The Acute Influence of Running-Induced Fatigue on the Performance and Biomechanics of a Countermovement Jump
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Subjects
2.3. Experimental Procedures
2.4. Running-Induced Fatigue Protocol
2.5. Data Processing
2.6. Statistical Analysis
3. Results
3.1. Jump Height
3.2. Kinematics
3.2.1. Joint Angles during the Push-Off Phase
3.2.2. Joint Angles during Landing Phase
3.3. Kinetics
3.3.1. Joint Moments during the Push-Off Phase
3.3.2. Joint Moments during Landing Phase
3.3.3. Comparisons of Peak Vertical GRF
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Impellizzeri, F.M.; Rampinini, E.; Maffiuletti, N.; Marcora, S.M. A vertical jump force test for assessing bilateral strength asymmetry in athletes. Med. Sci. Sports Exerc. 2007, 39, 2044–2050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamashita, D.; Murata, M.; Inaba, Y. Effect of Landing Posture on Jump Height Calculated from Flight Time. Appl. Sci. 2020, 10, 776. [Google Scholar] [CrossRef] [Green Version]
- Shu, Y.; Sun, D.; Hu, Q.L.; Zhang, Y.; Li, J.S.; Gu, Y.D. Lower Limb Kinetics and Kinematics during Two Different Jumping Methods. J. Biomim. Biomater. Biomed. Eng. 2015, 22, 29–35. [Google Scholar]
- Bobbert, M.F.; Gerritsen, K.G.; Litjens, M.C.; Van Soest, A.J. Why is countermovement jump height greater than squat jump height? Med. Sci. Sports Exerc. 1996, 28, 1402–1412. [Google Scholar] [CrossRef] [PubMed]
- Domire, Z.J.; Challis, J.H. The influence of squat depth on maximal vertical jump performance. J. Sports Sci. 2007, 25, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Hough, P.A.; Ross, E.Z.; Howatson, G. Effects of dynamic and static stretching on vertical jump performance and electromyographic activity. J. Strength Cond. Res. 2009, 23, 507–512. [Google Scholar] [CrossRef] [PubMed]
- Knudson, D.; Bennett, K.; Corn, R.; Leick, D.; Smith, C. Acute effects of stretching are not evident in the kinematics of the vertical jump. J. Strength Cond. Res. 2001, 15, 98–101. [Google Scholar]
- Zhang, Y.; Baker, J.S.; Ren, X.; Feng, N.; Gu, Y. Metatarsal strapping tightness effect to vertical jump performance. Hum. Mov. Sci. 2015, 41, 255–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanezis, A.; Lees, A. A biomechanical analysis of good and poor performers of the vertical jump. Ergonomics 2005, 48, 1594–1630. [Google Scholar] [CrossRef]
- Harris, M.; Schultz, A.; Drew, M.K.; Rio, E.; Charlton, P.; Edwards, S. Jump-landing mechanics in patellar tendinopathy in elite youth basketballers. Scand. J. Med. Sci. Sports 2019, 30, 540–548. [Google Scholar] [CrossRef]
- Zhou, H.; Ugbolue, U.C. Is There a Relationship Between Strike Pattern and Injury During Running: A Review. Phys. Act. Health 2019, 3, 127–134. [Google Scholar] [CrossRef] [Green Version]
- Neptune, R.R.; Kautz, S.A.; Zajac, F.E. Contributions of the individual ankle plantar flexors to support, forward progression and swing initiation during walking. J. Biomech. 2001, 34, 1387–1398. [Google Scholar] [CrossRef]
- Goldberg, E.J.; Neptune, R.R. Compensatory strategies during normal walking in response to muscle weakness and increased hip joint stiffness. Gait Posture 2007, 25, 360–367. [Google Scholar] [CrossRef]
- Orselli, M.I.; Franz, J.R.; Thelen, D.G. The effects of Achilles tendon compliance on triceps surae mechanics and energetics in walking. J. Biomech. 2017, 60, 227–231. [Google Scholar] [CrossRef]
- Freedman, B.R.; Sarver, J.J.; Buckley, M.R.; Voleti, P.B.; Soslowsky, L.J. Biomechanical and structural response of healing Achilles tendon to fatigue loading following acute injury. J. Biomech. 2014, 47, 2028–2034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richards, C.; Magin, P.; Callister, R. Is your prescription of distance running shoes evidence-based? Br. J. Sports Med. 2009, 43, 159–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nigg, B.M. The role of impact forces and foot pronation: A new paradigm. Clin. J. Sports Med. 2001, 11, 2–9. [Google Scholar] [CrossRef]
- Resende, R.A.; Pinheiro, L.S.; Ocarino, J.M. Effects of foot pronation on the lower limb sagittal plane biomechanics during gait. Gait Posture 2019, 68, 130–135. [Google Scholar] [CrossRef]
- Mei, Q.; Gu, Y.; Xiang, L.; Baker, J.S.; Fernandez, J. Foot pronation contributes to altered lower extremity loading after long distance running. Front. Physiol. 2019, 10, 573. [Google Scholar] [CrossRef]
- Garcia-Perez, J.A.; Perez-Soriano, P.; Llana, S.; Martinez-Nova, A.; Sanchez-Zuriaga, D. Effect of overground vs treadmill running on plantar pressure: Influence of fatigue. Gait Posture 2013, 38, 929–933. [Google Scholar] [CrossRef]
- Christina, K.A.; White, S.C.; Gilchrist, L.A. Effect of localized muscle fatigue on vertical ground reaction forces and ankle joint motion during running. Hum. Mov. Sci. 2001, 20, 257–276. [Google Scholar] [CrossRef]
- Keith, R.W.; Rebecca, S.; Chris, A. Changes in Distance Running Kinematics with Fatigue. J. Appl. Biomech. 1991, 7, 138–162. [Google Scholar]
- Iguchi, J.; Tateuchi, H.; Taniguchi, M.; Ichihashi, N. The effect of sex and fatigue on lower limb kinematics, kinetics, and muscle activity during unanticipated side-step cutting. Knee Surg. Sports Traumatol. Arthrosc. 2014, 22, 41–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orishimo, K.; Kremenic, I.J. Effect of fatigue on single-leg hop landing biomechanics. J. Appl. Biomech. 2006, 22, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Brazen, D.M.; Todd, M.K.; Ambegaonkar, J.P.; Wunderlich, R.; Peterson, C. The Effect of Fatigue on Landing Biomechanics in Single-Leg Drop Landings. Clin. J. Sport Med. 2010, 20, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Pappas, E.; Sheikhzadeh, A.; Hagins, M.; Nordin, M. The Effect of Gender and Fatigue on the Biomechanics of Bilateral Landings from a Jump: Peak Values. J. Sports Sci. Med. 2007, 6, 77–84. [Google Scholar] [PubMed]
- Hollman, J.H.; Hohl, J.M.; Kraft, J.L.; Strauss, J.D.; Traver, K.J. Effects of hip extensor fatigue on lower extremity kinematics during a jump-landing task in women: A controlled laboratory study. Clin. Biomech. 2012, 27, 903–909. [Google Scholar] [CrossRef]
- Kim, Y.; Youm, C.; Son, M.; Kim, J.; Lee, M. The effect of knee flexor and extensor fatigue on shock absorption during cutting movements after a jump landing. Knee 2017, 24, 1342–1349. [Google Scholar] [CrossRef]
- Noh, B.; Youm, C.H.; Lee, M.; Park, H.; Son, M.; Kim, J. Effect of knee extensor fatigue level and sex on bilateral jump-landing. BMJ Open Sport Exerc. Med. 2020, 6, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Redmond, A.C.; Crosbie, J.; Ouvrier, R.A. Development and validation of a novel rating system for scoring standing foot posture: The foot posture index. Clin. Biomech. 2006, 21, 89–98. [Google Scholar] [CrossRef]
- Hannigan, J.J.; Pollard, C.D. Differences in running biomechanics between a maximal, traditional, and minimal running shoe. J. Sci. Med. Sport 2020, 23, 15–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koblbauer, I.F.; Schooten, K.S.; Verhagen, E.A.; Dieen, J.H. Kinematic changes during running-induced fatigue and relations with core endurance in novice runners. J. Sci. Med. Sport 2014, 17, 419–424. [Google Scholar] [CrossRef] [PubMed]
- Dierks, T.A.; Davis, I.S.; Hamill, J. The effects of running in an exerted state on lower extremity kinematics and joint timing. J. Biomech. 2010, 43, 2993–2998. [Google Scholar] [CrossRef]
- Bosco, C.; Luhtanen, P.; Komi, P.V. A Simple Method for Measurement of Mechanical Power in Jumping. Eur. J. Appl. Physiol. 1983, 50, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Yu, P.; Xiang, L.; Liang, M.; Mei, Q.; Baker, J.S.; Gu, Y. Morphology-Related Foot Function Analysis: Implications for Jumping and Running. Appl. Sci. 2019, 9, 3236. [Google Scholar] [CrossRef] [Green Version]
- Xiang, L.; Mei, Q.; Fernandez, J.; Gu, Y. A biomechanical assessment of the acute hallux abduction manipulation intervention. Gait Posture 2020, 76, 210–217. [Google Scholar] [CrossRef]
- Rodacki, A.L.F.; Fowler, N.E.; Bennett, S.J. Vertical jump coordination: Fatigue effects. Med. Sci. Sports Exerc. 2002, 34, 105–116. [Google Scholar] [CrossRef]
- Skurvydas, A.; Dudoniene, V.; Kalvėnas, A.; Zuoza, A. Skeletal muscle fatigue in long-distance runners, sprinters and untrained men after repeated drop jumps performed at maximal intensity. Scand. J. Med. Sci. Sports 2002, 12, 34–39. [Google Scholar] [CrossRef]
- Zhang, X.; Xia, R.; Dai, B.; Sun, X.; Fu, W. Effects of exercise-induced fatigue on lower extremity joint mechanics, stiffness, and energy absorption during landings. J. Sports Sci. Med. 2018, 17, 640–649. [Google Scholar]
- Koyama, K.; Kato, T.; Yamauchi, J. The Effect of Ankle Taping on the Ground Reaction Force in Vertical Jump Performance. J. Strength Cond. Res. 2013, 28, 1411–1417. [Google Scholar] [CrossRef]
- Martin, R.L.; Davenport, T.E.; Paulseth, S.; Wukich, D.K.; Godges, J.J. Ankle Stability and Movement Coordination Impairments: Ankle Ligament Sprains. J. Orthop. Sports Phys. Ther. 2013, 43, A1–A40. [Google Scholar] [CrossRef] [Green Version]
- Hewett, T.E.; Myer, G.D.; Ford, K.R.; Paterno, M.V.; Quatman, C.E. The 2012 ABJS Nicolas Andry Award: The sequence of prevention: A systematic approach to prevent anterior cruciate ligament injury. Clin. Orthop. Relat. Res. 2012, 470, 2930–2940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devita, P.; Skelly, W.A. Effect of landing stiffness on joint kinetics and energetics in the lower extremity. Med. Sci. Sports Exerc. 1992, 24, 108–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moisan, G.; Mainville, C.; Descarreaux, M.; Cantin, V. Unilateral jump landing neuromechanics of individuals with chronic ankle instability. J. Sci. Med. Sport 2019. [Google Scholar] [CrossRef] [PubMed]
- Chappell, D.J. Effect of Fatigue on Knee Kinetics and Kinematics in Stop-Jump Tasks. Am. J. Sports Med. 2005, 33, 1022–1029. [Google Scholar] [CrossRef]
- Augustsson, J.; Thomee, R.; Linden, C.; Folkesson, M.; Tranberg, R.; Karlsson, J. Single-leg hop testing following fatiguing exercise: Reliability and biomechanical analysis. Scand. J. Med. Sci. Sports 2006, 16, 111–120. [Google Scholar] [CrossRef]
- James, R.C.; Dufek, J.S.; Bates, B.T. Effects of Stretch Shortening Cycle Exercise Fatigue on Stress Fracture Injury Risk During Landing. Res. Q. Exerc. Sport 2006, 77, 1–13. [Google Scholar] [CrossRef]
- Jiang, C. The Effect of Basketball Shoe Collar on Ankle Stability: A Systematic Review and Meta-Analysis. Phys. Act. Health 2020, 4, 11–18. [Google Scholar] [CrossRef] [Green Version]
- Padua, D.A.; Arnold, B.L.; Perrin, D.H.; Gansneder, B.M.; Granata, K.P. Fatigue, Vertical Leg Stiffness, and Stiffness Control Strategies in Males and Females. J. Athl. Train. 2006, 41, 294–304. [Google Scholar]
Variables | Mean | SD |
---|---|---|
Age (year) | 23.93 | 0.80 |
Weight (kg) | 73.93 | 4.76 |
Height (cm) | 176.70 | 2.75 |
BMI | 23.35 | 1.22 |
Foot length (mm) | 253.2 | 1.82 |
Leg length (cm) | 87.4 | 1.35 |
Joint | Plane | Pre | Post | ||||
---|---|---|---|---|---|---|---|
Max | Min | ROM | Max | Min | ROM | ||
Ankle (°) | Sagittal | 29.31 (5.17) | −22.82 (5.81) | 52.13 (3.32) * | 30.02 (6.14) | −19.98 (3.30) | 50.01 (3.73) * |
Frontal | 7.62 (2.55) * | −9.02 (5.97) | 16.64 (6.36) * | 9.41 (3.03) * | −9.63 (5.73) | 19.04 (5.79) * | |
Horizontal | 9.43 (6.69) * | −5.57 (9.95) | 15.00 (7.95) | 6.07 (8.33) * | −6.19 (6.83) | 12.26 (2.31) | |
Knee (°) | Sagittal | −1.69 (2.19) * | −97.40 (18.63) | 95.70 (18.07) | −4.44 (4.83) * | −96.45 (26.96) | 92.01 (24.53) |
Frontal | 8.12 (4.15) | −3.08 (4.66) * | 11.20 (2.07) * | 11.12 (9.34) | −8.30 (10.60) * | 19.42 (8.24) * | |
Horizontal | 9.48 (7.37) | −9.28 (5.11) | 18.76 (5.12) | 10.89 (19.15) | −8.76 (18.03) | 19.65 (3.26) | |
Hip (°) | Sagittal | 60.70 (19.42) | −1.07 (3.82) | 61.77 (20.90) | 60.99 (23.88) | 1.08 (4.48) | 59.91 (21.10) |
Frontal | 3.71 (4.28) | −9.38 (6.35) * | 13.09 (3.13) * | 3.79 (6.10) | −6.47 (7.18) * | 10.26 (2.23) * | |
Horizontal | 6.45 (6.07) | −7.36 (3.06) | 13.81 (4.78) | 8.34 (15.20) | −5.36 (16.80) | 13.70 (3.89) |
Joint | Plane | Pre | Post | ||||
---|---|---|---|---|---|---|---|
Max | Min | ROM | Max | Min | ROM | ||
Ankle (°) | Sagittal | 25.23 (6.33) | −16.58 (4.53) | 41.80 (4.31) | 25.83 (8.73) | −15.10 (6.50) | 40.93 (4.16) |
Frontal | 7.35 (4.33) * | −6.86 (3.29) | 14.20 (4.10) * | 10.29 (4.67) * | −7.45 (4.17) | 17.75 (4.03) * | |
Horizontal | 9.14 (6.31) | −3.08 (5.11) * | 12.22 (3.87) * | 7.90 (9.68) | −6.55 (7.88) * | 14.45 (3.31) * | |
Knee (°) | Sagittal | −1.84 (2.55) | −76.95 (27.27) | 75.11 (27.84) | −3.80 (4.96) | −77.46 (35.40) | 73.66 (33.08) |
Frontal | 6.63 (4.85) | −1.87 (3.89) * | 8.49 (2.41) * | 9.32 (7.44) | −5.75 (7.70) * | 15.07 (5.27) * | |
Horizontal | 8.66 (7.42) | −6.31 (3.85) | 14.98 (4.10) | 8.35 (21.74) | −7.31 (20.43) | 15.66 (3.01) | |
Hip (°) | Sagittal | 41.08 (27.17) | −4.69 (6.25) | 45.77 (30.61) | 43.12 (34.20) | −2.88 (5.92) | 46.00 (33.65) |
Frontal | 3.22 (1.97) | −8.85 (5.45) * | 12.07 (3.68) | 4.62 (4.46) | −6.65 (5.91) * | 11.27 (1.83) | |
Horizontal | 5.68 (6.02) | −5.72 (4.43) | 11.41 (5.13) | 7.86 (15.01) | −3.63 (14.30) | 11.49 (4.41) |
Phase | Condition | PVGRF(BW) | p | ES |
---|---|---|---|---|
Push-off | Pre | 1.23 ± 0.13 | 0.17 | 0.48 |
Post | 1.30 ± 0.16 | |||
Landing | Pre | 2.38 ± 0.79 | 0.88 | 0.03 |
Post | 2.36 ± 0.50 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, P.; Gong, Z.; Meng, Y.; Baker, J.S.; István, B.; Gu, Y. The Acute Influence of Running-Induced Fatigue on the Performance and Biomechanics of a Countermovement Jump. Appl. Sci. 2020, 10, 4319. https://doi.org/10.3390/app10124319
Yu P, Gong Z, Meng Y, Baker JS, István B, Gu Y. The Acute Influence of Running-Induced Fatigue on the Performance and Biomechanics of a Countermovement Jump. Applied Sciences. 2020; 10(12):4319. https://doi.org/10.3390/app10124319
Chicago/Turabian StyleYu, Peimin, Zhen Gong, Yao Meng, Julien S Baker, Bíró István, and Yaodong Gu. 2020. "The Acute Influence of Running-Induced Fatigue on the Performance and Biomechanics of a Countermovement Jump" Applied Sciences 10, no. 12: 4319. https://doi.org/10.3390/app10124319
APA StyleYu, P., Gong, Z., Meng, Y., Baker, J. S., István, B., & Gu, Y. (2020). The Acute Influence of Running-Induced Fatigue on the Performance and Biomechanics of a Countermovement Jump. Applied Sciences, 10(12), 4319. https://doi.org/10.3390/app10124319