Probability-Based Concrete Carbonation Prediction Using On-Site Data
Abstract
:1. Introduction
2. Durability Prediction Approach for Carbonated Concrete Structures
2.1. One-Dimensional Concrete Carbonation Model
2.1.1. CO2 Diffusion Coefficient
2.1.2. Atmospheric CO2 Concentration
2.1.3. CO2 Uptake, a
2.1.4. Cement Hydration,
2.2. Analysis of Carbonation Durability
2.2.1. Carbonation Prediction Using Stochastic Analysis Techniques
2.2.2. Predicted Values Using Latin Hypercube Sampling (LHS)
2.3. Deterministic Limit State Function
3. Carbonation Prediction Approach
- (1)
- Selection of design variables and generation of their cumulative density functions (CDF) using normal distribution;
- (2)
- Extraction of sample design variables from the CDF using LHS;
- (3)
- Arrangement of extracted samples randomly to create a combination of design variables;
- (4)
- Calculation of prior predicted values using combined design variables;
- (5)
- Calculation of the initial likelihood function with previously measured on-site data and revision of prior predicted values using it;
- (6)
- To determine resistance value R, the mean and standard deviation of concrete cover thickness were calculated to obtain a reliability index using the limit state function;
- (7)
- Assuming reliability index for managing each structure, prediction of remaining service life of concrete structures.
4. Sensitivity Analysis of Carbonation Prediction Approach
4.1. Number of LHS
4.2. Optimized Number of Field Inspection Data
5. Application Examples
5.1. Subject Bridges
5.2. Durability Analysis of Carbonated Concrete Structures
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kwon, H.W.; Song, K.J.; Byun, K.J. Durability design for cracked concrete structures exposed to carbonation using stochastic approach. KSCE J. Civ. Eng. 2005, 25, 741–750. [Google Scholar]
- Greve-Dierfeld, S.; Gehlen, C. Performance based durability design, carbonation part 1—Benchmarking of European present design rules. Struct. Concr. 2016, 3, 309–328. [Google Scholar] [CrossRef]
- Greve-Dierfeld, S.; Gehlen, C. Performance based durability design, carbonation part 2—Classification of concrete. Struct. Concr. 2016, 4, 523–532. [Google Scholar] [CrossRef]
- Greve-Dierfeld, S.; Gehlen, C. Performance based durability design, carbonation part 3—PSF approach and a proposal for the revision of deemed-to-satisfy rules. Struct. Concr. 2016, 5, 718–728. [Google Scholar] [CrossRef]
- Kim, T.K.; Choi, S.J.; Kim, J.H.J.; Chu, Y.S.; Yu, E. Performance based evaluation of carbonation resistance of concrete according to various curing conditions from climate change effect. Int. J. Concr. Struct. Mater. 2017, 11, 687–700. [Google Scholar] [CrossRef]
- Ekolu, S.O. A review on effects of curing, sheltering, and CO2 concentration upon natural carbonation of concrete. Constr. Build. Mater. 2016, 127, 306–320. [Google Scholar] [CrossRef]
- Tongaria, K.; Mandal, S.; Mohan, D. A review on carbonation of concrete and its prediction modelling. J. Evniron. Nanotechnol. 2018, 7, 75–90. [Google Scholar] [CrossRef]
- Ashraf, W. Carbonation of cement-based materials: Challenges and opportunities. Constr. Build. Mater. 2016, 120, 558–570. [Google Scholar] [CrossRef]
- Lee, H.-M.; Lee, H.-S.; Min, S.-H.; Lim, S.; Singh, J.K. Carbonation-induced corrosion initiation probability of rebars in concrete with/without finishing materials. Sustainability 2018, 10, 3814. [Google Scholar] [CrossRef] [Green Version]
- Torgal, F.P.; Miraldo, S.; Labrincha, J.A.; Brito, J.D. An overview on concrete carbonation in the context of eco-efficient construction: Evaluation, use of SCMs and/or RAC. Constr. Build. Mater. 2012, 36, 141–150. [Google Scholar] [CrossRef] [Green Version]
- Han, S.H.; Park, W.S.; Yang, E.I. Evaluation of concrete durability due to carbonation in harbor concrete structures. Constr. Build. Mater. 2013, 48, 1045–1049. [Google Scholar] [CrossRef]
- Luo, D.; Niu, D.; Dong, Z. Application of Neural Network for Concrete Carbonation Depth Prediction. In Proceedings of the 4th International Conference on the Durability of Concrete Structures, West Lafayette, IN, USA, 24–26 July 2014; pp. 66–71. [Google Scholar]
- Cho, H.C.; Ju, H.; Oh, J.Y.; Lee, K.J.; Hahm, K.W.; Kim, K.S. Estimation of concrete carbonation depth considering multiple influencing factors on the deterioration of durability for reinforced concrete structures. Adv. Mater. Sci. Eng. 2016, 2016, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Rizvi, S.S.; Akhtar, S.; Verma, S.K. Carbonation induced deterioration of concrete structures. Ind. Concr. J. 2017, 65–70. [Google Scholar] [CrossRef]
- Ekolu, S.O. Model for practical prediction of natural carbonation in reinforced concrete: Part 1-formulation. Cement Concr. Compos. 2018, 86, 40–56. [Google Scholar] [CrossRef]
- Jung, H.J.; Zi, G.S.; Kong, J.S.; Kang, J.G. Durability prediction for concrete structures exposed to chloride attack using a Bayesian approach. J. Korea Concr. Inst. 2008, 20, 77–88. [Google Scholar] [CrossRef] [Green Version]
- Jacinto, L.; Neves, L.C.; Santos, L.O. Bayesian assessment of an existing bridge: A case study. Struct. Infrastruct. Eng. 2015, 12, 61–77. [Google Scholar] [CrossRef] [Green Version]
- Zanini, M.A.; Faleschini, F.; Pellegrino, C. Bridge residual service-life prediction through Bayesian visual inspection and data updating. Struct. Infrastruct. Eng. 2017, 13, 906–907. [Google Scholar] [CrossRef]
- Sanjuán, M.A.; Olmo, C. Carbonation resistance of one industrial mortar used as a concrete coating. Build. Environ. 2001, 36, 949–953. [Google Scholar] [CrossRef]
- Lee, C.S.; Yoon, I.S. Prediction of carbonation progress for concrete structures considering change of atmospheric environment. J. Korea Concr. Inst. 2003, 15, 574–584. [Google Scholar] [CrossRef]
- Comite Euro-International du Beton. CEB-FIP Model Code 1990; Thomas Telford Ltd.: London, UK, 1993. [Google Scholar]
- Lee, C.S.; Yoon, I.S.; Kim, Y.H. Probability analysis on carbonation rate of concrete structures in Seoul metropolitan area. Seoul Stud. 2004, 5, 95–104. [Google Scholar]
- Cha, S.W. Mathematical modeling of degree of hydration and adiabatic temperature rise. J. Korea Concr. Inst. 2002, 14, 118–125. [Google Scholar]
- Ang, A.H.-S.; Tang, W.H. Probability Concepts in Engineering Planning and Design: Basic Principles, Volume 1; John Wiley & Sons: Hoboken, NJ, USA, 1975; pp. 329–359. [Google Scholar]
- Bazant, Z.P.; Kim, J.K. Segmental box girder: Deflection probability and Bayesian updating. J. Struct. Eng. 1989, 115, 2528–2547. [Google Scholar] [CrossRef] [Green Version]
- Oh, B.H.; Yang, I.H. Realistic estimation method of compressive strength in concrete structures. J. Korea Concr. Inst. 1999, 11, 241–249. [Google Scholar]
- Yang, I.H. Long-term prediction of prestress in concrete bridges by nonlinear regression analysis method. J. Korea Concr. Inst. 2006, 18, 507–515. [Google Scholar] [CrossRef]
- Mckay, M.D.; Beckman, R.T.; Conover, W.J. A comparison of three methods for selecting values of input variables in the analysis output from a computer code. Technometrics 1979, 21, 239–245. [Google Scholar] [CrossRef]
- Olsson, A.; Sandberg, G.; Dahlblom, O. On Latin hypercube sampling for structural reliability analysis. Struct. Safety 2003, 25, 47–68. [Google Scholar] [CrossRef]
- Korea Infrastructure Safety Corporation. In-depth Safety Examination Report, 1995–2016. Available online: http://www.fms.or.kr (accessed on 24 June 2020).
- Ministry of Land, Infrastructure and Transport; Korea Infrastructure Safety Corporation. Guidelines for Inspection and Assessment of Infrastructure Safety; KISTEC: Seoul, Korea, 2018. [Google Scholar]
- Yang, J.W. A Study on Evaluation of Probability Based Service Life in Carbonated RC Structure. Master’s Thesis, Hanyang University, Kyonggido, Korea, 2011. [Google Scholar]
- Kwon, S.J.; Park, S.S.; Nam, S.H. A suggestion for carbonation prediction using domestic field survey data of carbonation. J. Korea Inst. Struct. Maint. Insp. 2007, 11, 81–88. [Google Scholar]
Classification | Type of Portland Cement | |||
---|---|---|---|---|
TYPE I | TYPE II | TYPE IV | TYPE V | |
C3S (%) | 49 | 42 | 23 | 46 |
C2S (%) | 23 | 37 | 58 | 32 |
C3A (%) | 10 | 6 | 3 | 4 |
C4AF (%) | 9 | 12 | 9 | 13 |
C3S (%) | 0.25 | 0.90 | 0.70 |
C2S (%) | 0.46 | 0 | 0.12 |
C3A (%) | 0.28 | 0.90 | 0.77 |
C4AF (%) | 0.26 | 0.90 | 0.55 |
Bridge | Environmental Condition | Measured Point | Age (Years) | Carbonation Depth (mm) |
---|---|---|---|---|
Gajwa IC viaduct | On land | Pier | 11 | 5 |
16 | 5 | |||
19 | 7 | |||
24 | 7.3 | |||
Noryang bridge | Above the river * | Pier | 10 | 6 |
17 | 6.5 | |||
22 | 8.4 | |||
27 | 8.44 | |||
Geoje bridge | Above the sea | Girder | 27 | 23 |
34 | 30 | |||
39 | 32 | |||
44 | 26.4 |
Environmental Conditions | Number of On-Site Data | Mean (mm) | Standard Deviation (mm) |
---|---|---|---|
On land | 540 | 61.66 | 32.50 |
Above the river * | 399 | 57.17 | 33.73 |
Above the sea | 117 | 62.44 | 49.57 |
Design Variables | Prior Values (Mean, Standard Deviation) |
---|---|
(×10−4 cm2/s) | |
(g/cm3) | Using Equation (4), (0.74) |
(g/cm3) | Using Equation (5) and Table 1, (1.65) |
Using Equations (6) and (7), (0.12) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, H.; Im, S.-B.; An, Y.-K. Probability-Based Concrete Carbonation Prediction Using On-Site Data. Appl. Sci. 2020, 10, 4330. https://doi.org/10.3390/app10124330
Jung H, Im S-B, An Y-K. Probability-Based Concrete Carbonation Prediction Using On-Site Data. Applied Sciences. 2020; 10(12):4330. https://doi.org/10.3390/app10124330
Chicago/Turabian StyleJung, Hyunjun, Seok-Been Im, and Yun-Kyu An. 2020. "Probability-Based Concrete Carbonation Prediction Using On-Site Data" Applied Sciences 10, no. 12: 4330. https://doi.org/10.3390/app10124330
APA StyleJung, H., Im, S. -B., & An, Y. -K. (2020). Probability-Based Concrete Carbonation Prediction Using On-Site Data. Applied Sciences, 10(12), 4330. https://doi.org/10.3390/app10124330