Niobium Pentoxide Samples with Addition of Manganese at Different Concentrations and Calcination Temperatures Applied in the Photocatalytic Degradation of Rhodamine B
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of the Samples
2.2. Characterization
2.3. Photocatalytic Performance
3. Results and Discussion
3.1. Structural Analysis
3.2. Morphological and Surface Analysis
3.3. Optical Characterization
3.4. Photocatalytic Performance
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
XRD: X-ray diffraction; |
FE-SEM: Field Emission–Scanning Electronic Microcopy; |
BET: Brunauer–Emmett–Teller; |
DRS: Diffuse Reflectance Spectroscopy; |
DLS: Dynamic Light Scattering. |
References
- Alexandre, P.; Lucas, B.; Carolina, P.; Aline, M.; Leonardo, C. Nb2O5 as Efficient and Recyclable Photocatalyst for Indigo Carmine Degradation. Appl. Catal. B 2008, 82, 219–224. [Google Scholar]
- Wonyong, C.; Andreas, T.; Michael, H.R. The role of metal ion dopants in quantum-sized TiO2: Correlation between photoreactivity and charge carrier recombination dynamics. J. Phys. Chem. 1994, 98, 13669–13679. [Google Scholar]
- Siddiki, M.K.; Venkatesan, S.; Qiao, Q. Nb2O5 as a new electron transport layer for double junction polymer solar cells. Phys. Chem. Chem. Phys. 2012, 14, 4682–4686. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, K.; Miki, T.; Iwama, S.; Tanemura, S. Characterization of niobium oxide electrochromic thin films prepared by reactive d.c. magnetron sputtering. Thin Solid Films 1996, 281, 235–238. [Google Scholar] [CrossRef]
- Fang, X.; Hu, L.; Huo, K.; Gao, B.; Zhao, L.; Liao, M.; Chu, P.K.; Bando, Y.; Golberg, D. New ultraviolet photodetector based on individual Nb2O5 nanobelts. Adv. Funct. Mater. 2011, 21, 3907–3915. [Google Scholar] [CrossRef]
- Jung, S.C.; Imaishi, N.; Park, H.C. Reaction engineering modeling of low-pressure metalorganic chemical vapor deposition of Nb2O5 thin film. Jpn. J. Appl. Phys. 1995, 34, L775. [Google Scholar] [CrossRef]
- Roberts, G.L.; Cava, R.J.; Peck, W.F.; Krajewski, J.J. Dielectric properties of barium titanium niobates. J. Mater. Sci. 1997, 12, 526–530. [Google Scholar] [CrossRef]
- Ramanjaneya Reddya, G.; Chennakesavulu, K. Synthesis and characterization of Nb2O5 supported Pd(II)@SBA15: Catalytic activity towards oxidation of benzhydrol and Rhodamine-B. J. Mol. Struct. 2014, 1075, 406–412. [Google Scholar] [CrossRef]
- Falcomer, D.; Speghini, A.; Ibba, G.; Enzo, S.; Cannas, C.; Musinu, A.; Bettinelli, M. Morphology and luminescence of nanocrystalline Nb2O5 doped with Eu3+. J. Nanomater. 2007, 2007, 1–5. [Google Scholar] [CrossRef]
- Rekha, K.; Nirmala, M.; Nair, M.G.; Anukaliani, A. Structural, optical, photocatalytic and antibacterial activity of zinc oxide and manganese doped zinc oxide nanoparticles. Phys. B Condens. Matter. 2010, 405, 3180–3185. [Google Scholar] [CrossRef]
- Joya, M.R.; Ortega, J.B.; Malafatti, J.O.D.; Paris, E.C. Evaluation of Photocatalytic Activity in Water Pollutants and Cytotoxic Response of α-Fe2O3 Nanoparticles. ACS Omega 2019, 4, 17477–17486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raba, A.M.; Falcony, C.; Joya, M.R. Evaluación de la actividad fotocatalítica de nanoestructuras de T-Nb2O5 obtenidas por el método sol-gel. Respuestas 2016, 21, 80–91. [Google Scholar] [CrossRef] [Green Version]
- Rania, B.J.; Ravina, M.; Ravia, G.; Ravichandranb, S.; Ganeshc, V.; Yuvakkumar, R. Synthesis and characterization of hausmannite (Mn3O4) nanostructures. Surf. Interface 2018, 11, 28–36. [Google Scholar] [CrossRef]
- Masloboeva, S.M.; Sidorov, N.V.; Palatnikov, M.N.; Arutyunyan, L.G.; Chufyrev, P.G. Niobium(V) oxide doped with Mg2+ and Gd3+ cations: Synthesis and structural studies. Russ. J. Inorg. Chem. 2011, 56, 1194–1198. [Google Scholar] [CrossRef]
- Jehng, J.M.; Wachs, I.E. Structural chemistry and Raman spectra of niobium oxides. Chem. Mater. 1991, 3, 100–107. [Google Scholar] [CrossRef]
- Braynera, R.; Bozon-Verduraz, F. Niobium pentoxide prepared by soft chemical routes: Morphology, structure, defects and quantum size effect. Phys. Chem. Chem. Phys. 2003, 5, 1457–1466. [Google Scholar] [CrossRef]
- Ristic, M.; Popovic, S.; Music, S. Sol-gel synthesis and characterization of Nb2O5 powders. Mater. Lett. 2004, 58, 2658–2663. [Google Scholar] [CrossRef]
- Escobedo, A.; Sánchez, E.; Pal, U. Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures. Rev. Mex. Fis. 2007, 53, 18–22. [Google Scholar]
- Tauc, J. Absorption edge and internal electric fields in amorphous semiconductors. Mater. Res. Bull. 1970, 5, 721–729. [Google Scholar] [CrossRef]
- Raba, A.M.; Bautista-Ruíz, J.; Joya, M.R. Synthesis and structural properties of niobium pentoxide powders: A comparative study of the growth process. Mater. Res. 2016, 19, 1381. [Google Scholar] [CrossRef] [Green Version]
- Raba, A.; Barba-Ortega, J.; Joya, M.R. Effects of metal doping agent on the properties of Nb2−xMxO5 (M = Mn, Fe, and Ni) system. Int. J. Appl. Ceram. Technol. 2018, 15, 1577–1583. [Google Scholar] [CrossRef]
- Liqiang, J.; Yichun, Q.; Baiqi, W.; Shudan, L.; Baojiang, J.; Libin, Y.; Wei, F.; Honggang, F.; Jiazhong, S. Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity. Solar Energy Mater. Sol. Cells 2006, 90, 1773–1787. [Google Scholar] [CrossRef]
- Lopes, O.F.; Paris, E.C.; Ribeiro, C. Synthesis of Nb2O5 nanoparticles through the oxidant peroxide method applied to organic pollutant photodegradation: A mechanistic study. Appl. Catal. B Eenviron. 2014, 144, 800–808. [Google Scholar] [CrossRef]
- Yan, M.; Hua, Y.; Zhu, F.; Gu, W.; Jiang, J.; Shen, H.; Shi, W. Fabrication of nitrogen doped graphene quantum dots-BiOI/MnNb2O6 p-n junction photocatalysts with enhanced visible light efficiency in photocatalytic degradation of antibiotics. Appl. Catal. B Eenviron. 2017, 202, 518–527. [Google Scholar] [CrossRef]
- Ferrari-Lima, A.M.; Marques, R.G.; Gimenes, M.L.; Fernandes-Machado, N.R.C. Synthesis, characterization and Photocatalytic activity of N-doped TiO2-Nb2O5 mixed oxides. Catal. Today 2015, 254, 119–128. [Google Scholar] [CrossRef]
- Oliveira, J.A.; Reis, M.O.; Pires, M.S.; Ruotolo, L.A.M.; Ramalho, T.C.; Oliveira, C.R.; Lacerda, L.C.T.; Nogueira, F.G.E. Zn-doped Nb2O5 photocatalysts driven by visible-light: An experimental and theoretical study. Mater. Chem. Phys. 2019, 228, 160–167. [Google Scholar] [CrossRef]
Sample | a (Å) | b (Å) | c (Å) | V (Å3) | χ2 | R(F2) |
---|---|---|---|---|---|---|
Nb2O5 | 6.183(5) | 29.287(2) | 3.932(3) | 712.04(12) | 1.042 | 0.113 |
Nb2O5:Mn 1.0 wt.% | 6.189(2) | 29.227(11) | 3.926(2) | 710.22(81) | 1.950 | 0.113 |
Nb2O5:Mn 2.5 wt.% | 6.184(3) | 29.256(12) | 3.929(2) | 710.71(84) | 2.128 | 0.114 |
Nb2O5:Mn 5.0 wt.% | 6.182(5) | 29.245(24) | 3.932(3) | 710.90(17) | 1.075 | 0.138 |
Nb2O5:Mn 10.0 wt.% | 6.174(11) | 29.287(53) | 3.932(7) | 711.10(38) | 1.069 | 0.166 |
Sample | SBET (m2 g−1) | Pore Volume (cm3 g−1) | Pore Size (Å) |
---|---|---|---|
Nb2O5:Mn 1.0 wt.% | 1.9124 | 0.0231 | 526.660 |
Nb2O5:Mn 2.5 wt.% | 3.0618 | 0.0206 | 533.622 |
Nb2O5:Mn 5.0 wt.% | 6.9633 | 0.0511 | 416.871 |
Nb2O5:Mn 10.0 wt.% | 19.7553 | 0.1335 | 262.577 |
Temperature | 1% | 2.5% | 5% | 10% |
---|---|---|---|---|
Hydrodynamic dimension (nm) | ||||
500 °C | 404.2 | 349.9 | 410.1 | 396.8 |
600 °C | 419.2 | 739.4 | 473.2 | 338.0 |
700 °C | 554.6 | 375.4 | 516.4 | 456.1 |
Z potential (mV) | ||||
500 °C | −25.7 | −24.9 | −23.6 | −22.6 |
600 °C | −34.8 | −31.4 | −29.0 | −27.9 |
700 °C | −41.8 | −40.9 | −32.5 | −30.6 |
Sample | k × 10−3 (min−1) | k/SBET × 10−4 (min−1 g m−2) |
---|---|---|
Nb2O5 | 1.68 ± 0.071 | 14 |
Nb2O5:Mn 1.0 wt.% | 0.57 ± 0.032 | 3.1 |
Nb2O5:Mn 2.5 wt.% | 0.92 ± 0.045 | 2.9 |
Nb2O5:Mn 5.0 wt.% | 1.38 ± 0.136 | 2.0 |
Nb2O5:Mn 10.0 wt.% | 0.78 ± 0.035 | 0.4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raba-Paéz, A.M.; Falcony-Guajardo, C.; Supelano-García, I.; Joya, M.R. Niobium Pentoxide Samples with Addition of Manganese at Different Concentrations and Calcination Temperatures Applied in the Photocatalytic Degradation of Rhodamine B. Appl. Sci. 2020, 10, 4257. https://doi.org/10.3390/app10124257
Raba-Paéz AM, Falcony-Guajardo C, Supelano-García I, Joya MR. Niobium Pentoxide Samples with Addition of Manganese at Different Concentrations and Calcination Temperatures Applied in the Photocatalytic Degradation of Rhodamine B. Applied Sciences. 2020; 10(12):4257. https://doi.org/10.3390/app10124257
Chicago/Turabian StyleRaba-Paéz, Angela M., Ciro Falcony-Guajardo, Ivan Supelano-García, and Miryam R. Joya. 2020. "Niobium Pentoxide Samples with Addition of Manganese at Different Concentrations and Calcination Temperatures Applied in the Photocatalytic Degradation of Rhodamine B" Applied Sciences 10, no. 12: 4257. https://doi.org/10.3390/app10124257
APA StyleRaba-Paéz, A. M., Falcony-Guajardo, C., Supelano-García, I., & Joya, M. R. (2020). Niobium Pentoxide Samples with Addition of Manganese at Different Concentrations and Calcination Temperatures Applied in the Photocatalytic Degradation of Rhodamine B. Applied Sciences, 10(12), 4257. https://doi.org/10.3390/app10124257