiment and research validation review. Appl. Phys. A 2012, 106, 397–410. [Google Scholar] [CrossRef]
- Groves, R.M.; Osten, W.; Doulgeridis, M.; Kouloumpi, E.; Green, T.; Hackney, S.; Tornari, V. Shearography as part of a multi-functional sensor for the detection of signature features in movable cultural heritage. In Proceedings of the O3A: Optics for Arts, Architecture, and Archaeology, Munich, Germany, 19 July 2007; Volume 6618, p. 661810. [Google Scholar] [CrossRef]
- Tornari, V.; Bonarou, A.; Castellini, P.; Esposito, E.; Osten, W.; Kalms, M.K.; Smyrnakis, N.; Stasinopulos, S. Laser-based systems for the structural diagnostic of artwork: An application to XVII-century byzantine icons. In Proceedings of the Laser Techniques and Systems in Art Conservation, Munich, Germany, 22 October 2001; Volume 4402, pp. 172–183. [Google Scholar] [CrossRef]
- Tornari, V.; Bonarou, A.; Zafiropulos, V.; Fotakis, C.; Doulgeridis, M. Holographic applications in evaluation of defect and cleaning procedures. J. Cult. Herit. 2000, 1, S325–S329. [Google Scholar] [CrossRef]
- Kosma, K.; Andrianakis, M.; Hatzigiannakis, K.; Tornari, V. Digital holographic interferometry for cultural heritage structural diagnostics: A coherent and a low-coherence optical set-up for the study of a marquetry sample. Strain 2018, 54, e12263. [Google Scholar] [CrossRef]
- Paoletti, D.; Spagnolo, G.S.; Facchini, M.; Zanetta, P. Artwork diagnostics with fiber-optic digital speckle pattern interferometry. Appl. Opt. 1993, 32, 6236–6241. [Google Scholar] [CrossRef]
- Boone, P.M.; Markov, V.B. Examination of Museum objects by means of video holography. Stud. Conserv. 1995, 40, 103–109. [Google Scholar] [CrossRef]
- Tornari, V.; Papadaki, K. Application of Holographic interferometric nondestructive testing on art works diagnostics. In From Marble to Chocolate: The Conservation of Modern Sculpture; Tate Gallery London: London, UK, 1995. [Google Scholar]
- Thizy, C.; Georges, M.; Doulgeridis, M.; Kouloumpi, E.; Green, T.; Hackney, S.; Tornari, V. Role of dynamic holography with photorefractive crystals in a multi-functional sensor for the detection of signature features in movable cultural heritage. O3A: Optics for Arts, Architecture, and Archaeology, Bellingham, WA, USA, 18–21 June 2007; Volume 6618, p. 661812. [Google Scholar] [CrossRef]
- Tornari, V. On development of portable digital holographic speckle pattern interferometry system for remote-access monitoring and documentation in art conservation. Strain 2018, 55, e12288. [Google Scholar] [CrossRef]
- Memmolo, P.; Arena, G.; Fatigati, G.; Grilli, M.; Paturzo, M.; Pezzati, L.; Ferraro, P. Automatic frames extraction and visualization from noisy fringe sequences for data recovering in a portable digital speckle pattern interferometer for NDI. J. Disp. Technol. 2015, 11, 417–422. [Google Scholar] [CrossRef]
- Tornari, V.; Bernikola, E.; Nevin, A.; Kouloumpi, E.; Doulgeridis, M.; Fotakis, C. Fully non contact holography-based inspection on dimensionally responsive artwork materials. Sensors 2008, 8, 8401–8422. [Google Scholar] [CrossRef] [Green Version]
- Bernikola, E.; Nevin, A.; Tornari, V. Rapid initial dimensional changes in wooden panel paintings due to simulated climate-induced alterations monitored by digital coherent out-of-plane interferometry. Appl. Phys. A 2009, 95, 387–399. [Google Scholar] [CrossRef]
- Zítek, P.; Vyhlídal, T.; Fišer, J.; Tornari, V.; Bernikola, E.; Tsigarida, N. Diffusion-model-Based risk assessment of moisture originated wood deterioration in historic buildings. Build. Environ. 2015, 94, 218–230. [Google Scholar] [CrossRef]
- Tornari, V.; Bernikola, E.; Tsigarida, N.; Andrianakis, M.; Hatzigiannakis, K.; Leissner, J. Preventive deformation measurements on cultural heritage materials based on non-contact surface response of model samples. Stud. Conserv. 2015, 60, S143–S158. [Google Scholar] [CrossRef] [Green Version]
- Tornari, V.; Basset, T.; Andrianakis, M.; Kosma, K. Impact of relative humidity on wood sample: A climate chamber experimental simulation monitored by digital holographic speckle pattern interferometry. J. Imaging 2019, 5, 65. [Google Scholar] [CrossRef] [Green Version]
- Osten, W.; Elandaloussi, F.; Mieth, U. The bias fringe processor—A useful tool for the automatic processing of fringe patterns in optical metrology. In Proceedings of the 3rd International Workshop in Optical Metrology-Series in Optical Metrology; Akademie Verlag: Bremen, Germany, 1998; pp. 98–107. [Google Scholar]
- Osten, W.; Jueptner, W.P.O.; Mieth, U. Knowledge-assisted evaluation of fringe patterns for automatic fault detection. In Proceedings of the SPIE 2004 Interferometry VI: Applications, San Diego, CA, USA, 1 March 1994; pp. 256–268. [Google Scholar] [CrossRef]
- Montresor, S.; Picart, P. Quantitative appraisal for noise reduction in digital holographic phase imaging. Opt. Express. 2016, 24, 14322–14343. [Google Scholar] [CrossRef] [PubMed]
- Bianco, V.; Memmolo, P.; Leo, M.; Montresor, S.; Distante, C.; Paturzo, M.; Picart, P.; Javidi, B.; Ferraro, P. Strategies for reducing speckle noise in digital holography. Light Sci. Appl. 2018, 7, 2047–7538. [Google Scholar] [CrossRef]
- Bianco, V.; Memmolo, P.; Paturzo, M.; Finizio, A.; Javidi, B.; Ferraro, P. Quasi noise-free digital holography. Light Sci. Appl. 2016, 5, e16142. [Google Scholar] [CrossRef]
- Aebischer, H.A.; Waldner, S. A simple and effective method for filtering speckle-interferometric phase fringe patterns. Opt. Commun. 1999, 162, 205–210. [Google Scholar] [CrossRef]
- Kemao, Q. Two-dimensional windowed Fourier transform for fringe pattern analysis: Principles, applications and implementations. Opt. Lasers Eng. 2007, 45, 304–317. [Google Scholar] [CrossRef]
- Villa, J.; Vera, R.; Quiroga, J.A.; De la Rosa, I.; GonzÃilez, E. Anisotropic phase-map denoising using a regularized cost-function with complex-valued Markov random fields. Opt. Lasers Eng. 2010, 48, 650–656. [Google Scholar] [CrossRef]
- Hao, F.; Tang, C.; Xu, M.; Lei, Z. Batch denoising of ESPI fringe patterns based on convolutional neural network. Appl. Opt. 2019, 58, 3338–3346. [Google Scholar] [CrossRef]
- Lin, B.; Fu, S.; Zhang, C.; Wang, F.; Li, Y. Optical fringe patterns filtering based on multi-stage convolution neural network. Opt. Lasers Eng. 2020, 126, 105853. [Google Scholar] [CrossRef] [Green Version]
- Yan, K.; Yu, Y.; Huang, C.; Sui, L.; Qian, K.; Asundi, A. Fringe pattern denoising based on deep learning. Opt. Commun. 2019, 437, 148–152. [Google Scholar] [CrossRef]
- Yan, K.; Yu, Y.; Sun, T.; Asundi, A.; Qian, K. Wrapped phase denoising using convolutional neural networks. Opt. Lasers Eng. 2020, 128, 105999. [Google Scholar] [CrossRef]
- Qian, K. Windowed Fringe Pattern Analysis; SPIE Press: Bellingham, WA, USA, 2013. [Google Scholar]
- Federico, A.; Kaufmann, G.H. Comparative study of wavelet thresholding methods for denoising electronic speckle pattern interferometry fringes. Opt. Eng. 2001, 40, 2598–2604. [Google Scholar] [CrossRef]
- Bhaduri, B.; Kothiyal, M.P.; Mohan, N.K. A comparative study of phase-shifting algorithms in digital speckle pattern interferometry. Optik 2008, 119, 147–152. [Google Scholar] [CrossRef]
- Zhang, K.; Zuo, W.; Chen, Y.; Meng, D.; Zhang, L. Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising. IEEE Trans. Image Process. 2017, 26, 3142–3155. [Google Scholar] [CrossRef] [Green Version]
- Nair, V.; Hinton, G. Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th International Conference on Machine Learning, Haifa, Israel, 21–24 June 2010; pp. 807–814. [Google Scholar]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of the 32nd International Conference on Machine Learning, Lille, France, 6-11 July 2015; pp. 448–456. [Google Scholar]
- Ren, Z.; Xu, Z.; Edmund, Y.L. End-to-end deep learning framework for digital holographic reconstruction. Adv. Photonics 2019, 1, 016004. [Google Scholar] [CrossRef]
- Kingma, D.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the 3rd International Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Dennis, C.G.; Louis, A.R. Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods. J. Opt. Soc. Am. A 1994, 11, 107–117. [Google Scholar] [CrossRef]
- Tornari, V.; Bernikola, E.; Tsiranidou, E.; Hatzigiannakis, K.; Andrianakis, M.; Detalle, V.; Bodnar, J.L. Micro-mapping of defect structural micro-morphology in the documentation of fresco wall paintings. Int. J. Herit. Digit. Era 2013, 2, 1–22. [Google Scholar] [CrossRef]
- Tornari, V.; Andrianakis, M.; Chaban, A.; Kosma, K. Heat transfer effects on defect boundaries captured by digital holographic interferometry and infrared thermography workstation: An overview on experimental results. Exp. Tech. 2020, 44, 59–74. [Google Scholar] [CrossRef]
- Schedin, S.; Pedrini, G.; Tiziani, H.J. Pulsed digital holography for deformation measurements on biological tissues. Appl. Opt. 2000, 39, 2853–2857. [Google Scholar] [CrossRef]
- Avenhaus, W.; Kemper, B.; Knoche, S.; Domagk, D.; Poremba, C.; Bally, G.V.; Domschke, W. Dynamic holographic endoscopy-ex vivo investigations of malignant tumors in the human stomach. Lasers Med. Sci. 2005, 19, 223–228. [Google Scholar] [CrossRef]
- Dirksen, D.; Droste, H.; Kemper, B.; Deleré, H.; Deiwick, M.; Scheld, H.H.; Bally, G.V. Lensless Fourier holography for digital holographic interferometry on biological samples. Opt. Laser Eng. 2001, 36, 241–249. [Google Scholar] [CrossRef]
- Schedin, S.; Pedrini, G.; Tiziani, H.J.; Aggarwal, A.K. Comparative study of various endoscopes for pulsed digital holographic interferometry. Appl. Opt. 2001, 40, 2692–2697. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, K.; Chang, L.; Andrianakis, M.; Tornari, V.; Yu, Y. Deep Learning-Based Wrapped Phase Denoising Method for Application in Digital Holographic Speckle Pattern Interferometry. Appl. Sci. 2020, 10, 4044. https://doi.org/10.3390/app10114044
Yan K, Chang L, Andrianakis M, Tornari V, Yu Y. Deep Learning-Based Wrapped Phase Denoising Method for Application in Digital Holographic Speckle Pattern Interferometry. Applied Sciences. 2020; 10(11):4044. https://doi.org/10.3390/app10114044
Chicago/Turabian StyleYan, Ketao, Lin Chang, Michalis Andrianakis, Vivi Tornari, and Yingjie Yu. 2020. "Deep Learning-Based Wrapped Phase Denoising Method for Application in Digital Holographic Speckle Pattern Interferometry" Applied Sciences 10, no. 11: 4044. https://doi.org/10.3390/app10114044
APA StyleYan, K., Chang, L., Andrianakis, M., Tornari, V., & Yu, Y. (2020). Deep Learning-Based Wrapped Phase Denoising Method for Application in Digital Holographic Speckle Pattern Interferometry. Applied Sciences, 10(11), 4044. https://doi.org/10.3390/app10114044