Biofabrication of Chitosan-Based Nanomedicines and Its Potential Use for Translational Ophthalmic Applications
Abstract
:1. Introduction
2. Structure of Chitosan
3. Production of Chitosan
4. Biofabrication Considerations
5. Fabrication Techniques for Chitosan-Based Nanoparticles
- IONIC GELATION: At the nanoscale level, the physical, optical and mechanical properties of the polymer may differ as compared to the macroscopic level. The fabrication of chitosan-based nanoparticles by ionic gelation method was first reported by professor Calvo and his group, and is by far the most widely used technique [35]. In short, the method is based on the spontaneous interactions between the cationic chitosan (CS) polymer in the presence of an anionic crosslinking agent. Sodium tripolyphosphate (TPP) is commonly used anionic crosslinker which initiates the formation of a polyelectrolyte complex named TPP/CS. Under appropriate conditions, the complex is stabilized due to the electrostatic interactions created between the CS-NH3+ and TPP-O- groups. This results in a three-dimensional entanglement from sol to dispersed gel-like nanoparticles. The drugs or genes added during the process are encapsulated to form nanoparticles. The process results in nanoparticle formation in the size range of 200-300nm [36];
- POLYELECTROLYTE COMPLEX FORMATION: This method is based on similar lines to ionotropic gelation, with the difference that it employs a polyanionic polymer. The most widely used polymers include poly (γ-glutamic acid), poly (aspartic acid) and hyaluronic acid which have opposite charges to those on chitosan derivatives. Polycationic chitosan derivatives like trimethyl chitosan (TMC), glycidyl trimethyl chitosan interact with the aforementioned polyanions, resulting in nanoparticles. As compared to the conventional polyelectrolyte complex formation, thiolated trimethyl chitosan (TMC-SH) and thiolated hyaluronic acid (HA-SH) demonstrated better stabilization due to the intermolecular covalent disulfide bonds [37];
- COMPLEX COACERVATION: The origin of the term coacervation derives from Latin root “coacervare”, meaning to crowd or pile. The basic concept of complex coacervation involves liquid–liquid phase separation which is due to the mixing of two oppositely charged macroions. It is one of the easily applied techniques for nanoparticle formation which depends upon electrostatic interactions between two oppositely charged biopolymers. This method can be employed for the packaging of different plasmids [38]. Recently, zein-chitosan nanoparticles formed by complex coacervation were examined to encapsulate curcumin, which is known for its antioxidant properties. The nanoparticles that were formed possessed greater encapsulation efficiency and were affected with multiple factors like pH and zein to chitosan ratio [39]. The nanoparticles reported having improvised stability, controlled release of bioactive compounds, and biodegradability;
- POLYMER–DRUG COMPLEX FORMATION: When active principles like insulin or genes consisting of an inherent negative charge are added in adequate proportions to cationic chitosan, they undergo nanoparticle formation. These insoluble complexes have higher encapsulation efficiency, stability, and a smaller particle size for better cell internalization. One of the major risk factors associated with diabetes mellitus is the development of cataract and diabetic retinopathy. The presence of insulin receptors on the ocular surface has indicated a promising strategy for treating these complications. Peptides like insulin undergo rapid degradation when administered orally, thus the encapsulation of insulin in chitosan nanocarriers can achieve sustainable release with small initial burst profiles in the eye [40,41];
- EMULSIFICATION SOLVENT EVAPORATION: The technique of ESE is a well-defined method that comprises two steps: the process of emulsification of the solution consisting of the polymer and the substance to be encapsulated. This is followed by solvent evaporation or precipitation of polymer that results in particle hardening. The application of high sheer due to high-intensity sonification or homogenization during the emulsification process results in the breakdown of polymer into micro- or nanodroplets in the presence of surface-active agents. The solvent evaporation process majorly influences the morphology, encapsulation, and release properties of the encapsulated moiety. The single emulsion consists of the oil–water phase, while a double emulsion consists of the water–oil–water phase [42]. After the FDA approval of a cyclosporine A as an anti-inflammatory agent in the treatment of dry eye syndrome, attention has shifted to explore its uses in ophthalmology [43]. The encapsulation of cyclosporine A in poly(lactide-co-glycolide) nanoparticles coated with chitosan was prepared with single-emulsification solvent evaporation and demonstrated efficient ocular binding and prolonged anti-inflammatory properties [44,45];
- SELF ASSEMBLY: Amphiphilic derivatives of chitosan are formed by attaching hydrophobic groups like cholesterol, cholic acid, deoxycholic acid, alkyl, acyl, or 5β-cholanic acid on chitosan backbone. At critical aggregation concentration, the amphiphilic derivatives of chitosan undergo spontaneous nanoparticle formation. The nanoparticles are characterized by the core-shell structure, as they consist of a hydrophobic core in a hydrophilic shell. Hydrophobic drugs with considerable water solubility have been loaded into the nanoparticles by direct addition to aqueous polymer dispersion [46,47].
6. Anatomy of Eye
7. Chitosan Based Nanoparticles for Anterior Segment of Eye
8. Chitosan-Based Nanoparticles for Posterior Segment of Eye
9. Biodegradation of Chitosan
10. Toxicity of Chitosan
11. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Muzzarelli, R.; Muzzarelli, C. Chitin and chitosan hydrogels. In Handbook of Hydrocolloids; Elsevier: Amsterdam, The Netherlands, 2009; pp. 849–888. [Google Scholar]
- Khoushab, F.; Yamabhai, M. Chitin research revisited. Mar. Drugs 2010, 8, 1988–2012. [Google Scholar] [CrossRef] [Green Version]
- Rouget, C. Des substances amylacées dans les tissus des animaux, spécialement des Articulés (chitine). Comp. Rend 1859, 48, 792–795. [Google Scholar]
- Size, E.O.M. Share & Trends Analysis Report By Application (Cleaning & Home, Medical, Food & Beverages, Spa & Relaxation), By Product, By Sales Channel, And Segment Forecasts, 2019–2025. Report ID 2019, 971–978. [Google Scholar]
- Elieh-Ali-Komi, D.; Hamblin, M.R. Chitin and chitosan: Production and application of versatile biomedical nanomaterials. Int. J. Adv. Res. 2016, 4, 411. [Google Scholar]
- Kafetzopoulos, D.; Martinou, A.; Bouriotis, V. Bioconversion of chitin to chitosan: Purification and characterization of chitin deacetylase from Mucor rouxii. Proc. Natl. Acad. Sci. USA 1993, 90, 2564–2568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soutter, W. Chitosan Nanoparticles-Properties and Applications; AZoNano: Sydney, Australia, 2013; Available online: https://www.azonano.com/article.aspx?ArticleID=3232 (accessed on 13 May 2020).
- Islam, S.; Bhuiyan, M.R.; Islam, M. Chitin and chitosan: Structure, properties and applications in biomedical engineering. J. Polym. Environ. 2017, 25, 854–866. [Google Scholar] [CrossRef]
- Ogawa, K.; Yui, T.; Okuyama, K. Three D structures of chitosan. Int. J. Biol. Macromol. 2004, 34, 1–8. [Google Scholar] [CrossRef]
- Rinaudo, M. Chitin and chitosan: Properties and applications. Prog. Polym. Sci. 2006, 31, 603–632. [Google Scholar] [CrossRef]
- Roberts, G. Chitin Chemistry; The Macmillan Press: Basingstoke, UK, 1992. [Google Scholar]
- Islam, M.S.; Khan, S.; Tanaka, M. Waste loading in shrimp and fish processing effluents: Potential source of hazards to the coastal and nearshore environments. Mar. Pollut. Bull. 2004, 49, 103–110. [Google Scholar] [CrossRef]
- Brugnerotto, J.; Lizardi, J.; Goycoolea, F.; Argüelles-Monal, W.; Desbrieres, J.; Rinaudo, M. An infrared investigation in relation with chitin and chitosan characterization. Polymer 2001, 42, 3569–3580. [Google Scholar] [CrossRef]
- Beaney, P.; Lizardi-Mendoza, J.; Healy, M. Comparison of chitins produced by chemical and bioprocessing methods. J. Chem. Technol. Biotechnol. Int. Res. Process Environ. Clean Technol. 2005, 80, 145–150. [Google Scholar] [CrossRef]
- Yadav, M.; Goswami, P.; Paritosh, K.; Kumar, M.; Pareek, N.; Vivekanand, V. Seafood waste: A source for preparation of commercially employable chitin/chitosan materials. Bioresour. Bioprocess. 2019, 6, 8. [Google Scholar] [CrossRef]
- Rødde, R.H.; Einbu, A.; Vårum, K.M. A seasonal study of the chemical composition and chitin quality of shrimp shells obtained from northern shrimp (Pandalus borealis). Carbohydr. Polym. 2008, 71, 388–393. [Google Scholar] [CrossRef]
- Kaur, S.; Dhillon, G.S. Recent trends in biological extraction of chitin from marine shell wastes: A review. Crit. Rev. Biotechnol. 2015, 35, 44–61. [Google Scholar] [CrossRef] [PubMed]
- Oh, Y.-S.; Shih, L.; Tzeng, Y.-M.; Wang, S.-L. Protease produced by Pseudomonas aeruginosa K-187 and its application in the deproteinization of shrimp and crab shell wastes. Enzym. Microb. Technol. 2000, 27, 3–10. [Google Scholar] [CrossRef]
- White, S.A.; Farina, P.R.; Fulton, I. Production and isolation of chitosan from Mucor rouxii. Appl. Environ. Microbiol. 1979, 38, 323–328. [Google Scholar] [CrossRef] [Green Version]
- Sivashankari, P.; Prabaharan, M. Deacetylation modification techniques of chitin and chitosan. In Chitosan Based Biomaterials; Elsevier: Amsterdam, The Netherlands, 2017; Volume 1, pp. 117–133. [Google Scholar]
- Martinou, A.; Bouriotis, V.; Stokke, B.T.; Vårum, K.M. Mode of action of chitin deacetylase from Mucor rouxii on partially N-acetylated chitosans. Carbohydr. Res. 1998, 311, 71–78. [Google Scholar] [CrossRef]
- Sashiwa, H.; Saimoto, H.; Shigemasa, Y.; Ogawa, R.; Tokura, S. Distribution of the acetamide group in partially deacetylated chitins. Carbohydr. Polym. 1991, 16, 291–296. [Google Scholar] [CrossRef]
- Aranaz, I.; Mengíbar, M.; Harris, R.; Paños, I.; Miralles, B.; Acosta, N.; Galed, G.; Heras, Á. Functional characterization of chitin and chitosan. Curr. Chem. Biol. 2009, 3, 203–230. [Google Scholar]
- Richardson, S.W.; Kolbe, H.J.; Duncan, R. Potential of low molecular mass chitosan as a DNA delivery system: Biocompatibility, body distribution and ability to complex and protect DNA. Int. J. Pharm. 1999, 178, 231–243. [Google Scholar] [CrossRef]
- Matica, M.A.; Aachmann, F.L.; Tøndervik, A.; Sletta, H.; Ostafe, V. Chitosan as a Wound Dressing Starting Material: Antimicrobial Properties and Mode of Action. Int. J. Mol. Sci. 2019, 20, 5889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Czechowska-Biskup, R.; Jarosińska, D.; Rokita, B.; Ulański, P.; Rosiak, J.M. Determination of degree of deacetylation of chitosan-comparision of methods. Prog. Chem. Appl. Chitin Deriv. 2012, 17, 5–20. [Google Scholar]
- Ishii, D.; Ohashi, C.; Hayashi, H. Facile enhancement of the deacetylation degree of chitosan by hydrothermal treatment in an imidazolium-based ionic liquid. Green Chem. 2014, 16, 1764–1767. [Google Scholar] [CrossRef]
- Norzita, Y.; Norhashidah, T.; Maznah, M. Determination of viscosity-average molecular weight of chitosan using intrinsic viscosity measurement. In Proceedings of the Nuclear Technical Convention 2011, Bangi, Malaysia, 13–15 September 2011. [Google Scholar]
- Qinna, N.A.; Karwi, Q.G.; Al-Jbour, N.; Al-Remawi, M.A.; Alhussainy, T.M.; Al-So’ud, K.A.; Al Omari, M.M.; Badwan, A.A. Influence of molecular weight and degree of deacetylation of low molecular weight chitosan on the bioactivity of oral insulin preparations. Mar. Drugs 2015, 13, 1710–1725. [Google Scholar] [CrossRef] [Green Version]
- Tharanathan, R.N.; Kittur, F.S. Chitin—The undisputed biomolecule of great potential. Crit. Rev. Food Sci. Nutr. 2003, 43, 61–87. [Google Scholar] [CrossRef]
- Yi, H.; Wu, L.-Q.; Bentley, W.E.; Ghodssi, R.; Rubloff, G.W.; Culver, J.N.; Payne, G.F. Biofabrication with chitosan. Biomacromolecules 2005, 6, 2881–2894. [Google Scholar] [CrossRef]
- Smith, J.; Wood, E.; Dornish, M. Effect of chitosan on epithelial cell tight junctions. Pharm. Res. 2004, 21, 43–49. [Google Scholar] [CrossRef]
- Struszczyk, M.H. 12. Global Requirements for Medical Applications of Chitin and its Derivatives. In Polish Chitin Society, Monograph XI; Polish Chitin Society: Łódź, Poland, 2006; pp. 95–102. [Google Scholar]
- Szymańska, E.; Winnicka, K. Stability of chitosan—A challenge for pharmaceutical and biomedical applications. Mar. Drugs 2015, 13, 1819–1846. [Google Scholar] [CrossRef]
- Calvo, P.; Remuñan-López, C.; Vila-Jato, J.L.; Alonso, M.J. Chitosan and chitosan/ethylene oxide-propylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines. Pharm. Res. 1997, 14, 1431–1436. [Google Scholar] [CrossRef]
- Bodmeier, R.; Chen, H.; Paeratakul, O. A novel approach to the oral delivery of micro-or nanoparticles. Pharm. Res. 1989, 6, 413–417. [Google Scholar] [CrossRef] [PubMed]
- Verheul, R.J.; van der Wal, S.; Hennink, W.E. Tailorable thiolated trimethyl chitosans for covalently stabilized nanoparticles. Biomacromolecules 2010, 11, 1965–1971. [Google Scholar] [CrossRef]
- Khatri, K.; Goyal, A.K.; Gupta, P.N.; Mishra, N.; Vyas, S.P. Plasmid DNA loaded chitosan nanoparticles for nasal mucosal immunization against hepatitis B. Int. J. Pharm. 2008, 354, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Li, M.-F.; Chen, L.; Xu, M.-Z.; Zhang, J.-L.; Wang, Q.; Zeng, Q.-Z.; Wei, X.-C.; Yuan, Y. The formation of zein-chitosan complex coacervated particles: Relationship to encapsulation and controlled release properties. Int. J. Biol. Macromol. 2018, 116, 1232–1239. [Google Scholar] [CrossRef] [PubMed]
- Bayat, A.; Larijani, B.; Ahmadian, S.; Junginger, H.E.; Rafiee-Tehrani, M. Preparation and characterization of insulin nanoparticles using chitosan and its quaternized derivatives. Nanomed. Nanotechnol. Biol. Med. 2008, 4, 115–120. [Google Scholar] [CrossRef]
- Cruz-Cazarim, E.L.; Cazarim, M.S.; Ogunjimi, A.T.; Petrilli, R.; Rocha, E.M.; Lopez, R.F. Prospective insulin-based ophthalmic delivery systems for the treatment of dry eye syndrome and corneal injuries. Eur. J. Pharm. Biopharm. 2019, 140, 1–10. [Google Scholar] [CrossRef]
- Rosca, I.D.; Watari, F.; Uo, M. Microparticle formation and its mechanism in single and double emulsion solvent evaporation. J. Control. Release 2004, 99, 271–280. [Google Scholar] [CrossRef]
- Donnenfeld, E.; Pflugfelder, S.C. Topical ophthalmic cyclosporine: Pharmacology and clinical uses. Surv. Ophthalmol. 2009, 54, 321–338. [Google Scholar] [CrossRef]
- Hermans, K.; Van den Plas, D.; Everaert, A.; Weyenberg, W.; Ludwig, A. Full factorial design, physicochemical characterisation and biological assessment of cyclosporine A loaded cationic nanoparticles. Eur. J. Pharm. Biopharm. 2012, 82, 27–35. [Google Scholar] [CrossRef]
- Guo, C.; Gemeinhart, R.A. Understanding the adsorption mechanism of chitosan onto poly (lactide-co-glycolide) particles. Eur. J. Pharm. Biopharm. 2008, 70, 597–604. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Chen, X.G.; Li, Y.Y.; Liu, C.S. Self-assembled nanoparticles based on hydrophobically modified chitosan as carriers for doxorubicin. Nanomed. Nanotechnol. Biol. Med. 2007, 3, 258–265. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.-l.; Liu, C.-G. Self-aggregated nanoparticles from linoleic acid modified carboxymethyl chitosan: Synthesis, characterization and application in vitro. Colloids Surf. B Biointerfaces 2009, 69, 178–182. [Google Scholar] [CrossRef] [PubMed]
- Alswailmi, F.K. Global prevalence and causes of visual impairment with special reference to the general population of Saudi Arabia. Pak. J. Med. Sci. 2018, 34, 751. [Google Scholar] [PubMed]
- Ansari, Z.; Miller, D.; Galor, A. Current thoughts in fungal keratitis: Diagnosis and treatment. Curr. Fungal Infect. Rep. 2013, 7, 209–218. [Google Scholar] [CrossRef] [Green Version]
- Qu, L.; Li, L.; Xie, H. Corneal and aqueous humor concentrations of amphotericin B using three different routes of administration in a rabbit model. Ophthalmic Res. 2010, 43, 153–158. [Google Scholar] [CrossRef]
- Li, G.; Zhuang, Y.; Mu, Q.; Wang, M. Preparation, characterization and aggregation behavior of amphiphilic chitosan derivative having poly (L-lactic acid) side chains. Carbohydr. Polym. 2008, 72, 60–66. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, Y.; Jian, J.; Song, S. Self-aggregated nanoparticles based on amphiphilic poly(lactic acid)-grafted-chitosan copolymer for ocular delivery of amphotericin B. Int. J. Nanomed. 2013, 8, 3715–3728. [Google Scholar] [CrossRef] [Green Version]
- Al-Barrag, A.; Al-Shaer, M.; Al-Matary, N.; Al-Hamdani, M. 5-Fluorouracil for the treatment of intraepithelial neoplasia and squamous cell carcinoma of the conjunctiva, and cornea. Clin. Ophthalmol. (Auckl. NZ) 2010, 4, 801. [Google Scholar] [CrossRef] [Green Version]
- Ding, S. Recent developments in ophthalmic drug delivery. Pharm. Sci. Technol. Today 1998, 1, 328–335. [Google Scholar] [CrossRef]
- Nagarwal, R.C.; Kumar, R.; Pandit, J.K. Chitosan coated sodium alginate-chitosan nanoparticles loaded with 5-FU for ocular delivery: In vitro characterization and in vivo study in rabbit eye. Eur. J. Pharm. Sci. 2012, 47, 678–685. [Google Scholar] [CrossRef]
- Stern, M.E.; Schaumburg, C.S.; Pflugfelder, S.C. Dry eye as a mucosal autoimmune disease. Int. Rev. Immunol. 2013, 32, 19–41. [Google Scholar] [CrossRef] [PubMed]
- De Campos, A.M.; Sanchez, A.; Alonso, M.J. Chitosan nanoparticles: A new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to cyclosporin A. Int. J. Pharm. 2001, 224, 159–168. [Google Scholar] [CrossRef]
- Contreras-Ruiz, L.; de la Fuente, M.; García-Vázquez, C.; Sáez, V.; Seijo, B.; Alonso, M.J.; Calonge, M.; Diebold, Y. Ocular tolerance to a topical formulation of hyaluronic acid and chitosan-based nanoparticles. Cornea 2010, 29, 550–558. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.M.; Calado, R.; Marto, J.; Bettencourt, A.; Almeida, A.J.; Goncalves, L.M.D. Chitosan Nanoparticles as a Mucoadhesive Drug Delivery System for Ocular Administration. Mar. Drugs 2017, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalam, M.A. Development of chitosan nanoparticles coated with hyaluronic acid for topical ocular delivery of dexamethasone. Int. J. Biol. Macromol. 2016, 89, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Behl, G.; Iqbal, J.; O’Reilly, N.J.; McLoughlin, P.; Fitzhenry, L. Synthesis and Characterization of Poly(2-hydroxyethylmethacrylate) Contact Lenses Containing Chitosan Nanoparticles as an Ocular Delivery System for Dexamethasone Sodium Phosphate. Pharm. Res. 2016, 33, 1638–1648. [Google Scholar] [CrossRef]
- Hanafy, A.F.; Abdalla, A.M.; Guda, T.K.; Gabr, K.E.; Royall, P.G.; Alqurshi, A. Ocular anti-inflammatory activity of prednisolone acetate loaded chitosan-deoxycholate self-assembled nanoparticles. Int. J. Nanomed. 2019, 14, 3679–3689. [Google Scholar] [CrossRef] [Green Version]
- Abdullah, T.A.; Ibrahim, N.J.; Warsi, M.H. Chondroitin sulfate-chitosan nanoparticles for ocular delivery of bromfenac sodium: Improved permeation, retention, and penetration. Int. J. Pharm. Investig. 2016, 6, 96–105. [Google Scholar] [CrossRef] [Green Version]
- Tham, Y.-C.; Li, X.; Wong, T.Y.; Quigley, H.A.; Aung, T.; Cheng, C.-Y. Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis. Ophthalmology 2014, 121, 2081–2090. [Google Scholar] [CrossRef]
- Zhao, R.; Li, J.; Wang, J.; Yin, Z.; Zhu, Y.; Liu, W. Development of Timolol-Loaded Galactosylated Chitosan Nanoparticles and Evaluation of Their Potential for Ocular Drug Delivery. AAPS Pharm. Sci. Tech. 2017, 18, 997–1008. [Google Scholar] [CrossRef]
- Li, R.; Jiang, S.; Liu, D.; Bi, X.; Wang, F.; Zhang, Q.; Xu, Q. A potential new therapeutic system for glaucoma: Solid lipid nanoparticles containing methazolamide. J. Microencapsul. 2011, 28, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.Z.; Zhang, M.W.; Zhang, D.S.; Huang, Y.; Chen, L.; Jiang, S.M.; Shi, K.; Li, R. Preparation, optimization, and characterization of chitosan-coated solid lipid nanoparticles for ocular drug delivery. J. Biomed. Res. 2018, 32, 411–423. [Google Scholar] [CrossRef] [PubMed]
- Ali, J.; Bhatnagar, A.; Kumar, N.; Ali, A. Chitosan nanoparticles amplify the ocular hypotensive effect of cateolol in rabbits. Int. J. Biol. Macromol. 2014, 65, 479–491. [Google Scholar] [CrossRef] [PubMed]
- Tanito, M.; Kaidzu, S.; Takai, Y.; Ohira, A. Correlation between systemic oxidative stress and intraocular pressure level. PLoS ONE 2015, 10, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Med. Cell. Longev. 2009, 2, 270–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adelli, G.R.; Srirangam, R.; Majumdar, S. Phytochemicals in ocular health: Therapeutic potential and delivery challenges. World J. Pharm. 2013, 2, 18–34. [Google Scholar] [CrossRef]
- Natesan, S.; Pandian, S.; Ponnusamy, C.; Palanichamy, R.; Muthusamy, S.; Kandasamy, R. Co-encapsulated resveratrol and quercetin in chitosan and peg modified chitosan nanoparticles: For efficient intra ocular pressure reduction. Int. J. Biol. Macromol. 2017, 104, 1837–1845. [Google Scholar] [CrossRef]
- Majeed, M.; Nagabhushanam, K.; Natarajan, S.; Vaidyanathan, P.; Karri, S.K.; Jose, J.A. Efficacy and safety of 1% forskolin eye drops in open angle glaucoma–An open label study. Saudi J. Ophthalmol. 2015, 29, 197–200. [Google Scholar] [CrossRef] [Green Version]
- Khan, N.; Ameeduzzafar; Khanna, K.; Bhatnagar, A.; Ahmad, F.J.; Ali, A. Chitosan coated PLGA nanoparticles amplify the ocular hypotensive effect of forskolin: Statistical design, characterization and in vivo studies. Int. J. Biol. Macromol. 2018, 116, 648–663. [Google Scholar] [CrossRef]
- Klaver, C.C.; Wolfs, R.C.; Vingerling, J.R.; Hofman, A.; de Jong, P.T. Age-specific prevalence and causes of blindness and visual impairment in an older population: The Rotterdam Study. Arch. Ophthalmol. 1998, 116, 653–658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, P.; Liu, X.; Hu, W.; Bai, Y.; Zhang, L. Preparation and evaluation of naringenin-loaded sulfobutylether-beta-cyclodextrin/chitosan nanoparticles for ocular drug delivery. Carbohydr. Polym. 2016, 149, 224–230. [Google Scholar] [CrossRef] [PubMed]
- Elsaid, N.; Jackson, T.L.; Elsaid, Z.; Alqathama, A.; Somavarapu, S. PLGA Microparticles Entrapping Chitosan-Based Nanoparticles for the Ocular Delivery of Ranibizumab. Mol. Pharm. 2016, 13, 2923–2940. [Google Scholar] [CrossRef] [PubMed]
- da Silva, S.B.; Ferreira, D.; Pintado, M.; Sarmento, B. Chitosan-based nanoparticles for rosmarinic acid ocular delivery--In vitro tests. Int. J. Biol. Macromol. 2016, 84, 112–120. [Google Scholar] [CrossRef]
- Silva, N.C.; Silva, S.; Sarmento, B.; Pintado, M. Chitosan nanoparticles for daptomycin delivery in ocular treatment of bacterial endophthalmitis. Drug Deliv. 2015, 22, 885–893. [Google Scholar] [CrossRef] [Green Version]
- Costa, J.R.; Silva, N.C.; Sarmento, B.; Pintado, M. Potential chitosan-coated alginate nanoparticles for ocular delivery of daptomycin. Eur. J. Clin. Microbiol. Infect. Dis. 2015, 34, 1255–1262. [Google Scholar] [CrossRef] [PubMed]
- Chhonker, Y.S.; Prasad, Y.D.; Chandasana, H.; Vishvkarma, A.; Mitra, K.; Shukla, P.K.; Bhatta, R.S. Amphotericin-B entrapped lecithin/chitosan nanoparticles for prolonged ocular application. Int. J. Biol. Macromol. 2015, 72, 1451–1458. [Google Scholar] [CrossRef]
- Yang, Y.; Hu, W.; Wang, X.; Gu, X. The controlling biodegradation of chitosan fibers by N-acetylation in vitro and in vivo. J. Mater. Sci. Mater. Med. 2007, 18, 2117–2121. [Google Scholar] [CrossRef]
- Pathway, K. Amino Sugar and Nucleotide Sugar Metabolism; Kanehisa Laboratories: Kyoto, Japan, 2009. [Google Scholar]
- Kean, T.; Thanou, M. Chitin and chitosan: Sources, production and medical applications. In Renewable Resources for Functional Polymer Biomaterials; The Royal Society for Chemistry: Cambridge, UK, 2011; pp. 292–318. [Google Scholar]
- Funkhouser, J.D.; Aronson, N.N. Chitinase family GH18: Evolutionary insights from the genomic history of a diverse protein family. BMC Evol. Biol. 2007, 7, 96. [Google Scholar] [CrossRef] [Green Version]
- Chae, S.Y.; Jang, M.-K.; Nah, J.-W. Influence of molecular weight on oral absorption of water soluble chitosans. J. Control. Release 2005, 102, 383–394. [Google Scholar] [CrossRef]
- Mohammed, M.A.; Syeda, J.; Wasan, K.M.; Wasan, E.K. An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmaceutics 2017, 9, 53. [Google Scholar] [CrossRef] [Green Version]
- Opanasopit, P.; Aumklad, P.; Kowapradit, J.; Ngawhiranpat, T.; Apirakaramwong, A.; Rojanarata, T.; Puttipipatkhachorn, S. Effect of salt forms and molecular weight of chitosans on in vitro permeability enhancement in intestinal epithelial cells (Caco-2). Pharm. Dev. Technol. 2007, 12, 447–455. [Google Scholar] [CrossRef] [PubMed]
- Hassanen, E.I.; Khalaf, A.A.; Tohamy, A.F.; Mohammed, E.R.; Farroh, K.Y. Toxicopathological and immunological studies on different concentrations of chitosan-coated silver nanoparticles in rats. Int. J. Nanomed. 2019, 14, 4723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mao, S.; Shuai, X.; Unger, F.; Wittmar, M.; Xie, X.; Kissel, T. Synthesis, characterization and cytotoxicity of poly (ethylene glycol)-graft-trimethyl chitosan block copolymers. Biomaterials 2005, 26, 6343–6356. [Google Scholar] [CrossRef] [PubMed]
Variables | Desired Characteristics |
---|---|
Organoleptic properties | White or almost white fine powder No taste, no odor |
Degree of deacetylation | >80% |
Molecular weight | Low molecular weight or oligomers |
Viscosity (1% in 1% AcOH, 20 °C) | <5 cps |
Moisture content | 5–15% |
Ash content | <1% |
Protein content | <1–0.2% |
Insolubility | <0.5–0.1% |
Chitosan-Based NPs | Drug | Route | Disease Targeted | Reference |
---|---|---|---|---|
Poly (lactic acid)-grafted-chitosan | Amphotericin B | Topical | Corneal keratitis | [52] |
Chitosan/Sodium alginate | 5-Flurouracil | Topical | Corneal cancer | [55] |
Chitosan nanoparticle | Cyclosporin A | Topical | Dry eye syndrome | [57] |
Chitosan/sodium tripolyphosphate-hyaluronic | Ceftazidime | Bacterial conjunctivitis | [59] | |
Hyaluronic acid-coated chitosan | Dexamethasone | Ocular inflammations | [60] | |
Chitosan nanoparticle | Dexamethasone sodium phosphate | Topical | [61] | |
Chitosan/Sodium deoxycholate surfactant | Prednisolone | Topical | [62] | |
Chitosan/chondroitin sulphate | Bromfenac sodium | Topical | [63] | |
Glycosylated chitosan | Beta-adrenergic blockers (Timolol) | Topical | Glaucoma | [65] |
SLN-chitosan coating | Methazolamide | [67] | ||
Chitosan nanoparticles | Carteolol | Topical | [68] | |
PEG-modified chitosan | Quercetin | [72] | ||
Chitosan nanoparticles coated with poly lactic-co-glycolic acid | Forskolin | Topical | [73] | |
Sulfobutyleter-β-cyclodextrin/chitosan | β -cyclodextrin | Topical | Age-related Macular Degeneration | [76] |
Chitosan-N-acetyl-L-cysteine nanoparticles encapsulated in PLGA microparticle | Ranibizumab | Prospective intravitreal | [77] | |
Chitosan-TPP | Rosmarinic acid | Bacterial and Fungal endophthalmitis | [78] | |
Chitosan nanoparticle | Daptomycin | [79] | ||
Chitosan/Sodium alginate | Daptomycin | [80] | ||
Chitosan conjugated with lecithin | Amphotericin B | Topical | [81] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vichare, R.; Garner, I.; Paulson, R.J.; Tzekov, R.; Sahiner, N.; Panguluri, S.K.; Mohapatra, S.; Mohapatra, S.S.; Ayyala, R.; Sneed, K.B.; et al. Biofabrication of Chitosan-Based Nanomedicines and Its Potential Use for Translational Ophthalmic Applications. Appl. Sci. 2020, 10, 4189. https://doi.org/10.3390/app10124189
Vichare R, Garner I, Paulson RJ, Tzekov R, Sahiner N, Panguluri SK, Mohapatra S, Mohapatra SS, Ayyala R, Sneed KB, et al. Biofabrication of Chitosan-Based Nanomedicines and Its Potential Use for Translational Ophthalmic Applications. Applied Sciences. 2020; 10(12):4189. https://doi.org/10.3390/app10124189
Chicago/Turabian StyleVichare, Riddhi, Inyoung Garner, Ryan J. Paulson, Radouil Tzekov, Nurettin Sahiner, Siva K. Panguluri, Subhra Mohapatra, Shyam S. Mohapatra, Ramesh Ayyala, Kevin B. Sneed, and et al. 2020. "Biofabrication of Chitosan-Based Nanomedicines and Its Potential Use for Translational Ophthalmic Applications" Applied Sciences 10, no. 12: 4189. https://doi.org/10.3390/app10124189
APA StyleVichare, R., Garner, I., Paulson, R. J., Tzekov, R., Sahiner, N., Panguluri, S. K., Mohapatra, S., Mohapatra, S. S., Ayyala, R., Sneed, K. B., & Biswal, M. R. (2020). Biofabrication of Chitosan-Based Nanomedicines and Its Potential Use for Translational Ophthalmic Applications. Applied Sciences, 10(12), 4189. https://doi.org/10.3390/app10124189