Ridge Preservation Using a Novel Enzyme-Treated Xenograft. A Preliminary Retrospective Histomorphometric Investigation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Retrospective Data Collection
2.2. Extraction, Grafting and Implant Surgery
2.3. Histologic and Histomorphometric Analysis
2.4. Implant Success and Peri-Implant Marginal Bone Loss
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Farmer, M.; Darby, I. Ridge dimensional changes following single-tooth extraction in the aesthetic zone. Clin. Oral Implant. Res. 2014, 25, 272–277. [Google Scholar] [CrossRef]
- De Risi, V.; Clementini, M.; Vittorini, G.; Mannocci, A.; De Sanctis, M. Alveolar ridge preservation techniques: A systematic review and meta-analysis of histological and histomorphometrical data. Clin. Oral Implant. Res. 2015, 26, 50–68. [Google Scholar] [CrossRef] [PubMed]
- Avila-Ortiz, G.; Elangovan, S.; Kramer, K.W.; Blanchette, D.; Dawson, D.V. Effect of alveolar ridge preservation after tooth extraction: A systematic review and meta-analysis. J. Dent. Res. 2014, 93, 950–958. [Google Scholar] [CrossRef]
- Bassir, S.H.; Alhareky, M.; Wangsrimongkol, B.; Jia, Y.; Karimbux, N. Systematic Review and Meta-Analysis of Hard Tissue Outcomes of Alveolar Ridge Preservation. Int. J. Oral Maxillofac. Implant. 2018, 33, 979–994. [Google Scholar] [CrossRef] [PubMed]
- Avila-Ortiz, G.; Chambrone, L.; Vignoletti, F. Effect of alveolar ridge preservation interventions following tooth extraction: A systematic review and meta-analysis. J. Clin. Periodontol. 2019, 46, 195–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.; Lee, J.B.; Koo, K.T.; Seol, Y.J.; Lee, Y.M. Flap Management in Alveolar Ridge Preservation: A Systematic Review and Meta-Analysis. Int. J. Oral Maxillofac. Implant. 2018, 33, 613–621. [Google Scholar] [CrossRef]
- Stumbras, A.; Kuliesius, P.; Januzis, G.; Juodzbalys, G. Alveolar Ridge Preservation after Tooth Extraction Using Different Bone Graft Materials and Autologous Platelet Concentrates: A Systematic Review. J. Oral Maxillofac. Res. 2019, 10, e2. [Google Scholar] [CrossRef]
- Nkenke, E.; Weisbach, V.; Winckler, E.; Kessler, P.; Schultze-Mosgau, S.; Wiltfang, J.; Neukam, F.W. Morbidity of harvesting of bone grafts from the iliac crest for preprosthetic augmentation procedures: A prospective study. Int. J. Oral Maxillofac. Surg. 2004, 33, 157–163. [Google Scholar] [CrossRef]
- Esposito, M.; Grusovin, M.G.; Felice, P.; Karatzopoulos, G.; Worthington, H.V.; Coulthard, P. Interventions for replacing missing teeth: Horizontal and vertical bone augmentation techniques for dental implant treatment. Cochrane Database Syst. Rev. 2009, 2009, CD003607. [Google Scholar] [CrossRef]
- Haugen, H.J.; Lyngstadaas, S.P.; Rossi, F.; Perale, G. Bone grafts: Which is the ideal biomaterial? J. Clin. Periodontol. 2019, 46, 92–102. [Google Scholar] [CrossRef]
- Sheikh, Z.; Hamdan, N.; Ikeda, Y.; Grynpas, M.; Ganss, B.; Glogauer, M. Natural graft tissues and synthetic biomaterials for periodontal and alveolar bone reconstructive applications: A review. Biomater. Res. 2017, 21, 9. [Google Scholar] [CrossRef] [PubMed]
- Di Stefano, D.A.; Zaniol, T.; Cinci, L.; Pieri, L. Chemical, Clinical and Histomorphometric Comparison between Equine Bone Manufactured through Enzymatic Antigen-Elimination and Bovine Bone Made Non-Antigenic Using a High-Temperature Process in Post-Extractive Socket Grafting. A Comparative Retrospective Clinical Study. Dent. J. 2019, 7, 70. [Google Scholar] [CrossRef] [Green Version]
- Felice, P.; Piana, L.; Checchi, L.; Corvino, V.; Nannmark, U.; Piattelli, M. Vertical ridge augmentation of an atrophic posterior mandible with an inlay technique and cancellous equine bone block: A case report. Int. J. Periodontics Restor. Dent. 2013, 33, 159–166. [Google Scholar] [CrossRef]
- Pistilli, R.; Signorini, L.; Pisacane, A.; Lizio, G.; Felice, P. Case of severe bone atrophy of the posterior maxilla rehabilitated with blocks of equine origin bone: Histological results. Implant. Dent. 2013, 22, 8–15. [Google Scholar] [CrossRef]
- Stefano, D.D.; Andreasi Bassi, M.; Cinci, L.; Pieri, L.; Ammirabile, G. Treatment of a bone defect consequent to the removal of a periapical cyst with equine bone and equine membranes: Clinical and histological outcome. Minerva Stomatol. 2012, 61, 477–490. [Google Scholar] [PubMed]
- De Angelis, N.; Scivetti, M. Lateral ridge augmentation using an equine flex bone block infused with recombinant human platelet-derived growth factor BB: A clinical and histologic study. Int. J. Periodontics Restor. Dent. 2011, 31, 383–388. [Google Scholar]
- Ludovichetti, M.; Di Stefano, D.A.; Pagnutti, S.; Vaccari, E.; Ludovichetti, F.S.; Celletti, R. Vertical ridge augmentation using a flexible heterologous cortical bone sheet: Three-year follow-up. Int. J. Periodontics Restor. Dent. 2011, 31, 401–407. [Google Scholar]
- Di Stefano, D.A.; Artese, L.; Iezzi, G.; Piattelli, A.; Pagnutti, S.; Piccirilli, M.; Perrotti, V. Alveolar ridge regeneration with equine spongy bone: A clinical, histological, and immunohistochemical case series. Clin. Implant. Dent. Relat. Res. 2009, 11, 90–100. [Google Scholar] [CrossRef]
- Stievano, D.; Di Stefano, A.; Ludovichetti, M.; Pagnutti, S.; Gazzola, F.; Boato, C.; Stellini, E. Maxillary sinus lift through heterologous bone grafts and simultaneous acid-etched implants placement. Five year follow-up. Minerva Chir. 2008, 63, 79–91. [Google Scholar]
- Di Stefano, D.A.; Gastaldi, G.; Vinci, R.; Polizzi, E.M.; Cinci, L.; Pieri, L.; Gherlone, E. Bone Formation Following Sinus Augmentation with an Equine-Derived Bone Graft: A Retrospective Histologic and Histomorphometric Study with 36-Month Follow-up. Int. J. Oral Maxillofac. Implant. 2016, 31, 406–412. [Google Scholar] [CrossRef] [Green Version]
- Di Stefano, D.A.; Gastaldi, G.; Vinci, R.; Cinci, L.; Pieri, L.; Gherlone, E. Histomorphometric Comparison of Enzyme-Deantigenic Equine Bone and Anorganic Bovine Bone in Sinus Augmentation: A Randomized Clinical Trial with 3-Year Follow-Up. Int. J. Oral Maxillofac. Implant. 2015, 30, 1161–1167. [Google Scholar] [CrossRef] [PubMed]
- Santini, S.; Barbera, P.; Modena, M.; Schiavon, R.; Bonato, M. Equine-derived bone substitutes in orthopedics and traumatology: Authors’ experience. Minerva Chir. 2011, 66, 63–72. [Google Scholar] [PubMed]
- Piolanti, N.; Del Chiaro, A.; Matassi, F.; Nistri, L.; Graceffa, A.; Marcucci, M. Bone integration in acetabular revision hip arthroplasty using equine-derived bone grafts: A retrospective study. Eur. J. Orthop. Surg. Traumatol. 2019. [Google Scholar] [CrossRef] [PubMed]
- Giannoni, P.; Villa, F.; Cordazzo, C.; Zardi, L.; Fattori, P.; Quarto, R.; Fiorini, M. Rheological properties, biocompatibility and in vivo performance of new hydrogel-based bone fillers. Biomater. Sci. 2016, 4, 1691–1703. [Google Scholar] [CrossRef]
- Albrektsson, T.; Zarb, G.; Worthington, P.; Eriksson, A.R. The long-term efficacy of currently used dental implants: A review and proposed criteria of success. Int. J. Oral Maxillofac. Implant. 1986, 1, 11–25. [Google Scholar]
- Perrotti, V.; Nicholls, B.M.; Horton, M.A.; Piattelli, A. Human osteoclast formation and activity on a xenogenous bone mineral. J. Biomed. Mater. Res. A 2009, 90, 238–246. [Google Scholar] [CrossRef]
- Perrotti, V.; Nicholls, B.M.; Piattelli, A. Human osteoclast formation and activity on an equine spongy bone substitute. Clin. Oral Implant. Res. 2009, 20, 17–23. [Google Scholar] [CrossRef]
- Di Stefano, D.A.; Arosio, P.; Cinci, L.; Pieri, L. Ridge Preservation Using an Innovative Enzyme-deantigenic Equine Bone Paste: A Case Report with 36-month Follow-up. J. Contemp. Dent. Pr. 2019, 20, 1229–1234. [Google Scholar] [CrossRef]
- Grinnell, F.; Fukamizu, H.; Pawelek, P.; Nakagawa, S. Collagen processing, crosslinking, and fibril bundle assembly in matrix produced by fibroblasts in long-term cultures supplemented with ascorbic acid. Exp. Cell Res. 1989, 181, 483–491. [Google Scholar] [CrossRef]
Patient# | Age (Yrs.) | Gender | Tooth | Healing Time (Mo.) | NFB(%) | RB(%) | Implant# | Implant Diameter (mm) | Implant Length (mm) | Follow-Up (Mo.) | MBL at Final Follow-Up (mm) |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 55 | M | 26 | 3.1 | 69.33 | 18.63 | 1 | 4.5 | 8.0 | 21.6 | 0.3 |
2 | 48 | M | 25 | 2.3 | 32.61 | 2.53 | 2 | 3.3 | 12.0 | 14.3 | 0.0 |
3 | 45 | F | 36 | 3.0 | 18.68 | 4.33 | 3 | 3.8 | 13.0 | 13.9 | 0.7 |
4 | 52 | F | 46 | 2.5 | 39.16 | 0.87 | 4 | 4.1 | 10.0 | 8.4 | 0.0 |
5 | 43 | F | 36 | 1.9 | 18.83 | 4.40 | 5 | 4.6 | 11.5 | 5.4 | 1.5 (failed) |
6 | 75 | F | 27 | 7.3 | 25.11 | 8.15 | 6 | 4.3 | 8.0 | 5.3 | 0.5 |
7 | 58 | F | 35 | 3.1 | 31.90 | 13.49 | 7 | 3.4 | 11.0 | 3.6 | 0.0 |
8 | 50 | F | 26 | 3.7 | 16.93 | 14.59 | 8 | 5.5 | 9.5 | 14.3 | 0.0 |
9 | 59 | M | 37 | 2.7 | 38.89 | 8.46 | 9 | 4.0 | 10.0 | 5.7 | 0.2 |
10 | 52 | M | 46 | 5.0 | 53.62 | 16.91 | 10 | 3.8 | 9.5 | 5.1 | 0.2 |
11 | 45 | F | 46 | 8.3 | 71.92 | 3.81 | 11 | 4.5 | 11.0 | 4.0 | 0.3 |
12 | 52 | F | 37 | 10.5 | 78.07 | 4.84 | 12 | 3.8 | 8.0 | 3.2 | 0.4 |
13 | 70 | F | 36 | 4.7 | 66.47 | 12.78 | 13 | 4.0 | 8.0 | 4.2 | 0.2 |
# Implant | A&Z criterium 1 | A&Z criterium 2 | A&Z criterium 3 | A&Z criterium 4 | Outcome at Final Follow-Up |
---|---|---|---|---|---|
1 | Success | ||||
2 | Success | ||||
3 | Success | ||||
4 | Success | ||||
5 | Failure | ||||
6 | Success | ||||
7 | Success | ||||
8 | Success | ||||
9 | Success | ||||
10 | Success | ||||
11 | Success | ||||
12 | Success | ||||
13 | Success |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Stefano, D.A.; Orlando, F. Ridge Preservation Using a Novel Enzyme-Treated Xenograft. A Preliminary Retrospective Histomorphometric Investigation. Appl. Sci. 2020, 10, 4256. https://doi.org/10.3390/app10124256
Di Stefano DA, Orlando F. Ridge Preservation Using a Novel Enzyme-Treated Xenograft. A Preliminary Retrospective Histomorphometric Investigation. Applied Sciences. 2020; 10(12):4256. https://doi.org/10.3390/app10124256
Chicago/Turabian StyleDi Stefano, Danilo Alessio, and Francesco Orlando. 2020. "Ridge Preservation Using a Novel Enzyme-Treated Xenograft. A Preliminary Retrospective Histomorphometric Investigation" Applied Sciences 10, no. 12: 4256. https://doi.org/10.3390/app10124256
APA StyleDi Stefano, D. A., & Orlando, F. (2020). Ridge Preservation Using a Novel Enzyme-Treated Xenograft. A Preliminary Retrospective Histomorphometric Investigation. Applied Sciences, 10(12), 4256. https://doi.org/10.3390/app10124256